شرح مختصر : پارامتر های سنسور عبارتند از : فرکانس سوئیچینگ: حداکثر تعداد قطع و وصل یک سنسور در ثانیه می باشد. ( واحد آن HZ میباشد ) فاصله سوئیچینگ (S) فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد. فاصله سوئیچینگ نامی (SN) : فاصله ای که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل درجه حرارت ، ولتاژ تغذیه و … تعریف شده است. لیمیت سوییچ یک وسیله مکانیکی است که با اتصال فیزیکی حضور یک شی را آشکار می کند.
فهرست :
اتوماسیون
مکانیزاسیون
programmabale logic controller
سنسور
شناسائی سنسور
کاربردها
پلاک خوانی سنسور
سنسورهای صنعتی
لیمیت سوییچ ها
سنسور های بدون تماس فیزیکی
سنسورهای فتوالکتریک
سنسورهای خازنی
سنسورهای سلفی
سنسورهای آلتراسونیک
42 اسلاید
مشخصات فایل
عنوان: سنسورهای حرارتی
قالب بندی: word
تعداد صفحات: 54
محتویات
مقدمه
فصل اول
تعریف عبارت سنسور
تکنیک های تولید سنسور
سنسورهادر تکنولوژی لایه نازک (Thin-film technology):
سنسورهای سیلیکانی
خواص سیلیکان و اثرات آنها بر سنسورها:
سنسورهای اکوستیکی ؛ سنسورهای صوتی و کاربردهای آن
سنسورهای موج صوتی سطحی (SAW ) :
SURFACE acoustic wave
فصل سوم
سنسورهای گازی SAW
کاربردهایی از سنسورهای سرعت و شتاب
توضیحات مکمل
دو تکنیک اصلی برای تولید باریکه اصلی
فصل چهارم
سنسورهای مکانیکی
سنسورهای فشار
شتاب سنج ها
سنسورهای flow (جاری )
STRAIN GAGE
فصل پنجم
سنسورهای نوری
مقاومت های نوری
سنسورهای نیمه هادی نوری برای آشکار سازی الکترومغناطیس وامواج هسته ای
دیودهای نوری
ترانزیستورهای نوری
مثالی از کاربرد سنسورهای نوری
سایر مواد نیمه هادی برای سنسورهای نوری
فصل ششم
سنسورهای درجه حرارت
سنسورهای حرارتی اینترفیس
سنسورهای دمای ولتاژ خروجی آنالوگ
سنسورهای سلسیوس LM35
سنسور فارنهایت LM34
سنسورهای آنالوگ جریان خروجی ( LM134 ـ LM234 ـ LM334 )
سنسورهای مقایسه گر دمای خروجی ( ترموستات توان پایین LM56)
سنسورها با خروجی دیجیتالی
مدارات کاربردی
نمایش دیجیتالی دمای ورودی و خروجی
سنسورهای دمایی خارجی متصل به PC
آشکار ساز دما و کنترلر فن به یک آمپلی فایر گرمایی صوتی
فصل هفتم
سنسورهای هال
اما اثرهال چیست؟
مثالهایی از کاربرد های سنسور های مغناطیسی .
سنسور اندازه گیری نرخ جاری شدن(flow rate sensor )
سنسورهای ماشین اداری (office machine sensor )
مفاهیم و کاربردهای سنسور خروجی
خواننده کارت مغناطیسی
پیش بینی برای آینده
عنوان مقاله: سنسورهای حرارتی
سنسورها رابط بین سیستم کنترل الکترونیکی از یک طرف و محیط، رشته کارها یا ماشین از طرف دیگر هستند. در اواخر دهه ۱۹۷۰ و اوایل دهه ۱۹۸۰ تکامل سنسور در سطح بین المللی بین سه و پنچ سال عقب تر از تکامل علم میکروالکترونیک در نظر گرفته می شد. این حقیقت که ساخت عناصر میکروالکترونیک غالباً بسیار ارزانتر از عناصر اندازه گیری کننده ای
( سنسور هایی ) بود که آنها احتیاج داشتند ، یک مانع جدی در ازدیاد و متنوع نمودن کاربرد میکرو الکترونیک پردازشگر اطلاعات در گستره وسیعی از عملیات و رشته کارها بود. چنین اختلافی بین علم میکروالکترو نیک مدرن و تکنولوژی اندازه گیری کننده کلاسیکی تنها توانست به واسطه ظهور تکنولوژی سنسورهای مدرن بر طرف شود.
اگر چه سنسورها به همراه علم میکروالکترونیک پردازشگر اطلاعات ، یک گام مهم را به جلو عرضه دارد لیکن این ، تنها اولین قدم است . در این مرحله سنسورها از تعدادی از عناصر میکروالکترونیک موجود ، برای مثال به شکل پردازشگرها ، حافظه ها ، مبدل های آنالوگ به دیجیتال یا تقویت کننده ها ، برای آماده نمودن سیگنال خروجی استفاده می کنند.در عین حال سنسورباید یک خروجی الکترونیکی تولیدکند که به آسانی پردازش شود . دومین گام عبارت از اتصال سنسور سیستم میکروالکترونیک –بخش مکانیکی می باشد . این زنجیره تنها در صورتی کار می کند که همه خطوط رابط باشند این امر منجر به توصیف یک معیار مهم تر به ویژه تا جائیکه سنسور مر بوط است می شود.
سنسور (sensor)یعنی حس کننده,و از کلمه sens به معنی حس کردن گرفته شده و می تواند کمیت هایی مانند فشار، حرارت، رطوبت، دما، و … را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل کند.سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانندPLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جملهPLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد. سنسور ها بر اساس نوع و وظیفه ای که برای آن ها تعریف شده اطلاعات را به سیستم کنترل کننده می فرستند و سیستم طبق برنامه تعریف شده عمل می کند .
سنسورهای بدون تماس:
سنسورهای بدون تماس سنسورهائی هستند که با فاصله از جسم و بدون اتصال به آن عمل می کند مثلا نزدیک شدن یک قطعه وجود آنرا حسکرده و فعال می شوند. این عمل به نحوی که در شکل زیر نشان داده شده است می تواندباعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم میگردد.
کاربرد این سنسورها در صنعت:
1- شمارش تولید: سنسورهای القائی، خازنی ونوری
2- کنترل حرکت پارچه و …: سنسور نوری و خازنی
3-تشخیص پارگی ورق: سنسورنوری
4- کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح
5- کنترل انحراف پارچه: سنسور نوری و خازنی
6- اندازه گیری سرعت: سنسور القائی و خازنی
7- کنترل تردد: سنسور نوری
8-اندازه گیری فاصله قطعه: سنسور القائی آنالوگ
مزایای سنسورهای بدون تماس:
سرعت سوئیچینگ(قطع و وصل)زیاد: سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، بطوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا KHZ)25( کار می کنند.
طول عمر زیاد: بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار وجرقه های حین کار و … دارای طول عمر زیادی هستند.
قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و … قابل استفاده هستند.
عدم نیاز به نیرو و فشار: با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو وفشار نیازی نیست.
عدم ایجاد نویز در هنگام قطع وصل به دلیل استفاده ازنیمه هادی ها در طبقه خروجی، نویزهای مزاحم(Bouncing Noise)ایجاد نمی شود.
انواع سنسورهای مجاورتی :
1-نوری:این نمونه سنسورها به دو صورت کار می کنند.یا دو سنسور که به صورت ارسال و دریافت در مقابل هم هستند یا یک سنسور که قابلیت ارسال و دریافت امواج فروسرخ را دارد و در مقابل آن یک اینه قرار گرفته است.در صورتی که جسم امواج ارسالی را قطع کند نور به فتو ترانزیستور گیرنده نمی رسد وخاموش می شود و در نتیجه یک پالس به کنترلر ارسال می شود(سطح صفر).
نکته:دستگاههایی که با این سنسورها کار می کنند در صورت بروز خطا پاک بودن اینه ها وصحت ارسال و دریافت سنسورها راچک کنید.
۲-خازنی:این سنسورها همانند خازنها کار می کند و در صورت حظور جسم در میدان آن ظرفیتش تعغیر می کند ویک سگنال به کنترلر ارسال می کند(سطح صفر).
نکته:سنسورهای خازنی قابلیت اشکار سازی حضور هرنوع جسمی را دارند(پلاستیک.چوب .فلز و..)
۳-القایی:این سنسورها همانند یک سلف کار میکنند واز خاصیت القایی آن جهت اشکار سازی حضور جسم استفاده می شود.میدان دارای یک دامنه وفرکانس معین است در صورت حضور جسم نوسانات و دامنه صفر می شود ویک سیگنال(سطح صفر)به کنترلر ارسال می شود.
نکته:سنسورهای القایی فقط اجسام رسانی مغناطیسی را حس می کنند.و قدرت اشکار سازی جسم آنها به اندازه دامنه میدان تولیدی(ولتاز تغذیه)بستگی دارد.
۴-التراسونیک:این سنسور ها از امواج ما فوق صوت که در محدوده ۲۰تا ۵۰کیلو هرتز است اسفاه می کند.
کاربرد مهم آن استفاده در سرعت سنج ها و اشکارسازی سطح مخازن و اندازه گیری فلو و… است.
نحوه کار آن به این صورت است که با محاسبات سرعت موج و اختلاف زمان بین ارسال و دریافت فاصله را اندازه گیری می کنند.این سنسورها به صورت پالسی کار میکنند مثلا در هر ۲ثانیه یکبار یک پالس ارسال و فاصله را اندازه کیری می کند.
5- سنسورتشخیص کد رنگ:تشخیص نوار رنگی کاغذ های بسته بندی
سنسورهای بیوالکتریکیBiosensors:
بیوسنسورها طی سالهای اخیر مورد توجه بسیاری از مراکز تحقیقاتی قرار گرفته است. بیوسنسورها یا سنسورهای بر پایه مواد بیولوژیکی اکنون گستره ی وسیعی از کاربردها نظیر صنایع دارویی، صنایع خوراکی، علوم محیطی، صنایع نظامی بخصوص شاخهBiowar و … را شامل میشود.
توسعه بیوسنسورها از 1950 با ساخت الکترود اکسیژن توسط لی لند کلارک در سین سیناتی آمریکا برای اندازه گیری غلظت اکسیژن حل شده در خون آغاز شد. این سنسور همچنین بنام سازنده ی آن گاهی الکترودکلارک نیز خوانده میشود. بعداً با پوشاندن سطح الکترود با آنزیمی که به اکسیده شدنگلوکز کمک میکرد از این سنسور برای اندازه گیری قند خون استفاده شد. بطور مشابه باپوشاندن الکترود توسط آنزیمی که قابلیت تبدیل اوره به کربنات آمونیوم را داراست درکنار الکترودی از جنس یونNH4++ بیو سنسوری ساخته شده که میتوانست میزان اوره درخون یا ادرار را اندازه گیری کند. هر کدام از این دو بیوسنسور اولیه از ترنسدیوسرمتفاوتی در بخش تبدیل سیگنال خویش استفاده میکردند. در نوع اول میزان قند خون بااندازه گیری جریان الکتریکی تولید شده اندازه گیری میشد (آمپرومتریک) در حالیکه درسنسور اوره اندازه گیری غلظت اوره بر اساس میزان بار الکتریکی ایجاد شده درالکترودهای سنسور صورت می پذیرPotentiometric.
ممکن است روزی فرا رسد که بیمار بدون نیاز به مراجعه به پزشک و تنها بر مبنای اطلاعاتی که توسط یکCOBD یاChip-on-Board-Doctor فراهم میشود نوع بیماری تشخیص داده شده و سپس داروهای مورد نیاز مستقیماً درون خون تزریق شود. این مسئله باعث خواهد شد که دوزمصرفی دارو بسیار پایین آمده و ضمناً از میزان اثرات جانبی داروSide-Effect بطرزفاحشی کاسته شود، چرا که دارو مستقیماً به محل مورد نیاز در بدن ارسال میشود.
کاری که یک بیوسنسور انجام میدهد تبدیل پاسخ بیولوژیکی به یک سیگنال الکتریکی است و شامل دو جزء اصلی: پذیرندهReceptor و آشکارکنندهDetector است. قابلیت انتخابگری یک بیوسنسور توسط بخش پذیرنده تعیین میشود. آنزیمها، آنتی بادیها، و لایه های لیپید (چربی) مثالهای خوبی برایReceptor هستند.
وظیفه دتکتور تبدیل تغییرات فیزیکی یا شیمیایی با تشخیص ماده مورد تجزیه)Analyte( به یکسیگنال الکتریکی است. کاملاً واضح است که دتکتورها قابلیت انتخاب در نوع واکنش صورتگرفته را ندارند. انواع دتکتورهای (یا ترانسدیوسرها یا مبدلها یا آشکارسازها) مورداستفاده در بیوسنسورها شامل: الکتروشیمیایی، نوری، پیزوالکتریک و حرارتی میباشند. در نوع الکتروشیمیای عمل تبدیل به یکی از صورتهای: آمپرومتریک، پتانشیومتریک، وامپدانسی صورت میپذیرد. متداولترین الکترودهای مورد استفاده در نوع پتانشیومتریک شامل: الکترود شیشه ایGlass Electrode، الکترود انتخابگر یونیIon-Selective، وترانزیستور اثرمیدان حساس یونیIon-sensitive FET یاISFET هستند.
بطورکلییک بیوسنسور شامل یک سیستم بیولوژیکی ایستاImmobilized نظیر یک دسته سلول، یکآنزیم، و یا یک آنتی بادی و یک وسیله اندازه گیری است. در حضور مولکول معینی سیستمبیولوژیکی باعث تغییر خواص محیط اطراف میشود. وسیله اندازه گیری که به این تغییراتحساس است، سیگنالی متناسب با میزان و یا نوع تغییرات تولید میکند. این سیگنال راسپس میتوان به سیگنالی قابل فهم برای دستگاههای الکترونیکی تبدیل کرد.
مزایای بیوسنسورها بر سایر دستگاههای اندازه گیری موجود را میتوان بطورخلاصه بصورت زیر بیان کرد:
مولکولهای غیرقطبی زیادی در ارگانهای زنده شکلمیگیرند که به بیشتر سیستمهای موجود اندازه گیری پاسخ نمی دهند. بیوسنسورهامیتوانند این پاسخ را دریافت کنند.
مبنای کار آنها بر اساس سیستم بیولوژیکیایستاImmobilized تعبیه شده در خود آنهاست، در نتیجه اثرات جانبی بر سایر بافتهاندارند.
کنترل پیوسته و بسیار سریع فعالیتهای متابولیسمی توسط این سنسورهایامکان پذیر است.
سنسور تشخیص حرکت بدن انسانPIR:
همانطورکه میدانید امروزه استفاده از سنسور های تشخیص حرکت رونق بسیار بالایی پیدا کرده ،هم در زمینه های امنیتی و حفاظتی و هم در مسائل صرفه جویی و بهینه سازی ، سنسور هایPIR یاPASSIVE INFRA REDسنسورهایی هستند که طول موجInfrared محیط اطراف رادریافت میکنند.
هر جسمی که دمایش بالاتر از صفر درجه مطلق باشد دارای تشعشعاتInfrared یامادون قرمز میباشد . اما این موج دارای طول موج های مختلف برای درجه حرارتهای متفاوت است . کاری که این سنسور انجام میدهد در واقع دریافت این امواج در رنج بدن انسان و تشخیص آن میباشد . از این سنسور در دستگاه هایی که برای تشخیص حرکت بدن انسان حتی به صورت جزئی استفاده میشود و از نظر دقت و قابلیت اعتماد در سطح بالایی میباشد بدین وسیله شما یک آشکار ساز حرکت دارید که فقط به حرکات بدن انسان حساس است،
کاربرد این نوع سنسور:
در مسائل امنیتی ، مثل دزدگیرها مفید میباشد و در مسائل مربوط به بهینه سازی مصرف انرژی میتواند بسیار مفید واقع شود .
تعریف ترانسمیتر:
ترانسمیتر وسیله ای است که یک سیگنال الکتریکی ضعیف را دریافت کرده و به سطوح قابل قبول برای کنترلرها و مدارهای الکترونیکی تبدیل می کند ، مثلأیک حلقه فیدبک سیگنالی در سطح میکروولت یا میلی ولت یا میلی آمپرتولید می کند و این سیگنال ضعیف می تواند با عبور از ترانسمیتر به سیگنالی در سطوح صفر تا ده ولت و یا4 تا 20 میلی آمپر تبدیل شود. ترانسمیترها عمومأ از قطعاتی مثلop-amp برای تقویت وخطی کردن این سطوح ضعیف سیگنال استفاده می کند . سنسورها و ملحقات آنها مثل ترانسدیوسرها را در گروه های بزرگی تحت عنوان ابزار دقیق قرار داده و آنها را براساس نوع انرژی قابل استفاده و روشهای تبدیل ، دسته بندی می کنند.
تعریف ترانسدیوسر:
یک ترانسدیوسر بنا به تعریف ، قطعه ای است که وظیفه تبدیل حالات انرژی به یکدیگر را برعهده دارد ، بدین معنی که اگر یک سنسور فشار همراه یک ترانسدیوسر باشد ، سنسور فشار پارمتر را اندازه می گیرد ومقدار تعیین شده را به ترانسدیوسر تحویل می دهد ، سپس ترانسدیوسر آن را به یک سیگنال الکتریکی قابل درک برای کنترلر و صد البته قابل ارسال توسط سیم های فلزی ،تبدیل می کند .بنابراین همواره خروجی یک ترانسدیوسر ، سیگنال الکتریکی است که درسمت دیگر خط می تواند مشخصه ها و پارامترهای الکتریکی نظیر ولتاژ ، جریان و فرکانس را تغییر دهد ، البته به این نکته باید توجه داشت که سنسور انتخاب شده باید از نوع سنسورهای مبدل پارامترهای فیزیکی به الکتریکی باشد و بتواند مثلأ دمای اندازه گیری شده را به یک سیگنال بسیار ضعیف تبدیل کند که در مرحله بعدی وارد ترانسدیوسر شده وسپس به مدارهای الکترونیکی تحویل داده خواهد شد.
برای درک این مطلب به تفاوتهای میان دو سنسور انداره گیر دما می پردازیم : ترموکوپل و درجه حرارت جیوه ای، دو نوع سنسور دما هستند که هر دو یک عمل را انجام می دهند ، اما ترموکوپل در سمت خروجی سیگنال الکتریکی ارائه می دهد ، در حالی که درجه حرارت جیوه ای خروجی خود رابه شکل تغییرات ارتفاع در جیوه داخلش نشان می دهد.
سنسورهای فشار:
فشار را به کمک دستگاههای فشارسنج اندازه میگیرند، عمدهترین فشار سنجها که بر حسب مکانیزم کارشناسان نامگذاری شده است عبارتند از:
فشارسنج لولهU شکل
فشارسنج مکلئود
فشارسنج جیوهای
فشارسنج ترموکوپل
فشارسنج صوتی
فشارسنج خازنی
فشارسنج گاز ایدهال
فشارسنج لولهU شکل
ساده ترین و معروفترین آنها فشار سنج لولهU شکل است که در آن مقداری جیوه در لولهU شکل ریخته شده و میزان اختلاف فشار محیط هوا که برابرp0 است و ماده داخل فشارسنج که بر مایع جیوه فشار وارد میکند از طریق اختلاف ارتفاع ستون مایع جیوه اندازه گیری میشود. بنابراین از این طریق فشار واقعی را میتوانیم بدستآوریم:P = P0 + ρg )h – h0
در رابطه اخیرP فشار وρ چگالی ماده وP0 فشار اتمسفر ، h0 ارتفاع ستون مایع در فشار اتمسفر ، g شتاب جاذبه وhارتفاع ستونمایع در فشار ماده میباشد.
فشارسنج جیوهای(Mercury Barometer)
این فشار سنج اساساً از یک لوله خالی از هوا درست شده است که یک طرف آنمسدود و طرف دیگر آن که باز است در ظرف پر از جیوه فرو برده شده است. فشار هوایبیرون ، جیوه را از منبع به سمت داخل لوله میراند. جیوه تا حدی که وزن آن در داخللوله ، دقیقاً معادل نیروی ناشی از فشار هوا گردد در لوله فشار سنج بالا میرود وسپس در حالت تبادل و سکون باقی میماند. با تغییر فشار هوا ، سطح جیوه در داخل لولهنیز بالا و پایین خواهد رفت. در شرایط نرمال جیوه به اندازه 92/29 اینچ یا 760میلیمتر در لوله بالا میآید که فشاری معادل 15/1013 میلی بار است. جیوه در داخللوله فشارسنج به دلیل خاصیت کشش سطحی دارای یک سطح محدب است که هنگام تعیین فشار،باید بالاترین سطح محدب قرائت شود.
فشارسنج فلزی(Aneroid)
فشارسنج فلزی وسیلهای است مکانیکی که از یک محفظه قوطی شکل استوانهای بدون هوا تشکیل شده است؛ با تغییر فشار هوا این محفظه منقبظ یا منبسط میشود. با یک سیستم نسبتاً پیچیده که مرکب از تعدادی اهرم و قرقره است این تغییرات بزرگ شده و به یک عقربه که بر روی صفحه مدرجی حرکت میکند، منتقل میشود. یک شاخص متحرک که میتواند در یک نقطه ثابت شود بر روی فشار سنج تعبیه شده است تا بتوان تغییرات فشار را نسبت به آخرین قرائت اندازه گیری کرد.
فشار نگار(Barograph)
فشار نگار مشابه فشارسنج فلزی است با این تفاوت که اثر تغییرات فشار درمحفظه بدون هوا ، به یک قلم انتقال داده شده و قلم بر روی کاغذی که دور یک استوانه چرخان پیچیده شده است خط پیوستهای را رسم میکند. محور عمودی این صفحه بر حسب واحدفشار و محور افقی آن بر حسب زمان مدرج شده است که معمولاً برای هر دو ساعت یک خطوجود دارد. فشار نگارهای دقیقی هم ساخته شده است که قادرند تغییرات فشار را تا یکدهم میلی بار اندازه گیری نمایند، این دستگاهها میکرو باروگراف نامیده شدهاند.
سنسورها در ربات:
سنسورها اغلب برای درک اطلاعات تماسی، تنشی،مجاورتی، بینایی و صوتی بهکار میروند. عملکرد سنسورها بدینگونه است که با توجهبه تغییرات فاکتوری که نسبت به آن حساس هستند،
سطوح ولتاژی ناچیزی را درپاسخ ایجاد میکنند، که با پردازش این سیگنالهای الکتریکی میتوان اطلاعات دریافتیرا تفسیر کرده و برای تصمیمگیریهای بعدی از آنها استفاده نمود.
سنسورهارا میتوان از دیدگاههای مختلف به دستههای متفاوتی تقسیم کرد که در ذیل میآید:
.سنسور محیطی: این سنسورها اطلاعات را از محیط خارج و وضعیت اشیای اطرافربات، دریافت مینمایند
.سنسور بازخورد: این سنسور اطلاعات وضعیت ربات، ازجمله موقعیت بازوها، سرعت حرکت و شتاب آنها و نیروی وارد بر درایورها را دریافت مینمایند.
سنسور فعال: این سنسورها هم گیرنده و هم فرستنده دارند و نحوه کار آنها بدین ترتیب است که سیگنالی توسط سنسور ارسال و سپس دریافت میشود.
.سنسور غیرفعال: این سنسورها فقط گیرنده دارند و سیگنال ارسال شده از سوی منبعی خارجی را آشکار میکنند، به همین دلیل ارزانتر، سادهتر و دارای کارایی کمتر هستند.
سنسورها از لحاظ فاصلهای که با هدف مورد نظر باید داشته باشندبه سه قسمت تقسیم میشوند:
•سنسور تماسی: این نوع سنسورها در اتصالات مختلفمحرکها مخصوصا در عوامل نهایی یافت میشوند و به دو بخش قابل تفکیکاند.
i.سنسورهای تشخیص تماس
ii.سنسورهای نیرو-فشار
دو روش عمده در استفاده از سنسورها وجود دارد:
1.حس کردن استاتیک: در این روش محرکها ثابتاند و حرکتهایی که صورت میگیرد بدون مراجعه لحظهای به سنسورها صورت میگیرد.به عنوان مثال در این روش ابتدا موقعیت شی تشخیص داده میشود و سپس حرکت به سوی آن نقطه صورت میگیرد.
2.حس کردن حلقه بسته: در این روش بازوهای ربات در طول حرکت با توجه به اطلاعات سنسورها کنترل میشوند. اغلب سنسورها در سیستمهای بینا اینگونهاند.
حال از لحاظ کاربردی با نمونههایی از انواع سنسورها درربات آشنا میشویم:
a.سنسورهای بدنه(Body Sensors):
این سنسورها اطلاعاتی رادرباره موقعیت و مکانی که ربات در آن قرار دارد فراهم میکنند. این اطلاعات نیز به کمک تغییر وضعیتهایی که در سوییچها حاصل میشود، به دست میآیند. با دریافت وپردازش اطلاعات بدست آمده ربات میتواند از شیب حرکت خود و اینکه به کدام سمت درحال حرکت است آگاه شود. در نهایت هم عکسالعملی متناسب با ورودی دریافت شده از خودبروز میدهد.
b.سنسور جهتیاب مغناطیسی(Direction Magnetic Field Sensor) با بهرهگیری از خاصیت مغناطیسی زمین و میدان مغناطیسی قوی موجود، قطبنمایالکترونیکی هم ساخته شده است که میتواند اطلاعاتی را درباره جهتهای مغناطیسیفراهم سازد. این امکانات به یک ربات کمک میکند تا بتواند از جهت حرکت خود آگاه شدهو برای تداوم حرکت خود در جهتی خاص تصمصمگیری کند. این سنسورها دارای چهار خروجیمیباشند که هرکدام مبین یکی از جهتها است. البته با استفاده از یک منطق صحیح نیزمیتوان شناخت هشت جهت مغناطیسی را امکانپذیر ساخت.
c.سنسورهای فشار وتماس(Touch and Pressure Sensors) شبیه سازی حس لامسه انسان کاری دشوار به نظرمیرسد. اما سنسورهای سادهای وجود دارند که برای درک لمس و فشار مورد استفاده قرارمیگیرند. از این سنسورها در جلوگیری از تصادفات و افتادن اتومبیلها دردستاندازها استفاده میشود. این سنسورها در دستها و بازوهای ربات هم به منظورهایمختلفی استفاده میشوند. مثلا برای متوقف کردن حرکت ربات در هنگام برخورد عاملنهایی با یک شی. همچنین این سنسورها به رباتها برای اعمال نیروی کافی برای بلندکردن جسمی از روی زمین و قرار دادن آن در جایی مناسب نیز کمک میکند. با توجه بهاین توضیحات میتوان عملکرد آنها را به چهار دسته زیر تقسیم کرد: 1- رسیدن به هدف،2- جلوگیری از برخورد، 3- تشخیص یک شی.
d.سنسورهای گرمایی(Heat Sensors):
یکی از انواع سنسورهای گرمایی ترمینستورها هستند. این سنسورها المانهای مقاومتی پسیوی هستند که مقاومتشان متناسب با دمایشان تغییر میکند. بسته به اینکه در اثرگرما مقاومتشان افزایش یا کاهش مییابد، برای آنها به ترتیب ضریب حرارتی مثبت یامنفی را تعریف میکنند. نوع دیگری از سنسورهای گرمایی ترموکوپلها هستند که آنهانیز در اثر تغییر دمای محیط ولتاژ کوچکی را تولید میکنند. در استفاده از این سنسورها معمولا یک سر ترموکوپل را به دمای مرجع وصل کرده و سر دیگر را در نقطهایکه باید دمایش اندازهگیری شود، قرار میدهند
سنسورهای بویایی(Smell Sensors):
تا همین اواخر سنسوری که بتواند مشابه حس بویایی انسان عمل کند، وجودنداشت. آنچه که موجود بود یکسری سنسورهای حساس برای شناسایی گازها بود که اصولا هم برای شناسایی گازهای سمی کاربرد داشتند. ساختمان این سنسورها به این صورت است که یک المان مقاومتی پسیو که از منبع تغذیهای مجزا، با ولتاژ 5+ ولت تغذیه میشود، درکنار یک سنسور قرار دارد که با گرم شدن این المان حساسیت لازم برای پاسخگویی سنسوربه محرکهای محیطی فراهم میشود. برای کالیبره کردن این دستگاه ابتدا مقدار ناچیزی از هر بو یا عطر دلخواه را به سیستم اعمال کرده و پاسخ آن را ثبت میکنند و پس ازآن این پاسخ را به عنوان مرجعی برای قیاس در استفادههای بعدی به کار میبرند. اصولا در ساختمان این سیستم چند سنسور، به طور همزمان عمل میکنند و سپس پاسخهای دریافتی از آنها به شبکه عصبی ربات منتقل شده و تحلیل و پردازش لازم روی آن صورت میگیرد. نکته مهم درباره کار این سنسورها در این است که آنها نمیتوانند یک بو یاعطر را به طور مطلق انداره بگیرند. بلکه با اندازهگیری اختلاف بین آنها به تشخیص بو میپردازند.
نمونه ای از کار برد:
آلمانی ها توانسته اند با ساخت سنسور بویایی ویژه ای بیماری های قلبی را تا 90% کشف کنند. چنین اعلام شده که این حسگر می تواند انواعی از نارسایی قلبی را بر اساس بوها تشخیص دهد.
f.سنسورهای موقعیت مفاصل : رایجترین نوع این سنسورهاکدگشاها(Encoders) هستند که هم از قدرت بالای تبادل اطلاعات با کامپیوتربرخوردارند و هم اینکه ساده، دقیق، مورد اعتماد و نویز ناپذیرند. این دسته انکدرهارا به دو دسته میتوان تقسیم کرد:
i.انکدرهای مطلق: در این کدگشا ها موقعیتبه کد باینری یا کد خاکستریBCD Binary Codded Decibleتبدیل میشود. این انکدرها بهعلت سنگینی و گرانقیمت بودن و اینکه سیگنالهای زیادی را برای ارسال اطلاعات نیازدارند، کاربرد وسیعی ندارند. همانطور که میدانیم بهکار گیری تعداد زیادی سیگنالدرصد خطای کار را افزایش میدهد و این اصلا مطلوب نیست. پس از این انکدرها فقط درمواردی که مطلق بودن مکانها برای ما خیلی مهم است و مشکلی هم از احاظ بار فابلتحمل ربات متوجه ما نباشد، استفاده میشود.
ii.انکدرهای افزاینده: اینکدگشا ها دارای قطار پالس و یک پالس مرجع که برای کالیبره کردن بکار میرود هستند،از روی شمارش قطارهای پالس نسبت به نقطه مرجع به موقعیت مورد نظر دست مییابند. ازروی فرکانس (عرض پالسها) میتوان به سرعت چرخش و از روی محاسبه تغییرات فرکانس درواحد زمان (تغییرات عرض پالس) به شتاب حرکت دوارنی پی برد. حتی میتوان جهت چرخش رانیز فهمید. فرض کنید سیگنالهایA وB وC سه سیگنالی باشند که از کدگشا بهکنترلکننده ارسال میشود. B سیگنالی است که با یک چهارم پریود تاخیر نسبت بهA. ازروی اختلاف فاز بین این دو میتوان به جهت چرخش پی برد.
سنسور مادون قرمز بدون حساسیت به نور محیط
این یک سنسور مادون قرمز که نسبت به نور روزحساسیت نداره و با استفاده از یکPLL کار می کنه!
و اما چه جوری کار می کنه این از یهIC استفاده میکنه که دارای یه اوسیلاتور که روی فرکانسKHz 4.5 تنظیم شده این فرکانس توسط یه فرستنده مادون قرمز فرستاده می شه و توسط گیرنده مربوطه گرفته شده و ولتاژDC اون حذف می شه (که معمولا این ولتاژ متناسب با نور های محیطه) بعدتوسط یهPhase Detector با فاز فرستنده مقایسه می شه و اگر برابر بود خروجی صفر میشه وجود یکPLL در مدار باعث می شه که حساسیت مدار به نور های پراکنده جلوگیری میکنه البته برای تنظیم حساسیت می تونین از پتانسیومتر مدار استفاده کنین
ازاین مدار می تونین هم برای تشخیص وجود یک مانع استفاده کنین و هم برای تشخیص رنگسیاه از سفید. فرستنده و گیرنده مدار رو می تونین رو بروی هم قرار بدین که با اینکار اگر مانعی در بین این دو باشه تشخیص داد می شه و هم می تونین هر دو رو کنار همقرار بدین البته باید مراقب باشین که نور فرستنده در این حالت مستقیم به گیرندهنرسه و فقط انعکاس اون رو گیرنده در یافت کنه با این کار اگه مانعی رو نزدیک این دوقرار بدین تشخیص داده می شه این فاصله حدود 2cm که بستگی به رنگ جسم و جنس فرستندهو گیرنده دارد البته می توان آن را با پتانسیومتر مدار کمتر کرد با همین روش میتونین رنگ سیاه رو از سفید تشخیص بدین البته تنظیم پتانسیومتر یادتون نره
حسن این مدار اینه که با کم و زیاد شدن نور تنظیماتتون بهم نمی خوره دیگهبعداز یک ساعت تنظیم بعد که وارد محیط مسابقه شدین که نور دیگه ای داره همه چیز بهمنمی خوره.
حسگرهای مافوق صوت(Ultrasonic):
یکی از مسائل مطرح در رباتیک ایجاددرک نسبت به محیط خارجی برای جلوگیری از برخورد نامطلوب به اشیاء موجود در محیطحرکت است.
از سوی دیگر ممکن است نیاز داشته باشیم که ربات بتواند درکی ازفاصله ها بدون تماس فیزیکی داشته باشد. برای این منظور از سنسورهای مافوق صوت یاUltrasonic استفاده می کنند.فرکانسهای این محدوده را می توان بین 40 کیلو هرتز تاچندین مگا هرتز در نظر گرفت.امواجی با این فرکانسها کاربردهایی چون سنجش میزانفاصله،سنجش میزان عمق یک مخزن و ….را دارند.
جهت استفاده از این امواج یکسری سنسورهای مخصوص طراحی شده که می توان این سنسورها را به دو دسته صنعتی و غیرصنعتی تقسیم بندی کرد.سنسورهای غیر صنعتی در فرکانسهایی در حدود 40 کیلو هرتز کارمی کنند و در بازار با قیمتهای پایین در دسترس هستند. در این سنسورها دقت کار بالانبوده و فقط در حد تشخیص یک فاصله یا عمق یک مایع می توان از آنها استفاده کرد.امابلعکس در سنسورهای صنعتی که در فرکانسهای در حد مگا هرتز کار می کنند و به دلیل همین فرکانس بالا ما دقت زیادی را خواهیم داشت
مکانیزم کلی کار این سنسورها، فرستادن یک بیم و دریافت انعکاس آن و متعاقبا محاسبه زمان رفت و برگشت است. بدینترتیب می توان فواصل را نیز براحتی با در نظر گرفتن سرعت صوت در دما و فشار محیط ،محاسبه کرد به همین دلیل این سنسور به صورت دوpack مجزای گیرنده و فرستنده موجودمی باشد.
نگاهی سریع به سنسورهای رایج
SHT11سنسور رطوبت با خروجی دیجیتال
SHT75 سنسور رطوبت با خروجی دیجیتال
Rhu-207 سنسور رطوبت با خروجی مقاومتی
HS1101 سنسور رطوبتبا خروجی خازنی
3610 سنسور رطوبت با خروجی ولتاژdc
Smt160 سنسوردما با خروجی دیجیتال
LM35سنسور دما با خروجی آنالوگ
Gs209 سنسورتشخیص فلزات
Tgs4161 سنسور تشخیص دی اکسید کربن
MQ-4 سنسور گازمتان
Ss1118سنسور اکسیژن
Ke-25سنسور اکسیژن
GR500 سنسور وزن
MQ-9 سنسور گاز مونوکسید کربن
MQ-2 سنسور تشخیص دود
MQ-5 سنسور گاز
Pir –dz035 سنسور تشخیص انسان
L298 درایور
Uln2003 درایور
Msk4225 درایور
27xx حافظهprom
28xx حافظهeeprom
Cmps03 قطب نما
Tsl2550t سنسور تجزیهنور
Gp2s04 سنسور تشخیس سیاه و سفید
Tsl230 تشخیص رنگ
LHI648 سنسور حرارتی حساس به بدن
O2A سنسور رطوبت و دما در یک پکخروجی دیجیتال
S2H سنسور رطوبت مقاومتی
HAS 400-S سنسور اندازهگیری جریان
LHI 944سنسورتشخیص حرکت (انسان و حیوان)
سنسورهای تشخیص اثر انگشت:
در حال حاضر سنسورها به روشهای نوری، نیم هادی ، خازنی و LE ساخته می شوند.
سنسورهای نوری : این دسته از سنسورها تصویر اثر انگشت را از طریق فشار دادن سر انگشتان بر روی لنز و منبع نوری ثبت می نمایند. صفحه این سنسورها از الماس صنعتی (LANTAN ) ساخته شده است.
سنسورهای اثر انگشت نیمه هادی : در این سنسورها ، تصاویر اثر انگشت با تغییر در بار الکتریکی با توجه به فشار و ضربه حرارتی از انگشت به سنسور و یا با استفاده از میدان مغناطیسی یا امواج مافوق صوت برای تبدیل سیگنال به تصاویر بدست می آید.
در این سنسورها صفحه نمایش از یک فیلم نازک ساخته می شود.
– سنسورهای اثر انگشت LE : تصاویر با استفاده از مواد شیمیایی که نور را هنگام لمس انگشت روی آنها منتشر می کنند، بدست می آید.
* در این نوع سنسور نیز صفحه نمایش از یک فیلم نازک ساخته می شود.
فرکانس سوئیچینگ:
حداکثر تعداد قطع و وصل یک سنسور در ثانیه می باشد .(واحد آن HZ میباشد.)
فاصله سوئیچینگ S) ):
فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد.
فاصله سوئیچینگ نامی Sn)):
فاصله ای که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل درجه حرارت ، ولتاژ تغذیه و ... تعریف شده است
بسیاری لیمیت سوییچ ها، محرّک گذرا دارند یعنی با وجود نیروی خارجی عمل میکنندو با برداشتن نیرو آزاد می شوند.
بعضی لیمت سوییچ هابا واردن شدن فشار در همان موقعیّت می مانند و تا در جهت مخالف نیرو وارد نشود،آزاد نمی شوند
سنسور چیست؟ نوری الکترونی به صورت یک سیگنال الکتریکی تبدیل کند. بنابراین سنسور را میتوان به عنوان یک زیر گروه از تفکیک کنندهها که وظیفهی آن گرفتن علائم ونشانهها از محیط فیزیکی و فرستادن آن به واحد پردازش به صورت علائم الکتریکی است تعریف کرد. البته سنسوری مبدلی نیز ساخته شدهاند که خود به صورت IC میباشند و به عنوان مثال (سنسورهای پیزوالکترونیکی، سنسورهای نوری). وقتی ما از سنسوری مجتمع صحبت میکنیم منظور این است که تکیه پروسه آمادهسازی شامل تقویت کردن سیگنال، فیلترسازی، تبدیل آنالوگ به دیجیتال و مدارات تصحیح میباشند، در غیر این صورت سنسوری که تنها سیگنال تولید میکند به نا سیستم موسوم هستند. در نوع پیشرفته به نام سنسور هوشمند یک واحد پردازش به سنسور اضافه شده است تا خورجی آن عاری از خطا باشد منطقیتر شود. واحد پردازش سنسور که به صورت یک مدار مجتمع عرضه میشود اسمارت (Smart) نامیده میشود. یک سنسور باید خواص عمومی زیر را داشته باشد تا بتوان در سیستم به کار برد که عبارتند از: حساسیت کافی، درجه بالای دقت و قابلیت تولید دوباره خوب، درجه بالای خطی بودن، عدم حساسیت به تداخل و تاثیرات محیطی، درجه بالای پایداری و قابلیت اطمینان، عمر بالای محصول و جایگزینی بدون مشکل. امروزه با پیشرفت صنعت الکترونیک سنسوری مینیاتوری ساخته میشود که از جمله مشخصهی آن میتوان به موارد زیر اشاره کرد: سیگنال خروجی بدون نویز، سیگنال خروجی سازگار با باس، احتیاج به توان پایین. سنسور (sensor)یعنی حس کننده,و از کلمه sens به معنی حس کردن گرفته شده و می تواند کمیت هایی مانند فشار، حرارت، رطوبت، دما، و … را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل کند.سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانندPLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جملهPLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد. سنسور ها بر اساس نوع و وظیفه ای که برای آن ها تعریف شده اطلاعات را به سیستم کنترل کننده می فرستند و سیستم طبق برنامه تعریف شده عمل می کند .
) تعریف عبارت سنسور :
واژه سنسور از سنس یعنی احساس کردن، گرفته شده است .سنسور یعنی چیزی که می تواند احساس
کند. همیشه در علم الکتروینک این نکته وجود دارد که برای اینکه بتوانید الکترونیک را در هر جایی مورد
استفاده قرار بدهید، باید پدیده ها را به زبان ولتاژ و جریان تبدیل کنید .سنسورها هم برای همین ساخته
شده اند؛ سنسورها در انواع مختلف بسته به نیاز مورد استفاده ساخته شده اند ، منتها همه ی سنسورها
پدیده مورد بررسی را به یک سیگنال الکتریکی تبدیل می کنند یا اینکه بر سر راه یک مدار بسته می شوند؛ مثلا فتو سل ها یا سلولهای نوری که به نور حساسند : شما وقتی از سنسور نوری استفاده می کنید درحقیقت تاثیر نور را در یک فضا باآن قطعه مورد بررسی قرار می دهید .وقتی نور به فتوسل برسد یک
سیگنال الکتریکی تولید می کند بررسی اینکه چه اتفاقی می افتد مربوط می شود به جنس ماده ای که در
این سلولها استفاده می شود منتها نتیجه اینکه این سیگنال توسط یک مدار الکترونیکی تقویت و یا کنترل
می شود در نهایت می تواند یک پالس الکتریکی باشد .برای راه اندازی یک رله و ..تفاوت سنسورها در اینکه جنس و تحریک پذیری متفاوتی دارند مثلا سنسور حرارتی یا ترما سنس که به حرارت حساس است وقتی حرارت محیط به یک درجه معین برسد بازهم همان سیگنال را تولید می کند و یا اینکه مثل یک کلید راه جریان را قطع و یا وصل می کند .. سنسورهای حساس به دود که با موارد راداکتیو ساخته می شوند و کارکردن با آنها نیاز به حساسیت بیشتری دارد بر اثر دود تحریک می شوند و باز هم یک سیگنال الکتریکی تولید می کنند .سنسورهای صوتی و حتی حساس به امواج نیز وجود دارند .در ساخت و استفاده از سنسورها این نکته وجود دارد که کدام پدیده را توسط سنسور شناسایی کنیم . در ساخت و طراحی سنسورها باید به ذکر این نکته پرداخت که از خاصیت مواد مختلف استفاده می شود و بر اساس عکس العمل مواد و عنصرهای مختلف (در از دست دادن یا گرفتن الکترون ) ترکیباتی ساخته که دریک محفظه قرار داده می شود وبه نام سنسور در جاهای مختلف ازآنها استفاده می شود.
به طور کلی سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و… را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند .این سنسورها در انواع مورد استفاده قرار میگیرند . PLC دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند باعث شده است که سنسور PLC عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جمله بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد .سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند.
حسگرهای رطوبت حسگر حرکت
زوج حسگر اولتراسونیک ( مافوق صوت )
سنسورهای بدون تماس
سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آنرا حس کرده و فعال می
شوند .این عمل به نحوی که در شکل زیر نشان داده شده است می تواند باعث جذب یک رله ، کنتاکتور
و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد.
کاربرد سنسورها
1) شمارش تولید : سنسورهای القائی ، خازنی و نوری
2 ) کنترل حرکت پارچه و ... : سنسور نوری و خازنی
3 ) کنترل سطح مخازن : سنسور نوری و خازنی و خازنی کنترل سطح
4 )تشخیص پارگی ورق : سنسور نوری
5 ) کنترل انحراف پارچه : سنسور نوری و خازنی
6 ) کنترل تردد :سنسور نوری
7) اندازه گیری سرعت :سنسور القائی و خازنی
8 ) اندازه گیری فاصله قطعه :سنسور القائی آنالوگ
مزایای سنسورهای بدون تماس
سرعت سوئیچینگ زیاد :
سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالایی برخوردارند ، بطوریکه برخی از آنها
( سنسور القائی سرعت ) با سرعت سوئیچینگ تا 25 KHz کار می کنند .
طول عمر زیاد :
بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ... دارای طول عمر زیادی هستند.عدم نیاز به نیرو و فشار: با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشارنیازی نیست. قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد،دمای بالا، اسیدی، روغنی، آب و ... قابل استفاده می باشند.عدم ایجاد نویز در هنگام سوئیچینگ : به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم (Bouncing Noise) ایجاد نمی شود .
امروزه کلمه سنسور به هیچ وجه از مفاهیمی مانند میکروپرسسور، ترانسپیوتر، انواع مختلف حافظه و سایر
عناصر الکترونیکی به عنوان یکی از لغات وابسته به دنیای نوآوری های تکنولوژی اهمیت کمتری راندارد .با
وجود این سنسور هنوز هم فاقد یک تعریف دقیق است همچنان که عباراتی از قبیل "پروب" ، " بعد سنج " ، " پیک آب " یا ترنسدیوسر " مدتها چنین بوده اند . بنابراین جای تعجب از اینکه انتشاراتی که با سنسورها سر و کار دارند غالبا بحث خود را با تعریفی از سسنسور می گشایند .کوشش های زیادی به عمل آمده است تا این کثرت تعاریف را محدود نماید .جدا از کلمه سنسور ما اصطلاحاتی از قبیل المان سنسور، سیستم سنسور، سنسور باهوش یا آگاه، تکنولوژی سنسور و غیره مواجه می شویم .چه چیزی است که در پشت کلمه سنسور به معنی توانایی SENSORIUN نهان شده است؟ کلمه سنسور یک کلمه تخصصی است که از کلمه لاتین به معنی "حس" بر گرفته شده است . پس از آشنایی با منشا مفهوم سنسور، ، senseus "حس کردن " یا تاکید کردن بر تشابه بین سنسورهای تکنیکی و اندام های حس انسانی واضح به نظر می رسد . شکل (1-1) این تشابه را نشان می دهد با وجود این ایده سنسور فراتر از این تشابه حرکت نموده و یک کلمه مترادف همه جانبه برای احساس کردن، تبدیل و ثبت مقادیر اندازه گیری شده به حساب می آید . یک سنسور یک کمیت فیزیکی معین را که باید اندازه گیری شود به شکل یک کمیت الکتریکی تبدیل می کند تغییر میدهد که می تواند پردازش شود یا بصورت الکترونیکی انتقال داده شود.بعد های فیزیکی را میتوان بر اساس دیاگرام شکل 1-2 طبقه بندی کرد. جدول 1-1 مثال هایی از بعد های فیزیکی را که سنسورها می توانند اندازه گیری کنند نشان می دهد.می توان سنسور را به یک زیر بخش عنصر حس کننده تفکیک کرد که، به عنوان نمونه ، فشار را به صورت انحراف یک غشا نیمه هادی، یا تغییری در شاخص انکسار بصورت کاهشی در شدت نور در یک فیبر نوری ثبت کند ؛ به علاوه یک عنصر تغییر دهنده یا مبدل داریم که انحراف غشا نیمه هادی ، که در آن مقاومت ها به شکل پل ساخته شده اند، را بصورت یک ولتاژالکتریکی تبدیل می نماید یا تغییری در شدت نور را با استفاده از یک پروسه تبدیل نوری الکترونی بصورت یک سیگنال الکتریکی تبدیل میکند .
یک سنسور می تواند به تنهایی از یک عنصر مبدل نیز تشکیل شود ) برای مثال یک سنسور پیزوالکترونیکی ، سنسورهای نوری( چنین تعریفی از سنسور ها هیچ محدودیتی برروی اندازه یا شکل وضع آن وضع نمی نماید.
بیو سنسور به طور کلی به احساس و اندازه گیری مواد شیمیایی خاصی که ممکن است فیزیولوژیکی نیز باشد،مربوط می شوند
به عبارت دیگر: یک بیوسنسور را می توان به عنوان ابزاری که از تلفیق یک حسگر بیولیوژیکی متصل به یک مبدل حاصل می شود،تعریف نمود.
امروزه در زمینه های مختلفی از جمله پزشکی، صنایع شیمیایی، صنایع غذایی، مانیتورینگ محیط زیست و تولید محصولات دارویی و بهداشتی از بیوسنسورها بهره می گیرند..
در حقیقت زیست حسگرها ابزارهای هستند که می توانند با بهره گیری از هوشمندی مواد بیولوژیکی، ترکیب یا ترکیباتی را شناسایی نموده و با آنها واکنش دهند. محصول این واکنش می تواند یک پیغام شیمیایی، نوری و یا الکتریکی باشد.
بیشترین کاربرد زیست حسگرها در تشخیص های پزشکی و علوم آزمایشگاهی است. در حال حاضر بیوسنسورهای گلوکز از موفق ترین بیوسنسورهای موجود در بازار هستند که به اندازه گیری غلظت گلوکز خون می پردازند. این ابزار به بیماران مبتلا به دیابت کمک می کند تا در طول روز به سنجش سطح گلوکز خون خود پرداخته و در زمانهای مورد نیاز انسولین تزریق کنند.
از عناصر بیولوژیکی هستند که بیشتر به کار برده میشوند و ممکن است در حالت خالص یا به صورت موجود در ریزاندامگان یا در قطعه ای از بافت مورد استفاده قرار گیرند.این مواد کاتالیزورهای بیولوژیکی برای واکنش های خاص بوده و می توانند خود را به سوبسترای خاصی متصل سازند.کارایی این مواد در ساخت بیوسنسور مربوط به عمل کاتالیزوری آنها می باشند.
آنزیم ها یک ماکرو مولکول پیچیده و درشت است که بخش اعظم آن پروتئینی است با یک گروه پروستیتک که غالبا حاوی یک یا چند اتم فلزی است.عملکرد بسیاری از آنزیم ها شامل فرآیند اکسید یا احیا است که با روشهای الکتروشیمیایی قابل آشکارسازی است.
فهرست
اثر پیزوالکتریک (Piezoelectric Effect) 13
کاربرد امواج فراصوتی در مواد پیزو الکتریک.... 15
ارتباط اثر پیزو الکتریک با ساختار مولکولی مواد. 16
وابستگی مواد پیزوالکتریک به دما 16
وجود اثر پیزو الکتریک در تک بلور 16
کاربرد مواد پیزوالکتریک.... 17
مبدل های پیزوالکتریک (Piezoelectric Transducer) 17
محرک های پیزوالکتریک (Piezoelectric Actuator) 17
اثر پیزوالکتریک مستقیم و معکوس.... 20
کاربردهای اثر پیزوالکتریک.... 23
منابع با ولتاژ و توان بالا. 32
مقدمه
واژهی پیزوالکتریک به معنای الکتریسیتهای است که ناشی از فشار میباشد، این کلمه از دو واژهی یونانی پیزو به معنای فشاردادن و الکترون گرفته شدهاست. پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی) اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود. اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند. تاریخچه اثر پیزوالکتریک
به سبب تلاشهای Jacques Curie و Pierre Curie در 1880 مفهوم پیزوالکتریک بوجود آمد. این فیزیکدانان کشف کردند که کریستال های مشخصی وجود دارند که وقتی که استرس یا کشش مکانیکی بر آنها اعمال می گردد بصورت الکتریکی قطبیده (پولاریزه) می شوند.
بنابر این تمام المان های مکانیکی نظیر استرس، کشش، تراکم (فشردگی) و کشیدگی می توانند ولتاژهایی را در کریستالهایی مشخص تولید کنند. این مقوله بوسیله Jacques و Pierre بنا نهاده شده که وقتی نیروی مکانیکی بر کریستالهایی نظیر tourmaline، topaz، quartz، Rochelle salt و Cane sugar اعمال می شود این نیرو منتهی به تولید بارهای الکتریکی متناوب بر وجه های مخالف آن می شود ومتعاقباً آن می تواند برای تولید ولتاژ الکتریکی استفاده شود.
به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار
اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.
خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده است.
برای آشنایی بیشتر در این زمینه (حسگر های پیزوالکتریک ) میتوانید دو مقاله ای که به صورت فایل زیپ قرار داده شده است را دانلود کنید
رفتار پیزوالکتریک یا پیزوالکتریسیته عبارتست از تولید الکتریسیته ایجاد شده توسط پلاریزاسیون توسط یک کریستال در اثر اعمال تنش.
زمانی که یک میدان الکتریکی به یک کریستال پیزوالکتریک اعمال شود، تحت کرنش قرار میگیرد که اصطلاحا آن را رفتار پیزوالکتریک معکوس مینامند.
شرط ضروری برای پیزوالکتریک بودن یک کریستال، عدم وجود تقارن مرکزی در ساختار کریستالی است.
ترکیبات سرب-زیرکنات-تیتانات PZT با ساختار پروسکایت، ZnO و کوارتز مثالهایی از مواد پیزوالکتریک هستند.
پیزوالکتریک Piezoelectric خاصیتی است که برخی کریستالها و از جمله کوارتز به هنگام اعمال ولتاژ به آنها تحت فشار قرار می گیرند یا به هنگام قرار گرفتن در معرض فشار مکانیکی، یک ولتاژ تولید می کنند از این خاصیت بلور کوارتز در ساعت استفاده می کنند که با اعمال ولتاژ از طریق باطری ساعت و در نظر تعداد خاصی نوسان بلور در یک ثانیه، ثانیه شمار ساعت به اندازه یک ثانیه پیش می رود یکی دیگر از کاربردهای کوارتز به دلیل داشتن خاصیت پیزوالکتریک، فرستنده های رادیویی، گیرنده های رادیویی و کامپیوترهاست به نوعی می توان گفت که تمام وسائل منقول و غیرمنقول، دقت و ظرافت خاص خود را مدیون این خاصیت کوارتز هستند تحقیقات نشان می دهند که اگر پان
فهرست
اثر پیزوالکتریک (Piezoelectric Effect) 13
کاربرد امواج فراصوتی در مواد پیزو الکتریک.... 15
ارتباط اثر پیزو الکتریک با ساختار مولکولی مواد. 16
وابستگی مواد پیزوالکتریک به دما 16
وجود اثر پیزو الکتریک در تک بلور 16
کاربرد مواد پیزوالکتریک.... 17
مبدل های پیزوالکتریک (Piezoelectric Transducer) 17
محرک های پیزوالکتریک (Piezoelectric Actuator) 17
اثر پیزوالکتریک مستقیم و معکوس.... 20
کاربردهای اثر پیزوالکتریک.... 23
منابع با ولتاژ و توان بالا. 32
مقدمه
واژهی پیزوالکتریک به معنای الکتریسیتهای است که ناشی از فشار میباشد، این کلمه از دو واژهی یونانی پیزو به معنای فشاردادن و الکترون گرفته شدهاست. پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی) اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود. اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند. تاریخچه اثر پیزوالکتریک
به سبب تلاشهای Jacques Curie و Pierre Curie در 1880 مفهوم پیزوالکتریک بوجود آمد. این فیزیکدانان کشف کردند که کریستال های مشخصی وجود دارند که وقتی که استرس یا کشش مکانیکی بر آنها اعمال می گردد بصورت الکتریکی قطبیده (پولاریزه) می شوند.
بنابر این تمام المان های مکانیکی نظیر استرس، کشش، تراکم (فشردگی) و کشیدگی می توانند ولتاژهایی را در کریستالهایی مشخص تولید کنند. این مقوله بوسیله Jacques و Pierre بنا نهاده شده که وقتی نیروی مکانیکی بر کریستالهایی نظیر tourmaline، topaz، quartz، Rochelle salt و Cane sugar اعمال می شود این نیرو منتهی به تولید بارهای الکتریکی متناوب بر وجه های مخالف آن می شود ومتعاقباً آن می تواند برای تولید ولتاژ الکتریکی استفاده شود.
به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار
اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.
خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده است.
برای آشنایی بیشتر در این زمینه (حسگر های پیزوالکتریک ) میتوانید دو مقاله ای که به صورت فایل زیپ قرار داده شده است را دانلود کنید
رفتار پیزوالکتریک یا پیزوالکتریسیته عبارتست از تولید الکتریسیته ایجاد شده توسط پلاریزاسیون توسط یک کریستال در اثر اعمال تنش.
زمانی که یک میدان الکتریکی به یک کریستال پیزوالکتریک اعمال شود، تحت کرنش قرار میگیرد که اصطلاحا آن را رفتار پیزوالکتریک معکوس مینامند.
شرط ضروری برای پیزوالکتریک بودن یک کریستال، عدم وجود تقارن مرکزی در ساختار کریستالی است.
ترکیبات سرب-زیرکنات-تیتانات PZT با ساختار پروسکایت، ZnO و کوارتز مثالهایی از مواد پیزوالکتریک هستند.
پیزوالکتریک Piezoelectric خاصیتی است که برخی کریستالها و از جمله کوارتز به هنگام اعمال ولتاژ به آنها تحت فشار قرار می گیرند یا به هنگام قرار گرفتن در معرض فشار مکانیکی، یک ولتاژ تولید می کنند از این خاصیت بلور کوارتز در ساعت استفاده می کنند که با اعمال ولتاژ از طریق باطری ساعت و در نظر تعداد خاصی نوسان بلور در یک ثانیه، ثانیه شمار ساعت به اندازه یک ثانیه پیش می رود یکی دیگر از کاربردهای کوارتز به دلیل داشتن خاصیت پیزوالکتریک، فرستنده های رادیویی، گیرنده های رادیویی و کامپیوترهاست به نوعی می توان گفت که تمام وسائل منقول و غیرمنقول، دقت و ظرافت خاص خود را مدیون این خاصیت کوارتز هستند تحقیقات نشان می دهند که اگر پان
فهرست
به طور کلی می توان کاربرد سنسور فشار را به چند دسته تقسیم کرد. 6
تکنولوژی های اندازه گیری سنسورهای فشار 6
کپسول (Capsule)– دیافراگم (Diaphragm) 7
سنسورهای فشار از نظر نوع فشار اندازه گیری.. 7
سنسورهای فشار مهرشده(sealed) 8
سنسورهای فشار از نظر تکنولوژی ساخت... 8
تکنولوژی های حس کردن سنسور فشار 10
انواع وسایل اندازهگیری فشار عبارتند از : 32
فشار سنجهای هیدرواستاتیکی : 32
فشار سنجهای آنرویدی( فشار سنجهای مکانیکی): 35
سنسورهای فشار پیزو مقاومتی.. 48
مقدمه
پیزوالکتریک :
در پیزوالکتریک تغییرات فشار باعث تولید ولتاژ می شود. در حقیقت ضربات وارد شده باعث تولید ولتاژ می شود نمک راشل که در میکروفن های قدیمی استفاده می گردید خاصیت پیزوالکتریک دارد. کوارتس رایج ترین پیزوالکتریک می باشد . سنسورهای پیزوالکتریک بخاطر دقت بالا کاربردهای فراوانی دارند . ویژگی های عمده این سنسورها سختی، سایز کوچک ،سرعت بالا و عدم نیاز به منبع تغذیه هستند با استفاده از سنسورهای پیزوالکتریک می توان سرعت و تغییرات شتاب را نیز اندازه گیری نمود .حسگرهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید میشود یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. میزان بار الکتریکی یا تغییر شکل مکانیکی به ترکیب ماده بستگی دارد. در ساختمان این سرامیک ها موادی نظیر: اکسید سرب، تیتانیا، زیرکونیا و غیره وجود دارند که بسته به نوع کاربرد این مواد با نسبت های مختلف با هم مخلوط می شوند. با تغییر ترکیب و ابعاد قطعات می توان پیزوسرامیک ها را برای کاربردهای مختلف طراحی کرد، از جمله شتاب سنج ها، مبدل های کوچک، حس گرهای خودرو، سنسورهای جریان سیالات و در بخش پزشکی در مبدل تصویرگرهای تشخیصی و مانیتورهای قلب جنین ، تفنگ های لیزری، چاقوهای کوچک جراحی و کالبدشکافی، پاک کنندههای دندانی، پمپ های IV ،پمپ های قلب و مبدل های کوچک در مجاری خون در جهت ثبت تغییرات متناوب ضربان قلب امروزه تحقیقات بزرگ و پیشرفت های عظیم بر پایه محاسبات جزیی و دقیق مهندسی بنا شده است. پایه این محاسبات ، اندازه گیری های دقیقی است که می بایست انجام شود.
در دنـیـــای امـــروز ایـــن انــدزه گـیــری هــا بــه روشهــای مــدرن و بــا دستگـاه هـای پیشـرفتـه مهندسی انجام می گیرد. اندازه گیری در حقیقت بـه مـعـنـای پروسه مشخص کردن یا پیدا کردن انــدازه، زاویـه یـا در کـل کـمـیـت اسـت. وسـایـل انــدازهگـیـری وسـایلـی هستنـد کـه کمیـت هـای اندازهگیری را به اطلاعات آنالوگ یا دیجیتال تبدیل می کنند. یکی از این وسایل اندازه گیری سنسورهای پیزوالکتریک هستند که برای سنس کـردن تـغـیـیـرات بـسـیـار جـزئـی به کار میآیند. پیزوالکتریسیته توسط پیروژاک کوری در سال 1892 کشف شد و از واژه یونانی Piezin به معنی "فشار" مشتق می شود. اعمال فشار به برخی کریستال ها مانند کوارتز یا برخی سرامیک ها ، الکتریسیته تولید می کند. فشار یا تنش مکانیکی وارد شده به برخی کریستال ها باعث جابه جایی دو قطبی های ایجاد شده و پدید آمدن میدان الکتریکی می شود. آرایش یون های مثبت و منفی، تعیین کننده ایجاد یا عدم ایجاد اثر پیزوالکتریسیته است. این سنسورها کاربردهای گسترده ای از صنعت خودرو سازی تا اندازه گیری فشار خون در رگ ها در جهت ثبت تغییرات متناوب ضربان قلب دارندساختار:همانطور که گفته شد سنسورهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید می شود؛ یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. این جابجایی بارهای الکتریکی را در شبکه اتمی یک کریستال پیزوالکتریک طبیعی، در پاسخ گویی به فشار را می توان در شکل 1 مشاهده می شود. دایره های بزرگ نشان دهنده اتم های سیلیکون هستند.
در حالیکه دایره های کوچک، نشان دهنده اتم های اکسیژن هستند. کوارتز کریستالی ، هم نـوع کریستال طبیعی یا کیفیت بالا و هم نوع تغییر یافته آن، از جمله مهمترین مواد پیزوالکتریک مورد دسترس، حساس و پایدار هستند.
عـلاوه بـر کـریستـال های کوارتز می توان، PCB های طراحی شده با به کارگیری تکنولوژی انسانی، پلی کریستال ها و پیزو سرامیک ها را نام برد. این مواد با کاربرد میدان الکتریکی گسترده ای، تحت فشار قرار گرفته اند، تا تبدیل به مواد پیزوالکتریک شوند، یــک خــروجــی high-voltage قــوی را تــولیـد مـی کنـد. ایـن ویـژگـی بـرای استفـاده در سیستمهای اندازه گیری کم نویز، یک ویژگی بسیار ایده آل است.
با ارزش سختی یکسان نسبت به Psi 6E15 که مشابه بسیاری از فلزات است، مواد پیزوالکتریک خروجی های بالا را به وسیله کرنش های کوچک کاهش می دهند. به عبارت دیگر، مواد پیزوالکتریک موادی را سنجش می کنند که ضرورتا شکست و انکسار نداشته باشند و اغلب به حالت جامد باشند. این به این دلیل است که سنسورهای پیزوالکتریک بسیار قوی هستند و این ویژگی عالی، یک رابطه خطی با میدان گسترده نوسان دارد. در حقیقت، وقتی سیگنال مناسب طراحی شده به طور صحیح به هم بپیـونـدنـد، سنسـورهـای پیـزوالکتـریـک دارای یـک محـدوده نـوسـان پـویـا (برای مثال، محدوده اندازه گیری نسبت به نویز) دارند. نکته مهم نهایی درباره مواد پیزوالکتریک این است که آن ها تنها می توانند اتفاقات پویا و در حال تغییر را اندازه بگیرند.سنسورهای پیزوالکتریک قادر به اندازه گیری حوادث استاتیک پیوسته مانند: سیستم داخلی هدایت موشک، فشار هوا و اندازه گیری وزن نیستند، در حالیکه حوادث استاتیک دلیل اولیه خروجی هستند؛ این سیگنال به آهستگی ضعیف شده، بر اساس مواد پیزوالکتریک یا متعلق به الکترونیک زمان ثابت است. این بار ثابت مطابق با مرتبه اول ***** بالاگذر است و براساس خازن و مقاومت دستگاه است. این ***** بالا گذر در نهایت تعیین کننده
یک سنسور هم کمیت فیزیکی معین را که باید اندازهگیری شود به شکل یک کمیت الکتریکی تبدیل میکند، که میتواند پردازش شود یا به صورت الکترونیکی انتقال داده شود. مثلاً یک سنسور رنگ میتواند تغییر در شدت نور را به یک پروسه تبدیل نوری الکترونی به صورت یک سیگنال الکتریکی تبدیل کند. بنابراین سنسور را میتوان به عنوان یک زیر گروه از تفکیک کنندهها که وظیفهی آن گرفتن علائم ونشانهها از محیط فیزیکی و فرستادن آن به واحد پردازش به صورت علائم الکتریکی است تعریف کرد. البته سنسوری مبدلی نیز ساخته شدهاند که خود به صورت IC میباشند و به عنوان مثال (سنسورهای پیزوالکترونیکی، سنسورهای نوری).
وقتی ما از سنسوری مجتمع صحبت میکنیم منظور این است که تکیه پروسه آمادهسازی شامل تقویت کردن سیگنال، فیلترسازی، تبدیل آنالوگ به دیجیتال و مدارات تصحیح میباشند، در غیر این صورت سنسوری که تنها سیگنال تولید میکند به نا سیستم موسوم هستند.
امروزه بحث سنسور به اهمیت مفاهیمی از قبیل میکروپرسسور (پردارزش گر)، انواع مختلف حافظه وسایر عناصر الکترونیکی رسیده است، با این وجود سنسور هنوز هم فاقد یک تعریف دقیق است همچنانکه کلمات الکترونیکی از قبیل پروب، بعدسنج، پیک آپ یا ترنسدیوسر هنوز هم معانی لغوی ندارند. جدا از اینها کلمه سنسور خود ریشه بعضی کلمات هم خانواده نظیر المان سنسور، سیستم سنسور، سنسور باهوش و تکنولوژی سنسور شده است کلمه سنسور یک عبارت تخصصی است که از کلمه لاتین Sensorium، به معنی توانایی حس کرد، یا Sensus به معنی حس برگرفته شده است. پیش از آن که بحث را ادامه دهیم لازم است عبارت سنسور را در صنعت الکترونیک تعریف کنیم:
در نوع پیشرفته به نام سنسور هوشمند یک واحد پردازش به سنسور اضافه شده است تا خورجی آن عاری از خطا باشد منطقیتر شود. واحد پردازش سنسور که به صورت یک مدار مجتمع عرضه میشود اسمارت (Smart) نامیده میشود. یک سنسور باید خواص عمومی زیر را داشته باشد تا بتوان در سیستم به کار برد که عبارتند از:
حساسیت کافی، درجه بالای دقت و قابلیت تولید دوباره خوب، درجه بالای خطی بودن، عدم حساسیت به تداخل و تاثیرات محیطی، درجه بالای پایداری و قابلیت اطمینان، عمر بالای محصول و جایگزینی بدون مشکل.
امروزه با پیشرفت صنعت الکترونیک سنسوری مینیاتوری ساخته میشود که از جمله مشخصهی آن میتوان به موارد زیر اشاره کرد:
سیگنال خروجی بدون نویز، سیگنال خروجی سازگار با باس، احتیاج به توان پایین.
سنسور فشار
سنسور فشار جهت اندازه گیری فشار مایع و یا فشار گاز مورد استفاده قرار می گیرد . فشار به اصطلاح نیروی لازم برای جلوگیری از پخش شدن مایع است و معمولاً به صورت نیرو بر سطح تعریف می شود.
سنسور فشار به صورت مبدل کار میکند و سیگنالی تابع اثر فشار تولید می کند.
کاربرد سنسور فشار
سنسور فشار روزانه برای کنترل و مانیتورینگ هزاران کاربرد صنعتی استفاده می شوند، با توجه به اینکه پارامتر فشار یک کمیت عمومی در صنایع مختلف می باشد . این سنسور تقریبا در تمامی صنایع کاربرد دارد که این صنایع شامل کلیه خطوط تولید هیدرولیک و پنوماتیک ، صنایع آب و فاضلاب ، خطوط رباتیک ، صنایع غذایی ، دیگهای بخار ، صنایع نورد فلزات ، معادن ، چیلر ، ارتفاع سنجی مخازن ، موتورخانه ها ، ایستگاههای پمپاژ ، سد ، جرثقیل ، ماشین آلات راه سازی ، مخازن مایعات و گازها ، غلتک ها ، سیستم های هیدرو متری ، نفت وگاز ، فشار خلاء (Sealing Pressure) ، فشار مطلق (AbsolutePressure) ، فشار نسبی (Meter Pressure) ، پارچه بافی و نخ ریسی ، سیستم های آتش نشانی و سیستم های هواشناسی و… می باشد.
به طور کلی می توان کاربرد سنسور فشار را به چند دسته تقسیم کرد
۱- اندازه گیری فشار
۲- اندازه گیری ارتفاع از سطح دریا
۳- آزمایش نشتی
۴- اندازه گیری عمق
۵- اندازه گیری جریان
۱- اندازه گیری فشار : این کاربرد، کاربرد مستقیم سنسورهای فشار است که در مواردی از جمله تجهیزات هواشناسی، هواپیما، اتومبیل و سایر وسایلی که در آنها فشار کارایی دارد به کار می رود
۲- اندازه گیری ارتفاع از سطح دریا : این کاربرد از رابطه بین تغییرات فشار با ارتفاع نسبت به سطح دریا استفاده می شود که کاربرد آن در هواپیما، موشک، ماهواره، بالنهای هواشناسی و غیره می باشد
۳- آزمایش نشتی : می توان با اندازه گیری افت فشار، نشتی سیستم را به دست آورد. روشهای متداول برای این منظور، دو روش هستند: ۱. مقایسه فشار سیستم با فشار سیستمی با نشتی معلوم و استفاده از این اختلاف فشار ۲. اندازه گیری فشار و بررسی تغییرات آن در طول یک بازه زمان
۴- اندازه گیری عمق و ارتفاع : یکی دیگر از کاربردهای سنسور فشار اندازه گیری ارتفاع سطح مایع می باشد ، از این تکنیک برای اندازه گیری جسم غوطه ور در آب مانند غواص ها ، زیر دریایی ها و یا ارتفاع سطح مایع درون یک مخزن استفاده می شود .
۵- اندازه گیری جریان : در این روش با کمک اثر ونتوری و رابطه اش با فشار، جریا ن را اندازه گرفت ، اختلاف فشار بین دو بخش یک تیوب نتوری (با قطرهای دهانه مختلف) اندازه گیری می شود. این اختلاف فشار، با سرعت جریان گذرنده از تیوب رابطه مستقیم دارد.از انجا که این اختلاف فشار نسبتاً کوچک است از سنسور فشار با بازه کم استفاده می شود.
تکنولوژی های اندازه گیری سنسورهای فشار
۱- اندازه گیری فشار توسط مانومتر ها (Manometers)
(مانومتر یک شاخه ای (Single Leg Manometer)
مانومتر دو شاخه ای (V-Tube Manometer)
مانومتر مورب Inclined Manometer)
۲- اندازه گیری فشار توسط فشار سنج های لوله بوردن (Bourdon Tube)
لوله ی C شکل (C-Tube) – لوله ی فانوسی (Bellows Tube) – لوله ی حلقوی (Helical Tube) لوله ی حلزونی (Spiral Tube)
۳- کپسول (Capsule)– دیافراگم (Diaphragm)
۴- اندازه گیرهای الکتریکی فشار (Electrical Pressure Measurement)
۵- استرین گیج ها (Strain-Gages)
۶- اندازه گیری های ظرفیتی فشار (Capacitive Pressure Measurement )
۷- اندازه گیری های پیزوالکتریکی فشار (Piezoelectrical Pressure Measurement)
کپسول (Capsule)– دیافراگم (Diaphragm)
دیافراگم معمولا از جنس فلزی استیل ساخته می شود و روی دیافراگم را به صورت موج دار می سازند تا در برابر نیرویی که به آن وارد می شود جابجایی داشته باشند . برای اندازه گیری فشار زیاد از دیافراگم کوچک و برای اندازه گیری فشار کم از دیافراگم بزرگ استفاده می شود .
کپسول از دو دیافراگم تشکیل شده است که محیط آن به هم وصل می شود که بین آنها از مایع تراکم ناپذیر پر می شود حساسیت کپسول بیشتر از دیافراگم است و به ازای فشار مشخص تغییرات طول کپسول معادل دو برابر یک دیافراگم با مشخصه مشابه می باشد.
سنسورهای فشار از نظر نوع فشار اندازه گیری
با توجه به نوع فشار، فشار سنج ها، به ۵ دسته طبقه بندی می شوند
۱- مطلق
۲- گیج
۳- خلا
۴- تفاضلی
۵- مهرشده(sealed)
سنسورهای فشار مطلق
این سنسور فشار یک نقطه نسبت به خلا کامل (۰ psi) را اندازه می گیرد. فشار اتمسفریک ۱۰۱.۳۲۵ KPa (یا ۱۴.۷psi) در سطح دریا نسبت به خلا است.
سنسورهای فشار گیج
این سنسور در کاربردهای متفاوتی استفاده میشود زیرا می تواند برای اندازه گیری فشار یک نقطه نسبت به فشار اتمسفریک در نقطه دیگر کالیبره شود. گیج فشار تایر مثالی از نشانگر فشار گیج است. هنگامی که گیج فشار تایر مقدار ۰ psi را می خواند فشار داخل تایر ۱۴.۷ psi است. یعنی برابر با فشار اتمسفر.
سنسورهای فشار خلا
این سنسور برای اندازه گیری فشار کمتر از فشار اتمسفر در نقطه ای مشخص استفاده می شود. مرجع سنسور خلا در صنعت متفاوت است که ممکن است موجب اشتباه شود؛ فشار نسبت به فشار اتمسفر ( مانند اندازه گیری فشار گیج منفی) و نیز فشار نسبت به فشار خلا .
سنسورهای فشار تفاضلی
این سنسور تفاضل بین فشار ۲ یا چند نقطه را که به عنوان ورودی معرفی می شوند اندازه می گیرد. برای مثال اندازه گیری افت فشار در فیلتر روغن. فشار تفاضلی هم چنین برای اندازه گیری دبی یا سطح در مخازن به کار می رود.
سنسورهای فشار مهرشده(sealed)
این سنسور همانند سنسور فشار گیج است با این تفاوت که از قبل توسط سازنده برای اندازه گیری فشار نسبت به فشار سطح دریا کالیبره شده است.
سنسورهای فشار از نظر تکنولوژی ساخت
سنسور های فشار با تکنولوژیهای زیر ساخته و در بازار عرضه می شوند
۱- روش دیافراگم و کپسول
۲- ترانسدیوسر خازنی فشار
۳- ترانسدیوسر پتانسیومتری فشار
۴- پیزوالکتریک
روش دیافراگم و کپسول :
دیافراگم معمولا از جنس فلزی استیل ساخته می شود و روی دیافراگم را به صورت موج دار می سازند تا در برابر نیرویی که به آن وارد می شود جابجایی داشته باشند . برای اندازه گیری فشار زیاد از دیافراگم کوچک و برای اندازه گیری فشار کم از دیافراگم بزرگ استفاده می شود .
کپسول از دو دیافراگم تشکیل شده است که محیط آن به هم وصل می شود که بین آنها از مایع تراکم ناپذیر پر می شود حساسیت کپسول بیشتر از دیافراگم است و به ازای فشار مشخص تغییرات طول کپسول معادل دو برابر یک دیافراگم با مشخصه مشابه می باشد
ترانسدیوسر خازنی فشار :
در این ترانسدیوسر از فاصله صفحات خازن برای سنجش فشار استفاده می شود در این روش توسط نوسان ساز تغییرات ظرفیت خازن تبدیل به تغییرات فشار می شود این نوع ترانسدیوسرها برای اندازه گیری فشار کم و معمولا برای آزمایشگاه استفاده می شود.
ترانسدیوسر پتانسیومتری فشار :
در این روش از یک بیلوز جهت تبدیل فشار پروسه به جاجایی استفاده می شود .
بیلوز شبیه به بوق دو چرخه است که با افزایش فشار طول آن تغییر کرده و با جابجا شدن اهرم تنظیم مقاومت متغییر می شود و در نتیجه می توان مقاومت فشار را اندازه گیری نمود .
پیزوالکتریک :
در پیزوالکتریک تغییرات فشار باعث تولید ولتاژ می شود. در حقیقت ضربات وارد شده باعث تولید ولتاژ می شود نمک راشل که در میکروفن های قدیمی استفاده می گردید خاصیت پیزوالکتریک دارد. کوارتس رایج ترین پیزوالکتریک می باشد . سنسورهای پیزوالکتریک بخاطر دقت بالا کاربردهای فراوانی دارند . ویژگی های عمده این سنسورها سختی، سایز کوچک ،سرعت بالا و عدم نیاز به منبع تغذیه هستند با استفاده از سنسورهای پیزوالکتریک می توان سرعت و تغییرات شتاب را نیز اندازه گیری نمود .
سازندگان این نوع سنسور
تقریبا می توان گفت بیش از ۵۰ تکنولوژی و حداقل ۳۰۰ شرکت در سراسر جهان سازنده سنسور فشار هستند که از جمله برندهای معتبر بازار می توان به موارد زیر اشاره کرد
سنسور فشار هاگلر Hogller
سنسور فشار اتک Atek
سنسور فشار ترافاگ TRAFAG
سنسور فشار امرسون EMERSON
سنسور فشار اشکراف ASHCROFT
سنسور فشار یوکوگاوا YOKOGAWA
سنسور فشار زیمنس SIEMENS
سنسور فشار هانی ول HONEY WELL
سنسور فشار فاکس برو FOXBORO
سنسور فشار فیشر FISHER
سنسور فشار روزمونت ROSEMOUNT
سنسور فشار کلر KELLER
سنسور فشار دانفوس DANFOSS
سنسور فشار ویکا WIKA
سنسور فشار ایندومارت INDUMART
سنسور فشار آی اف ام IFM
سنسور فشار بامر BAUMER
سنسور فشار بی دی سنسور BD SENSORS
سنسور فشار اندرس هاوزن ENDRESS+ HAUSER
سنسور فشار سنسیس Sensys
تاریخچه
اکتشاف و پژوهشهای اولیه
اثر پیزوالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط کارل لینائوس و فرنز آپینوسمطالعه شد و با الهام از این موضوع رنه جاست هاووی و آنتونی سزار بکورلادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایشهای آنها نتیجه قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران پیری کیوری و جکوئیز کیوری انجام شد. آنها دانششان را از پیزوالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای ترمالین، کوارتز، زبرجد هندی، نیشکر و پتاسیم سدیم تارترات (ن
Òسنسور فشار عموما فشار گاز یا مایع را اندازه می گیرد. فشار به اصطلاح نیروی لازم برای جلوگیری از پخش شدن مایع است و معمولاً به صورت نیرو بر سطح تعریف می شود. سنسور فشار معمولاً به صورت مبدل کار میکند و سیگنالی تابع اثر فشار تولید می کند. برای این منظور می توان سیگنال الکتریکی در نظر گرفت. سنسورهای فشار روزانه برای کنترل و مانیتورینگ هزاران کاربرد استفاده می شوند. سنسورهای فشار می توانند به طور غیر مستقیم برای اندازه گیری سایر متغیرها استفاده شوند. برای مثال: دبی سیال/ گاز، سرعت، سطح مایع و ارتفاع از این متغیرها هستند.
. به سنسورهای فشار، مبدلهای فشار، ترنسمیتر فشار، فرستنده فشار، نشاندهنده فشار، پیزومتر و مانومتر و ... نیز گفته می شود. سنسورهای فشار از نظر تکنولوژی، طراحی، عملکرد، کاربرد و قیمت باهم متفاوت هستند. با یک تخمین محافظه کارانه می توان گفت بیش از ۵۰ تکنولوژی و حداقل ۳۰۰ شرکت در سراسر جهان سازنده سنسور فشار هستند. هم چنین طبقه ای از سنسورهای فشار وجود دارند که برای اندازه گیری حالت پویای تغییرات سریع در فشار طراحی شده اند. مثالی از کاربرد این نوع سنسور را می توان در اندازه گیری فشار احتراق سیلندر موتور و یا گاز توربین مشاهده کرد. این سنسورها به طور عمده از مواد پیزوالکتریک مانند کوارتز ساخته شده اند. بعضی از سنسورهای فشار مانند آنچه در دوربینهای کنترل ترافیک دیده می شود، به صورت باینری (دودویی) و خاموش/ روشن کار می کنند. برای مثال وقتی فشاری به سنسور فشار اعمال می شود، سنسور یک مدار الکتریکی را قطع یا وصل می کند. این سنسورها به سوئیچ فشار معروف هستند. مقدمه
واژهی پیزوالکتریک به معنای الکتریسیتهای است که ناشی از فشار میباشد، این کلمه از دو واژهی یونانی پیزو به معنای فشاردادن و الکترون گرفته شدهاست. پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی) اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود. اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند.
به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار
اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.
خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده است.
برای آشنایی بیشتر در این زمینه (حسگر های پیزوالکتریک ) میتوانید دو مقاله ای که به صورت فایل زیپ قرار داده شده است را دانلود کنید
رفتار پیزوالکتریک یا پیزوالکتریسیته عبارتست از تولید الکتریسیته ایجاد شده توسط پلاریزاسیون توسط
مشخصات فایل
عنوان: سنسورهای حرارتی
قالب بندی: word
تعداد صفحات: 54
محتویات
مقدمه
فصل اول
تعریف عبارت سنسور
تکنیک های تولید سنسور
سنسورهادر تکنولوژی لایه نازک (Thin-film technology):
سنسورهای سیلیکانی
خواص سیلیکان و اثرات آنها بر سنسورها:
سنسورهای اکوستیکی ؛ سنسورهای صوتی و کاربردهای آن
سنسورهای موج صوتی سطحی (SAW ) :
SURFACE acoustic wave
فصل سوم
سنسورهای گازی SAW
کاربردهایی از سنسورهای سرعت و شتاب
توضیحات مکمل
دو تکنیک اصلی برای تولید باریکه اصلی
فصل چهارم
سنسورهای مکانیکی
سنسورهای فشار
شتاب سنج ها
سنسورهای flow (جاری )
STRAIN GAGE
فصل پنجم
سنسورهای نوری
مقاومت های نوری
سنسورهای نیمه هادی نوری برای آشکار سازی الکترومغناطیس وامواج هسته ای
دیودهای نوری
ترانزیستورهای نوری
مثالی از کاربرد سنسورهای نوری
سایر مواد نیمه هادی برای سنسورهای نوری
فصل ششم
سنسورهای درجه حرارت
سنسورهای حرارتی اینترفیس
سنسورهای دمای ولتاژ خروجی آنالوگ
سنسورهای سلسیوس LM35
سنسور فارنهایت LM34
سنسورهای آنالوگ جریان خروجی ( LM134 ـ LM234 ـ LM334 )
سنسورهای مقایسه گر دمای خروجی ( ترموستات توان پایین LM56)
سنسورها با خروجی دیجیتالی
مدارات کاربردی
نمایش دیجیتالی دمای ورودی و خروجی
سنسورهای دمایی خارجی متصل به PC
آشکار ساز دما و کنترلر فن به یک آمپلی فایر گرمایی صوتی
فصل هفتم
سنسورهای هال
اما اثرهال چیست؟
مثالهایی از کاربرد های سنسور های مغناطیسی .
سنسور اندازه گیری نرخ جاری شدن(flow rate sensor )
سنسورهای ماشین اداری (office machine sensor )
مفاهیم و کاربردهای سنسور خروجی
خواننده کارت مغناطیسی
پیش بینی برای آینده
عنوان مقاله: سنسورهای حرارتی
سنسورها رابط بین سیستم کنترل الکترونیکی از یک طرف و محیط، رشته کارها یا ماشین از طرف دیگر هستند. در اواخر دهه ۱۹۷۰ و اوایل دهه ۱۹۸۰ تکامل سنسور در سطح بین المللی بین سه و پنچ سال عقب تر از تکامل علم میکروالکترونیک در نظر گرفته می شد. این حقیقت که ساخت عناصر میکروالکترونیک غالباً بسیار ارزانتر از عناصر اندازه گیری کننده ای
( سنسور هایی ) بود که آنها احتیاج داشتند ، یک مانع جدی در ازدیاد و متنوع نمودن کاربرد میکرو الکترونیک پردازشگر اطلاعات در گستره وسیعی از عملیات و رشته کارها بود. چنین اختلافی بین علم میکروالکترو نیک مدرن و تکنولوژی اندازه گیری کننده کلاسیکی تنها توانست به واسطه ظهور تکنولوژی سنسورهای مدرن بر طرف شود.
اگر چه سنسورها به همراه علم میکروالکترونیک پردازشگر اطلاعات ، یک گام مهم را به جلو عرضه دارد لیکن این ، تنها اولین قدم است . در این مرحله سنسورها از تعدادی از عناصر میکروالکترونیک موجود ، برای مثال به شکل پردازشگرها ، حافظه ها ، مبدل های آنالوگ به دیجیتال یا تقویت کننده ها ، برای آماده نمودن سیگنال خروجی استفاده می کنند.در عین حال سنسورباید یک خروجی الکترونیکی تولیدکند که به آسانی پردازش شود . دومین گام عبارت از اتصال سنسور سیستم میکروالکترونیک –بخش مکانیکی می باشد . این زنجیره تنها در صورتی کار می کند که همه خطوط رابط باشند این امر منجر به توصیف یک معیار مهم تر به ویژه تا جائیکه سنسور مر بوط است می شود.