فهرست
اثر پیزوالکتریک (Piezoelectric Effect) 13
کاربرد امواج فراصوتی در مواد پیزو الکتریک.... 15
ارتباط اثر پیزو الکتریک با ساختار مولکولی مواد. 16
وابستگی مواد پیزوالکتریک به دما 16
وجود اثر پیزو الکتریک در تک بلور 16
کاربرد مواد پیزوالکتریک.... 17
مبدل های پیزوالکتریک (Piezoelectric Transducer) 17
محرک های پیزوالکتریک (Piezoelectric Actuator) 17
اثر پیزوالکتریک مستقیم و معکوس.... 20
کاربردهای اثر پیزوالکتریک.... 23
منابع با ولتاژ و توان بالا. 32
مقدمه
واژهی پیزوالکتریک به معنای الکتریسیتهای است که ناشی از فشار میباشد، این کلمه از دو واژهی یونانی پیزو به معنای فشاردادن و الکترون گرفته شدهاست. پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی) اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود. اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند. تاریخچه اثر پیزوالکتریک
به سبب تلاشهای Jacques Curie و Pierre Curie در 1880 مفهوم پیزوالکتریک بوجود آمد. این فیزیکدانان کشف کردند که کریستال های مشخصی وجود دارند که وقتی که استرس یا کشش مکانیکی بر آنها اعمال می گردد بصورت الکتریکی قطبیده (پولاریزه) می شوند.
بنابر این تمام المان های مکانیکی نظیر استرس، کشش، تراکم (فشردگی) و کشیدگی می توانند ولتاژهایی را در کریستالهایی مشخص تولید کنند. این مقوله بوسیله Jacques و Pierre بنا نهاده شده که وقتی نیروی مکانیکی بر کریستالهایی نظیر tourmaline، topaz، quartz، Rochelle salt و Cane sugar اعمال می شود این نیرو منتهی به تولید بارهای الکتریکی متناوب بر وجه های مخالف آن می شود ومتعاقباً آن می تواند برای تولید ولتاژ الکتریکی استفاده شود.
به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار
اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.
خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده است.
برای آشنایی بیشتر در این زمینه (حسگر های پیزوالکتریک ) میتوانید دو مقاله ای که به صورت فایل زیپ قرار داده شده است را دانلود کنید
رفتار پیزوالکتریک یا پیزوالکتریسیته عبارتست از تولید الکتریسیته ایجاد شده توسط پلاریزاسیون توسط یک کریستال در اثر اعمال تنش.
زمانی که یک میدان الکتریکی به یک کریستال پیزوالکتریک اعمال شود، تحت کرنش قرار میگیرد که اصطلاحا آن را رفتار پیزوالکتریک معکوس مینامند.
شرط ضروری برای پیزوالکتریک بودن یک کریستال، عدم وجود تقارن مرکزی در ساختار کریستالی است.
ترکیبات سرب-زیرکنات-تیتانات PZT با ساختار پروسکایت، ZnO و کوارتز مثالهایی از مواد پیزوالکتریک هستند.
پیزوالکتریک Piezoelectric خاصیتی است که برخی کریستالها و از جمله کوارتز به هنگام اعمال ولتاژ به آنها تحت فشار قرار می گیرند یا به هنگام قرار گرفتن در معرض فشار مکانیکی، یک ولتاژ تولید می کنند از این خاصیت بلور کوارتز در ساعت استفاده می کنند که با اعمال ولتاژ از طریق باطری ساعت و در نظر تعداد خاصی نوسان بلور در یک ثانیه، ثانیه شمار ساعت به اندازه یک ثانیه پیش می رود یکی دیگر از کاربردهای کوارتز به دلیل داشتن خاصیت پیزوالکتریک، فرستنده های رادیویی، گیرنده های رادیویی و کامپیوترهاست به نوعی می توان گفت که تمام وسائل منقول و غیرمنقول، دقت و ظرافت خاص خود را مدیون این خاصیت کوارتز هستند تحقیقات نشان می دهند که اگر پان
فهرست
اثر پیزوالکتریک (Piezoelectric Effect) 13
کاربرد امواج فراصوتی در مواد پیزو الکتریک.... 15
ارتباط اثر پیزو الکتریک با ساختار مولکولی مواد. 16
وابستگی مواد پیزوالکتریک به دما 16
وجود اثر پیزو الکتریک در تک بلور 16
کاربرد مواد پیزوالکتریک.... 17
مبدل های پیزوالکتریک (Piezoelectric Transducer) 17
محرک های پیزوالکتریک (Piezoelectric Actuator) 17
اثر پیزوالکتریک مستقیم و معکوس.... 20
کاربردهای اثر پیزوالکتریک.... 23
منابع با ولتاژ و توان بالا. 32
مقدمه
واژهی پیزوالکتریک به معنای الکتریسیتهای است که ناشی از فشار میباشد، این کلمه از دو واژهی یونانی پیزو به معنای فشاردادن و الکترون گرفته شدهاست. پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی) اثر پیزوالکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود. اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند. تاریخچه اثر پیزوالکتریک
به سبب تلاشهای Jacques Curie و Pierre Curie در 1880 مفهوم پیزوالکتریک بوجود آمد. این فیزیکدانان کشف کردند که کریستال های مشخصی وجود دارند که وقتی که استرس یا کشش مکانیکی بر آنها اعمال می گردد بصورت الکتریکی قطبیده (پولاریزه) می شوند.
بنابر این تمام المان های مکانیکی نظیر استرس، کشش، تراکم (فشردگی) و کشیدگی می توانند ولتاژهایی را در کریستالهایی مشخص تولید کنند. این مقوله بوسیله Jacques و Pierre بنا نهاده شده که وقتی نیروی مکانیکی بر کریستالهایی نظیر tourmaline، topaz، quartz، Rochelle salt و Cane sugar اعمال می شود این نیرو منتهی به تولید بارهای الکتریکی متناوب بر وجه های مخالف آن می شود ومتعاقباً آن می تواند برای تولید ولتاژ الکتریکی استفاده شود.
به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ. این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگار
اثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیروالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.
خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده است.
برای آشنایی بیشتر در این زمینه (حسگر های پیزوالکتریک ) میتوانید دو مقاله ای که به صورت فایل زیپ قرار داده شده است را دانلود کنید
رفتار پیزوالکتریک یا پیزوالکتریسیته عبارتست از تولید الکتریسیته ایجاد شده توسط پلاریزاسیون توسط یک کریستال در اثر اعمال تنش.
زمانی که یک میدان الکتریکی به یک کریستال پیزوالکتریک اعمال شود، تحت کرنش قرار میگیرد که اصطلاحا آن را رفتار پیزوالکتریک معکوس مینامند.
شرط ضروری برای پیزوالکتریک بودن یک کریستال، عدم وجود تقارن مرکزی در ساختار کریستالی است.
ترکیبات سرب-زیرکنات-تیتانات PZT با ساختار پروسکایت، ZnO و کوارتز مثالهایی از مواد پیزوالکتریک هستند.
پیزوالکتریک Piezoelectric خاصیتی است که برخی کریستالها و از جمله کوارتز به هنگام اعمال ولتاژ به آنها تحت فشار قرار می گیرند یا به هنگام قرار گرفتن در معرض فشار مکانیکی، یک ولتاژ تولید می کنند از این خاصیت بلور کوارتز در ساعت استفاده می کنند که با اعمال ولتاژ از طریق باطری ساعت و در نظر تعداد خاصی نوسان بلور در یک ثانیه، ثانیه شمار ساعت به اندازه یک ثانیه پیش می رود یکی دیگر از کاربردهای کوارتز به دلیل داشتن خاصیت پیزوالکتریک، فرستنده های رادیویی، گیرنده های رادیویی و کامپیوترهاست به نوعی می توان گفت که تمام وسائل منقول و غیرمنقول، دقت و ظرافت خاص خود را مدیون این خاصیت کوارتز هستند تحقیقات نشان می دهند که اگر پان
فهرست
به طور کلی می توان کاربرد سنسور فشار را به چند دسته تقسیم کرد. 6
تکنولوژی های اندازه گیری سنسورهای فشار 6
کپسول (Capsule)– دیافراگم (Diaphragm) 7
سنسورهای فشار از نظر نوع فشار اندازه گیری.. 7
سنسورهای فشار مهرشده(sealed) 8
سنسورهای فشار از نظر تکنولوژی ساخت... 8
تکنولوژی های حس کردن سنسور فشار 10
انواع وسایل اندازهگیری فشار عبارتند از : 32
فشار سنجهای هیدرواستاتیکی : 32
فشار سنجهای آنرویدی( فشار سنجهای مکانیکی): 35
سنسورهای فشار پیزو مقاومتی.. 48
مقدمه
پیزوالکتریک :
در پیزوالکتریک تغییرات فشار باعث تولید ولتاژ می شود. در حقیقت ضربات وارد شده باعث تولید ولتاژ می شود نمک راشل که در میکروفن های قدیمی استفاده می گردید خاصیت پیزوالکتریک دارد. کوارتس رایج ترین پیزوالکتریک می باشد . سنسورهای پیزوالکتریک بخاطر دقت بالا کاربردهای فراوانی دارند . ویژگی های عمده این سنسورها سختی، سایز کوچک ،سرعت بالا و عدم نیاز به منبع تغذیه هستند با استفاده از سنسورهای پیزوالکتریک می توان سرعت و تغییرات شتاب را نیز اندازه گیری نمود .حسگرهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید میشود یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. میزان بار الکتریکی یا تغییر شکل مکانیکی به ترکیب ماده بستگی دارد. در ساختمان این سرامیک ها موادی نظیر: اکسید سرب، تیتانیا، زیرکونیا و غیره وجود دارند که بسته به نوع کاربرد این مواد با نسبت های مختلف با هم مخلوط می شوند. با تغییر ترکیب و ابعاد قطعات می توان پیزوسرامیک ها را برای کاربردهای مختلف طراحی کرد، از جمله شتاب سنج ها، مبدل های کوچک، حس گرهای خودرو، سنسورهای جریان سیالات و در بخش پزشکی در مبدل تصویرگرهای تشخیصی و مانیتورهای قلب جنین ، تفنگ های لیزری، چاقوهای کوچک جراحی و کالبدشکافی، پاک کنندههای دندانی، پمپ های IV ،پمپ های قلب و مبدل های کوچک در مجاری خون در جهت ثبت تغییرات متناوب ضربان قلب امروزه تحقیقات بزرگ و پیشرفت های عظیم بر پایه محاسبات جزیی و دقیق مهندسی بنا شده است. پایه این محاسبات ، اندازه گیری های دقیقی است که می بایست انجام شود.
در دنـیـــای امـــروز ایـــن انــدزه گـیــری هــا بــه روشهــای مــدرن و بــا دستگـاه هـای پیشـرفتـه مهندسی انجام می گیرد. اندازه گیری در حقیقت بـه مـعـنـای پروسه مشخص کردن یا پیدا کردن انــدازه، زاویـه یـا در کـل کـمـیـت اسـت. وسـایـل انــدازهگـیـری وسـایلـی هستنـد کـه کمیـت هـای اندازهگیری را به اطلاعات آنالوگ یا دیجیتال تبدیل می کنند. یکی از این وسایل اندازه گیری سنسورهای پیزوالکتریک هستند که برای سنس کـردن تـغـیـیـرات بـسـیـار جـزئـی به کار میآیند. پیزوالکتریسیته توسط پیروژاک کوری در سال 1892 کشف شد و از واژه یونانی Piezin به معنی "فشار" مشتق می شود. اعمال فشار به برخی کریستال ها مانند کوارتز یا برخی سرامیک ها ، الکتریسیته تولید می کند. فشار یا تنش مکانیکی وارد شده به برخی کریستال ها باعث جابه جایی دو قطبی های ایجاد شده و پدید آمدن میدان الکتریکی می شود. آرایش یون های مثبت و منفی، تعیین کننده ایجاد یا عدم ایجاد اثر پیزوالکتریسیته است. این سنسورها کاربردهای گسترده ای از صنعت خودرو سازی تا اندازه گیری فشار خون در رگ ها در جهت ثبت تغییرات متناوب ضربان قلب دارندساختار:همانطور که گفته شد سنسورهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید می شود؛ یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. این جابجایی بارهای الکتریکی را در شبکه اتمی یک کریستال پیزوالکتریک طبیعی، در پاسخ گویی به فشار را می توان در شکل 1 مشاهده می شود. دایره های بزرگ نشان دهنده اتم های سیلیکون هستند.
در حالیکه دایره های کوچک، نشان دهنده اتم های اکسیژن هستند. کوارتز کریستالی ، هم نـوع کریستال طبیعی یا کیفیت بالا و هم نوع تغییر یافته آن، از جمله مهمترین مواد پیزوالکتریک مورد دسترس، حساس و پایدار هستند.
عـلاوه بـر کـریستـال های کوارتز می توان، PCB های طراحی شده با به کارگیری تکنولوژی انسانی، پلی کریستال ها و پیزو سرامیک ها را نام برد. این مواد با کاربرد میدان الکتریکی گسترده ای، تحت فشار قرار گرفته اند، تا تبدیل به مواد پیزوالکتریک شوند، یــک خــروجــی high-voltage قــوی را تــولیـد مـی کنـد. ایـن ویـژگـی بـرای استفـاده در سیستمهای اندازه گیری کم نویز، یک ویژگی بسیار ایده آل است.
با ارزش سختی یکسان نسبت به Psi 6E15 که مشابه بسیاری از فلزات است، مواد پیزوالکتریک خروجی های بالا را به وسیله کرنش های کوچک کاهش می دهند. به عبارت دیگر، مواد پیزوالکتریک موادی را سنجش می کنند که ضرورتا شکست و انکسار نداشته باشند و اغلب به حالت جامد باشند. این به این دلیل است که سنسورهای پیزوالکتریک بسیار قوی هستند و این ویژگی عالی، یک رابطه خطی با میدان گسترده نوسان دارد. در حقیقت، وقتی سیگنال مناسب طراحی شده به طور صحیح به هم بپیـونـدنـد، سنسـورهـای پیـزوالکتـریـک دارای یـک محـدوده نـوسـان پـویـا (برای مثال، محدوده اندازه گیری نسبت به نویز) دارند. نکته مهم نهایی درباره مواد پیزوالکتریک این است که آن ها تنها می توانند اتفاقات پویا و در حال تغییر را اندازه بگیرند.سنسورهای پیزوالکتریک قادر به اندازه گیری حوادث استاتیک پیوسته مانند: سیستم داخلی هدایت موشک، فشار هوا و اندازه گیری وزن نیستند، در حالیکه حوادث استاتیک دلیل اولیه خروجی هستند؛ این سیگنال به آهستگی ضعیف شده، بر اساس مواد پیزوالکتریک یا متعلق به الکترونیک زمان ثابت است. این بار ثابت مطابق با مرتبه اول ***** بالاگذر است و براساس خازن و مقاومت دستگاه است. این ***** بالا گذر در نهایت تعیین کننده
یک سنسور هم کمیت فیزیکی معین را که باید اندازهگیری شود به شکل یک کمیت الکتریکی تبدیل میکند، که میتواند پردازش شود یا به صورت الکترونیکی انتقال داده شود. مثلاً یک سنسور رنگ میتواند تغییر در شدت نور را به یک پروسه تبدیل نوری الکترونی به صورت یک سیگنال الکتریکی تبدیل کند. بنابراین سنسور را میتوان به عنوان یک زیر گروه از تفکیک کنندهها که وظیفهی آن گرفتن علائم ونشانهها از محیط فیزیکی و فرستادن آن به واحد پردازش به صورت علائم الکتریکی است تعریف کرد. البته سنسوری مبدلی نیز ساخته شدهاند که خود به صورت IC میباشند و به عنوان مثال (سنسورهای پیزوالکترونیکی، سنسورهای نوری).
وقتی ما از سنسوری مجتمع صحبت میکنیم منظور این است که تکیه پروسه آمادهسازی شامل تقویت کردن سیگنال، فیلترسازی، تبدیل آنالوگ به دیجیتال و مدارات تصحیح میباشند، در غیر این صورت سنسوری که تنها سیگنال تولید میکند به نا سیستم موسوم هستند.
امروزه بحث سنسور به اهمیت مفاهیمی از قبیل میکروپرسسور (پردارزش گر)، انواع مختلف حافظه وسایر عناصر الکترونیکی رسیده است، با این وجود سنسور هنوز هم فاقد یک تعریف دقیق است همچنانکه کلمات الکترونیکی از قبیل پروب، بعدسنج، پیک آپ یا ترنسدیوسر هنوز هم معانی لغوی ندارند. جدا از اینها کلمه سنسور خود ریشه بعضی کلمات هم خانواده نظیر المان سنسور، سیستم سنسور، سنسور باهوش و تکنولوژی سنسور شده است کلمه سنسور یک عبارت تخصصی است که از کلمه لاتین Sensorium، به معنی توانایی حس کرد، یا Sensus به معنی حس برگرفته شده است. پیش از آن که بحث را ادامه دهیم لازم است عبارت سنسور را در صنعت الکترونیک تعریف کنیم:
در نوع پیشرفته به نام سنسور هوشمند یک واحد پردازش به سنسور اضافه شده است تا خورجی آن عاری از خطا باشد منطقیتر شود. واحد پردازش سنسور که به صورت یک مدار مجتمع عرضه میشود اسمارت (Smart) نامیده میشود. یک سنسور باید خواص عمومی زیر را داشته باشد تا بتوان در سیستم به کار برد که عبارتند از:
حساسیت کافی، درجه بالای دقت و قابلیت تولید دوباره خوب، درجه بالای خطی بودن، عدم حساسیت به تداخل و تاثیرات محیطی، درجه بالای پایداری و قابلیت اطمینان، عمر بالای محصول و جایگزینی بدون مشکل.
امروزه با پیشرفت صنعت الکترونیک سنسوری مینیاتوری ساخته میشود که از جمله مشخصهی آن میتوان به موارد زیر اشاره کرد:
سیگنال خروجی بدون نویز، سیگنال خروجی سازگار با باس، احتیاج به توان پایین.
سنسور فشار
سنسور فشار جهت اندازه گیری فشار مایع و یا فشار گاز مورد استفاده قرار می گیرد . فشار به اصطلاح نیروی لازم برای جلوگیری از پخش شدن مایع است و معمولاً به صورت نیرو بر سطح تعریف می شود.
سنسور فشار به صورت مبدل کار میکند و سیگنالی تابع اثر فشار تولید می کند.
کاربرد سنسور فشار
سنسور فشار روزانه برای کنترل و مانیتورینگ هزاران کاربرد صنعتی استفاده می شوند، با توجه به اینکه پارامتر فشار یک کمیت عمومی در صنایع مختلف می باشد . این سنسور تقریبا در تمامی صنایع کاربرد دارد که این صنایع شامل کلیه خطوط تولید هیدرولیک و پنوماتیک ، صنایع آب و فاضلاب ، خطوط رباتیک ، صنایع غذایی ، دیگهای بخار ، صنایع نورد فلزات ، معادن ، چیلر ، ارتفاع سنجی مخازن ، موتورخانه ها ، ایستگاههای پمپاژ ، سد ، جرثقیل ، ماشین آلات راه سازی ، مخازن مایعات و گازها ، غلتک ها ، سیستم های هیدرو متری ، نفت وگاز ، فشار خلاء (Sealing Pressure) ، فشار مطلق (AbsolutePressure) ، فشار نسبی (Meter Pressure) ، پارچه بافی و نخ ریسی ، سیستم های آتش نشانی و سیستم های هواشناسی و… می باشد.
به طور کلی می توان کاربرد سنسور فشار را به چند دسته تقسیم کرد
۱- اندازه گیری فشار
۲- اندازه گیری ارتفاع از سطح دریا
۳- آزمایش نشتی
۴- اندازه گیری عمق
۵- اندازه گیری جریان
۱- اندازه گیری فشار : این کاربرد، کاربرد مستقیم سنسورهای فشار است که در مواردی از جمله تجهیزات هواشناسی، هواپیما، اتومبیل و سایر وسایلی که در آنها فشار کارایی دارد به کار می رود
۲- اندازه گیری ارتفاع از سطح دریا : این کاربرد از رابطه بین تغییرات فشار با ارتفاع نسبت به سطح دریا استفاده می شود که کاربرد آن در هواپیما، موشک، ماهواره، بالنهای هواشناسی و غیره می باشد
۳- آزمایش نشتی : می توان با اندازه گیری افت فشار، نشتی سیستم را به دست آورد. روشهای متداول برای این منظور، دو روش هستند: ۱. مقایسه فشار سیستم با فشار سیستمی با نشتی معلوم و استفاده از این اختلاف فشار ۲. اندازه گیری فشار و بررسی تغییرات آن در طول یک بازه زمان
۴- اندازه گیری عمق و ارتفاع : یکی دیگر از کاربردهای سنسور فشار اندازه گیری ارتفاع سطح مایع می باشد ، از این تکنیک برای اندازه گیری جسم غوطه ور در آب مانند غواص ها ، زیر دریایی ها و یا ارتفاع سطح مایع درون یک مخزن استفاده می شود .
۵- اندازه گیری جریان : در این روش با کمک اثر ونتوری و رابطه اش با فشار، جریا ن را اندازه گرفت ، اختلاف فشار بین دو بخش یک تیوب نتوری (با قطرهای دهانه مختلف) اندازه گیری می شود. این اختلاف فشار، با سرعت جریان گذرنده از تیوب رابطه مستقیم دارد.از انجا که این اختلاف فشار نسبتاً کوچک است از سنسور فشار با بازه کم استفاده می شود.
تکنولوژی های اندازه گیری سنسورهای فشار
۱- اندازه گیری فشار توسط مانومتر ها (Manometers)
(مانومتر یک شاخه ای (Single Leg Manometer)
مانومتر دو شاخه ای (V-Tube Manometer)
مانومتر مورب Inclined Manometer)
۲- اندازه گیری فشار توسط فشار سنج های لوله بوردن (Bourdon Tube)
لوله ی C شکل (C-Tube) – لوله ی فانوسی (Bellows Tube) – لوله ی حلقوی (Helical Tube) لوله ی حلزونی (Spiral Tube)
۳- کپسول (Capsule)– دیافراگم (Diaphragm)
۴- اندازه گیرهای الکتریکی فشار (Electrical Pressure Measurement)
۵- استرین گیج ها (Strain-Gages)
۶- اندازه گیری های ظرفیتی فشار (Capacitive Pressure Measurement )
۷- اندازه گیری های پیزوالکتریکی فشار (Piezoelectrical Pressure Measurement)
کپسول (Capsule)– دیافراگم (Diaphragm)
دیافراگم معمولا از جنس فلزی استیل ساخته می شود و روی دیافراگم را به صورت موج دار می سازند تا در برابر نیرویی که به آن وارد می شود جابجایی داشته باشند . برای اندازه گیری فشار زیاد از دیافراگم کوچک و برای اندازه گیری فشار کم از دیافراگم بزرگ استفاده می شود .
کپسول از دو دیافراگم تشکیل شده است که محیط آن به هم وصل می شود که بین آنها از مایع تراکم ناپذیر پر می شود حساسیت کپسول بیشتر از دیافراگم است و به ازای فشار مشخص تغییرات طول کپسول معادل دو برابر یک دیافراگم با مشخصه مشابه می باشد.
سنسورهای فشار از نظر نوع فشار اندازه گیری
با توجه به نوع فشار، فشار سنج ها، به ۵ دسته طبقه بندی می شوند
۱- مطلق
۲- گیج
۳- خلا
۴- تفاضلی
۵- مهرشده(sealed)
سنسورهای فشار مطلق
این سنسور فشار یک نقطه نسبت به خلا کامل (۰ psi) را اندازه می گیرد. فشار اتمسفریک ۱۰۱.۳۲۵ KPa (یا ۱۴.۷psi) در سطح دریا نسبت به خلا است.
سنسورهای فشار گیج
این سنسور در کاربردهای متفاوتی استفاده میشود زیرا می تواند برای اندازه گیری فشار یک نقطه نسبت به فشار اتمسفریک در نقطه دیگر کالیبره شود. گیج فشار تایر مثالی از نشانگر فشار گیج است. هنگامی که گیج فشار تایر مقدار ۰ psi را می خواند فشار داخل تایر ۱۴.۷ psi است. یعنی برابر با فشار اتمسفر.
سنسورهای فشار خلا
این سنسور برای اندازه گیری فشار کمتر از فشار اتمسفر در نقطه ای مشخص استفاده می شود. مرجع سنسور خلا در صنعت متفاوت است که ممکن است موجب اشتباه شود؛ فشار نسبت به فشار اتمسفر ( مانند اندازه گیری فشار گیج منفی) و نیز فشار نسبت به فشار خلا .
سنسورهای فشار تفاضلی
این سنسور تفاضل بین فشار ۲ یا چند نقطه را که به عنوان ورودی معرفی می شوند اندازه می گیرد. برای مثال اندازه گیری افت فشار در فیلتر روغن. فشار تفاضلی هم چنین برای اندازه گیری دبی یا سطح در مخازن به کار می رود.
سنسورهای فشار مهرشده(sealed)
این سنسور همانند سنسور فشار گیج است با این تفاوت که از قبل توسط سازنده برای اندازه گیری فشار نسبت به فشار سطح دریا کالیبره شده است.
سنسورهای فشار از نظر تکنولوژی ساخت
سنسور های فشار با تکنولوژیهای زیر ساخته و در بازار عرضه می شوند
۱- روش دیافراگم و کپسول
۲- ترانسدیوسر خازنی فشار
۳- ترانسدیوسر پتانسیومتری فشار
۴- پیزوالکتریک
روش دیافراگم و کپسول :
دیافراگم معمولا از جنس فلزی استیل ساخته می شود و روی دیافراگم را به صورت موج دار می سازند تا در برابر نیرویی که به آن وارد می شود جابجایی داشته باشند . برای اندازه گیری فشار زیاد از دیافراگم کوچک و برای اندازه گیری فشار کم از دیافراگم بزرگ استفاده می شود .
کپسول از دو دیافراگم تشکیل شده است که محیط آن به هم وصل می شود که بین آنها از مایع تراکم ناپذیر پر می شود حساسیت کپسول بیشتر از دیافراگم است و به ازای فشار مشخص تغییرات طول کپسول معادل دو برابر یک دیافراگم با مشخصه مشابه می باشد
ترانسدیوسر خازنی فشار :
در این ترانسدیوسر از فاصله صفحات خازن برای سنجش فشار استفاده می شود در این روش توسط نوسان ساز تغییرات ظرفیت خازن تبدیل به تغییرات فشار می شود این نوع ترانسدیوسرها برای اندازه گیری فشار کم و معمولا برای آزمایشگاه استفاده می شود.
ترانسدیوسر پتانسیومتری فشار :
در این روش از یک بیلوز جهت تبدیل فشار پروسه به جاجایی استفاده می شود .
بیلوز شبیه به بوق دو چرخه است که با افزایش فشار طول آن تغییر کرده و با جابجا شدن اهرم تنظیم مقاومت متغییر می شود و در نتیجه می توان مقاومت فشار را اندازه گیری نمود .
پیزوالکتریک :
در پیزوالکتریک تغییرات فشار باعث تولید ولتاژ می شود. در حقیقت ضربات وارد شده باعث تولید ولتاژ می شود نمک راشل که در میکروفن های قدیمی استفاده می گردید خاصیت پیزوالکتریک دارد. کوارتس رایج ترین پیزوالکتریک می باشد . سنسورهای پیزوالکتریک بخاطر دقت بالا کاربردهای فراوانی دارند . ویژگی های عمده این سنسورها سختی، سایز کوچک ،سرعت بالا و عدم نیاز به منبع تغذیه هستند با استفاده از سنسورهای پیزوالکتریک می توان سرعت و تغییرات شتاب را نیز اندازه گیری نمود .
سازندگان این نوع سنسور
تقریبا می توان گفت بیش از ۵۰ تکنولوژی و حداقل ۳۰۰ شرکت در سراسر جهان سازنده سنسور فشار هستند که از جمله برندهای معتبر بازار می توان به موارد زیر اشاره کرد
سنسور فشار هاگلر Hogller
سنسور فشار اتک Atek
سنسور فشار ترافاگ TRAFAG
سنسور فشار امرسون EMERSON
سنسور فشار اشکراف ASHCROFT
سنسور فشار یوکوگاوا YOKOGAWA
سنسور فشار زیمنس SIEMENS
سنسور فشار هانی ول HONEY WELL
سنسور فشار فاکس برو FOXBORO
سنسور فشار فیشر FISHER
سنسور فشار روزمونت ROSEMOUNT
سنسور فشار کلر KELLER
سنسور فشار دانفوس DANFOSS
سنسور فشار ویکا WIKA
سنسور فشار ایندومارت INDUMART
سنسور فشار آی اف ام IFM
سنسور فشار بامر BAUMER
سنسور فشار بی دی سنسور BD SENSORS
سنسور فشار اندرس هاوزن ENDRESS+ HAUSER
سنسور فشار سنسیس Sensys
تاریخچه
اکتشاف و پژوهشهای اولیه
اثر پیزوالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط کارل لینائوس و فرنز آپینوسمطالعه شد و با الهام از این موضوع رنه جاست هاووی و آنتونی سزار بکورلادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایشهای آنها نتیجه قاطعی نداد.
اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران پیری کیوری و جکوئیز کیوری انجام شد. آنها دانششان را از پیزوالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای ترمالین، کوارتز، زبرجد هندی، نیشکر و پتاسیم سدیم تارترات (ن
فهرست
نگاه میکروسکوپی به پیزوالکتریسیته 11
طبقه بندى سیستمهاى اندازه گیرى. 24
دستگاه هاى آنالوگ و دیجیتال. 24
مشخصه های مطلوب یک سیال مانومتر 26
انواع فشار سنج های ارتجاعی. 26
انواع فشار سنج های الکتریکی. 27
فشارسنج یونیزاسیون کاتد گرم. 28
انواع وسایل اندازهگیری فشار عبارتند از. 31
فشار سنجهای آنرویدی( فشار سنجهای مکانیکی. 33
اندازه گیری فشار (Piezometry) 38
اندازه گیرهای الکتریکی فشار (ElectricalPressure Measurement) 40
انواع وسایل اندازهگیری فشار عبارتند از : 43
انواع مختلف پرشر گیج های الکترونیکی شرکت ویکا 44
مقدمه :
پیزوالکتریک باری است که در مواد جامد مشخصی به علت فشار مکانیکی انباشته میشود (مخصوصاً در کریستالها، بعضی سرامیکها و اجسام زیستی مانند استخوان، DNA و پروتئینهای مختلف) . لغت پیزوالکتریک یعنی الکتریسیتهی ناشی از فشار که از لغت یونانی به معنای فشردن گرفته شده و الکتریک نماد عنبر است .( یک منبع قدیمی جریان الکتریکی. میهمان عزیز شما قادر به مشاهده لینک نمی باشید. جهت مشاهده لینک در تالار گفتگو ثبت نام کنید. .ثر پیزو الکتریک از ارتباط خطی بین حالت مکانیکی و الکتریکی در مواد بلورین و شفاف بدون تقارن مرکزی درک میشود.اثر پیزوالکتریک یک فرآیند قابل برگشت است؛ موادی که به طور مستقیم اثر پیزوالکتریک(تولید داخلی بار الکتریکی به دلیل اعمال نیروی مکانیکی) را انباشته میکنند اثر پیزوالکتریک معکوس(تولید داخلی نیروی الکتریکی در اثر اعمال میدان الکتریکی) را نیز انباشته میکنند.به عنوان مثال سرامیکهای PZT O۳ ۰≤x≤۱) اگر به اندازه ۰.۱ درصد از ابعادشان تغییر شکل دهند نیروی پیزوالکتریک قابل اندازهگیری تولید خواهند کرد. برعکس اگر میدان الکتریکی به آنها اعمال شود به اندازه ۰.۱ درصد از ابعادشان تغییر شکل خواهند داد. پیزوالکتریک استفادههای مفیدی دارد از جمله تولید و ردیابی صوت، تولید ولتاژهای بالا، تولید فرکانس الترونیکی، میکروبالانسها (ترازوهای بسیار دقیق) و متمرکز کردن اشعههای نور در مقیاس بسیار بزرگ.این پدیده همچنین بنیانی برای بسیاری از تکنیکهای علمی و سودمند در مقیاس اتمی است؛ بررسی میکروسکوپی مثل STM، AFM، MTA انجام شد. SNOM همچنین استفادههای روزمره به عنوان منبع احتراق برای سیگاراثر پیروالکتریک (تولید پتانسیل الکتریکی در پاسخ به دما) در اواسط قرن هجدهم توسط Carl مطالعه شد و با الهام از این موضوع ادعا کردند بین فشار مکانیکی و بار الکتریکی رابطهای وجود دارد گرچه آزمایش های آنها نتیجهی قاطعی نداد.اولین اثبات تجربی اثر پیزوالکتریک در سال ۱۸۸۰ توسط برادران آنها دانششان را از پیزوالکتریک با درکشان از ساختار کریستالی اساسی ترکیب کردند که منجر به پیشبینی رفتار کریستالها شد و اثبات کردند کریستالهای خاصیت پیزوالکتریک دارند و Rochelle salt بیشترین پیزوالکتریک را در خود انباشته میکنند. اگرچه Curies اثر پیزوالکتریک معکوس را پیشبینی نکرد، اثر معکوس با روابط ریاضی توسط Gabriel Lippmann در سال ۱۸۸۱ از قوانین ترمودینامیک نتیجه شد. بلافاصله وجود اثر معکوس را تأیید کرد و به تحقیقات خود ادامه داد تا اثبات کامل تغییر شکل الکتریکی- الاستیکی -مکانیکی سرامیک های پیزوالکتریک را بدست آورد.خاصیت پیزوالکتریک اثر ترکیب شدهی رفتار الکتریکی ماده استحسگرها ی پیزوالکتریک:بعضی مواد طبیعی یا مصنوعی مانند کوارتز ، تورمالین ، لیتیم سولفات و ... هنگامی که تحت تغییر شکل یا بار مکانیکی قرار می گیرند ، بار الکتریکی تولید می کنند به این مواد ، مواد پیزو الکتریک گویند(اثر پیزو الکتریک). همچنین به عکس می توان با اعمال ولتاژ به این مواد تغییر شکل مکانیکی در آن ها ایجاد کرد(اثر پیزوالکتریک معکوس). کاربردهای آن: انواع سنسورهای پیزو الکتریک (شتاب) سنج(Accelerometer)، کرنش سنج(Strain gage) (سنسورهای نیرو وفشار ) ، شتاب دهنده های پیزوالکتریک(Actuators) نوسانگر پیزو الکتریک ، چشمه موج یا سنسور آلتراسونیک ، منبع با ولتاژ بالا و بسیاری دیگر...اصل مورد بحث در به کارگیری حسگرهای پیزوالکتریک این است که یک بعد فیزیکی که به یک نیرو تبدیل شده در دو جنبه متضاد از عنصر حسگر بودن عمل میکند. بسته به طراحی یک حسگر، گونههای مختلفی میتواند برای بارگذاری پیزوالکتریک مورد استفاده قرار گیرد.تشخیص انواع فشار به شکل صدا معمولترین نوع عمل حسگر است، به عنوان مثال میکروفنهای پیزوالکتریک (امواج صوتی ماده پیزوالکتریک را مرتعش ساخته و باعث تغییر ولتاژ میشوند) و یا گیرندههای پیزوالکتریک در گیتارهای الکتریکی. حسگر پیزوالکتریک که به بدنهی یک آلت (موسیقی) متصل شده باشد را میکروفن اتصال میخوانند.حسگرهای پیزوالکتریک به طور ویژه توأم با صداهای با فرکانس بالا در مبدلهای مافوق صوت جهت عکسبرداریهای پزشکی مورد استفاده قرار میگیرند.تحقیقی در اندازه گیری الکترونیکی حسگرهای پیزوالکتریک :حسگرهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید میشود یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. میزان بار الکتریکی یا تغییر شکل مکانیکی به ترکیب ماده بستگی دارد. در ساختمان این سرامیک ها موادی نظیر: اکسید سرب، تیتانیا، زیرکونیا و غیره وجود دارند که بسته به نوع کاربرد این مواد با نسبت های مختلف با هم مخلوط می شوند. با تغییر ترکیب و ابعاد قطعات می توان پیزوسرامیک ها را برای کاربردهای مختلف طراحی کرد، از جمله شتاب سنج ها، مبدل های کوچک، حس گرهای خودرو، سنسورهای جریان سیالات و در بخش پزشکی در مبدل تصویرگرهای تشخیصی و مانیتورهای قلب جنین ، تفنگ های لیزری، چاقوهای کوچک جراحی و کالبدشکافی، پاک کنندههای دندانی، پمپ های IV ،پمپ های قلب و مبدل های کوچک در مجاری خون در جهت ثبت تغییرات متناوب ضربان قلب امروزه تحقیقات بزرگ و پیشرفت های عظیم بر پایه محاسبات جزیی و دقیق مهندسی بنا شده است. پایه این محاسبات ، اندازه گیری های دقیقی است که می بایست انجام شود.
در دنـیـــای امـــروز ایـــن انــدزه گـیــری هــا بــه روشهــای مــدرن و بــا دستگـاه هـای پیشـرفتـه مهندسی انجام می گیرد. اندازه گیری در حقیقت بـه مـعـنـای پروسه مشخص کردن یا پیدا کردن انــدازه، زاویـه یـا در کـل کـمـیـت اسـت. وسـایـل انــدازهگـیـری وسـایلـی هستنـد کـه کمیـت هـای اندازهگیری را به اطلاعات آنالوگ یا دیجیتال تبدیل می کنند. یکی از این وسایل اندازه گیری سنسورهای پیزوالکتریک هستند که برای سنس کـردن تـغـیـیـرات بـسـیـار جـزئـی به کار میآیند. پیزوالکتریسیته توسط پیروژاک کوری در سال 1892 کشف شد و از واژه یونانی Piezin به معنی "فشار" مشتق می شود. اعمال فشار به برخی کریستال ها مانند کوارتز یا برخی سرامیک ها ، الکتریسیته تولید می کند. فشار یا تنش مکانیکی وارد شده به برخی کریستال ها باعث جابه جایی دو قطبی های ایجاد شده و پدید آمدن میدان الکتریکی می شود. آرایش یون های مثبت و منفی، تعیین کننده ایجاد یا عدم ایجاد اثر پیزوالکتریسیته است. این سنسورها کاربردهای گسترده ای از صنعت خودرو سازی تا اندازه گیری فشار خون در رگ ها در جهت ثبت تغییرات متناوب ضربان قلب دارندساختار:همانطور که گفته شد سنسورهای پیزوالکتریک بر پایه اصل پیزوالکتریسیته استوار هستند. به این معنا که اگر یک ماده به عنوان مثال یک سرامیک، پیزوالکتریک باشد، وقتی تحت تاثیر فشار قرار می گیرد در سطح آن بار الکتریکی تولید می شود؛ یا وقتی در میدان الکتریکی قرار میگیرد تغییر شکل مکانیکی می یابد. این جابجایی بارهای الکتریکی را در شبکه اتمی یک کریستال پیزوالکتریک طبیعی، در پاسخ گویی به فشار را می توان در شکل 1 مشاهده می شود. دایره های بزرگ نشان دهنده اتم های سیلیکون هستند.
در حالیکه دایره های کوچک، نشان دهنده اتم های اکسیژن هستند. کوارتز کریستالی ، هم نـوع کریستال طبیعی یا کیفیت بالا و هم نوع تغییر یافته آن، از جمله مهمترین مواد پیزوالکتریک مورد دسترس، حساس و پایدار هستند.