انواع سازه های نوین در معماری
مقدمه:
امروزه با پیشرفت علوم و فناوری، نیازها و خواستههای جدیدی در زمینهی مهندسی سازه بروز نموده است. عامل زمان در ساخت سازهها اهمیت دو چندان یافته و این امر گرایش به سازههای پیشساخته را افزایش داده است. همچنین با افزایش جمعیت جوامع بشری، علاقه به داشتن فضاهای بزرگ بدون حضور ستونهای میانی خواهان بسیاری پیدا کرده است. در این راستا از اوایل قرن حاضر تعدادی از متخصصین، مجذوب قابلیتهای منحصر بفرد سازههای نوین گشته و پاسخ بسیاری از نیازهای جدید را در این سازهها جستهاند و البته به نتایج بسیار مثبتی نیز دست یافتهاند.
معماری و سازهای نوین
1-سازه های فضاکار
در حالت کلی، سازه های فضاکار سیستم های سازه ای هستند که دارای عملکرد سه بعدی می باشند. در سازه های فضاکار بر عکس سازه های مسطح نظیر خرپای صفحه ای، مجموعه بافتار، بارهای خارجی، نیروهای داخلی و تغییرمکان های سازه ای در فضای سه بعدی تعریف می شوند. سازه های فضاکار را می توان به سه دسته تقسیم کرد:
1- سازه های فضاکار شبکه ای که شامل المان های منفصل می باشند؛2-سازه های فضاکار پیوسته نظیر دال ها، پوسته ها و غشایی ها؛
3- سازه های فضاکار مرکب که ترکیبی از سازه های مشبک و پیوسته می باشند.
2- سازه های کششی
سازه ی کششی شامل المان هایی است که تنها کشش تحمل می کنند و فشار و خمشی در آنها وجود ندارد. کلمه کششی نباید با تنسگریتی که فرمی از سازه است که اعضای فشاری و کششی با هم سازه را تشکیل می دهند اشتباه گرفته شود.
بیشتر سازه های کششی توسط اعضای خمشی یا فشاری مانند دکل ها (گنبد میلینیوم (ساختمان O2)) حلقه های فشاری و یا تیر ها پشتیبانی می شود. سازه های غشایی کششی بیشتر اوقات به عنوان سقف استفاده می شوند زیرا علاوه بر اقتصادی بودن به شکل جذابی دهانه های بزرگ را پوشش می دهند.
3-معماری پارچه ای
از دیدگاه مهندسی، سازههای پارچهای پوششهایی نازک و پایدار در برابر تغییر شکل و شکست هستند که مقاومت خود را از طریق پیشتنیدگی پیوسته کسب میکنند. با آن که تاریخ استفاده از چادر به گذشتههای بسیار دور باز میگردد، اصول سازههای پارچهای در قرن نوزدهم میلادی پایهریزی شد.
4-سازه های چادری
سازه های غشایی در سال ۱۹۶۰ توسط فرانک اوتو رواج دوباره ای گرفت. دو طرح پیشنهادی او عبارتند از:
شبکه سیمی آویخته که در نمایشگاه مونترال و همچنین ورزشگاه المپیک مونیخ استفاده شد که هر دو، جزءعظیم ترین و پیچیده ترین سازه های غشایی هستند.
امروزه با پیشرفت فناوری ها سازه های غشایی به کلی دگرگون و متحول شده اند،هر چند بهبود مصالح موجب بهبودعمکرد پوشش های غشایی شده است، ولی روش های نوین طراحی عامل اصلی بهره وری این سازه ها می باشد .
1- سازه های فضا کار
در حالت کلی، سازه های فضاکار سیستم های سازه ای هستند که دارای عملکرد سه بعدی می باشند. در سازه های فضاکار بر عکس سازه های مسطح نظیر خرپای صفحه ای، مجموعه بافتار، بارهای خارجی، نیروهای داخلی و تغییرمکان های سازه ای در فضای سه بعدی تعریف می شوند. سازه های فضاکار را می توان به سه دسته تقسیم کرد:
1- سازه های فضاکار شبکه ای که شامل المان های منفصل می باشند؛
2-سازه های فضاکار پیوسته نظیر دال ها، پوسته ها و غشایی ها؛
3- سازه های فضاکار مرکب که ترکیبی از سازه های مشبک و پیوسته می باشند.
مزایای استفاده از شبکه های فضایی :
۱ ) تقسیم بار
اولین مزیت سازه های فضایی ، مشارکت اغلب اعضای سازه در تقسیم و توزیع بار است .
۲ ) نصب تاسیسات
به دلیل وجود فضای بازبین ۲لایه شبکه های فضایی ، نصب تاسیسات مکانیکی و الکتریکی وکانال های هوا درون ارتفاع سازه ساده است .
۳ ) مقاومت
شبکه های فضایی ، سازه های مقاومی اند ، یعنی به طورکلی ، فروریختن تعداد محدودی ازاعضا ،لزوما منجربه فروپاشی سازه نمی شود . اگر چه در برخی مواقع ، استثنائاتی وجود دارد .
یک نمونه جالب فروریختن خرپای فضایی سقف ساختمان مرکز شهری هارتفورد ،کا لیسئوم ، در ژانویه ۱۹۷۸ است .
۴ ) اجزای مدولار
شبکه های فضایی مدولارترین سیستم های سازه ای هستند که ازنصب اجزاء پیش ساخته به یکدیگرساخته شده اند.
براین اساس اجزای سازه با ابعاد بسیار دقیق و با کیفیت مطلوب تولید می شوند واغلب به راحتی قابل حمل و به جز برپایی به کار بیشتری نیاز ندارد .
۵ ) آزادی در انتخاب محل تکیه گاه ها
امکانات زیادی درانتخاب محل تکیه گاه وجود دارد . این قابلیت به معماران آزادی زیادی برای طراحی فضای زیرشبکه فضایی می دهد.
۶ ) هندسه منظم
۷ ) سهولت نصب
۸ ) دهانه
سیستم سازه فضاکار قادر به پوشاندن دهانه های بزرگ با حداقل مواد مصرفی می باشد.فولاد مصرفی در سازه فضاکار ۳/۱ کمتر از سازه های متداول دیگر می باشد.
معایب و محدودیت های شبکه های فضایی :
۱ ) هزینه
هزینه این سازه ها گاهی می تواند در مقایسه با سیستم های سازه ای دیگر مثل قاب مسطح بیشتر باشد . این قضیه بیشتر در سازه های با دهانه کوچک دیده می شود .
۲ ) هندسه منظم
با وجود اینکه هندسه منظم شبکه های فضایی اغلب به عنوان یکی از مزایای آن ها در نظر گرفته میشود ، ولی از برخی زوایا بسیار پیچیده و در هم به نظر میرسند .
۳ ) زمان نصب
این خصوصیت نیز از مزایای شبکه های فضایی است ، اگر چه یک نگاه منتقدانه به شکل های فضایی بیان می دارد که تعداد و پیچیدگی گره ها ممکن است سبب طولانی شدن زمان نصب در محل اجرا شود.
۴ ) مقاومت در برابر آتش سوزی
شبکه های فضایی اغلب در ساخت بام مکان هایی که به مقاومت در برابر حریق نیا زی ندارند ، به کار می روند .
۵ ) ا نتخا ب نا درست قطعا ت مربوطه
ا نتخا ب قطعا ت با ید به خوبی انجام شود به خصوص درجوشکاری مخروط ها ، ا نتخا ب پیچ وا سلیو ومهمترا زهمه کیفیت گوی میباشدگوی هایی که به روش فرج سا خته می شوند ، کیفیت بالاتری دارند ولی هزینه آ ن بیشتر ا ست.
پیسازی
پس از گودبرداری و رسیدن به خاک مناسب که دارای مقاومت کافی باشد برای پی سازی در ابتدا بتن مگر فونداسیون میریزند. که این بتن مگر لاغر هم میگویند مقدار سیمان در بتن مگر در حدود 100 الی 150 کیلوگرم در متر مکعب میباشد. در پیهای نقطهای بتن مگر به دو دلیل مورد استفاده قرار میگیرد.
ضخامت بتن مگر در حدود 10 سانتیمتر میباشد و معمولاً قالب بندی (چوبی یا آجری) از روی بتن مگر شروع میشود.
قالب بندی شناژ و فنداسیون
در کارگاههای ساختمانی بتنی سه کارگاه وجود دارد که هم زمان به کار خود ادامه میدهند. این سه کارگاه عبارتند از : کارگاههای بتن سازی- آرماتور بندی و قالب بندی. از آنجا که بتن قبل از سخت شدن روان میباشد لذا برای شکل دادن به آن احتیاج به قالب داریم.
در حال حاضر در بیشتر ساختمانها از قالبهای آجری استفاده میشود چون مقرون به صرفهتر از قالبهای چوبی است از قالبهای فلزی در کارهای سری سازی استفاده میشود. قالب بندی آجری بدین طریق است که پس از بتن مگر اندازه پیهای اصلی را با آجر چیده و بعد شناژها را به آن نیز متصل مینمایند.
ضخامت این آجر چینی میتواند 10 سانتی متر هم باشد بهتر است برای این آجر چینی از ملات گل استفاده نمود زیرا در این صورت بعد از سخت شدن بتن میتوان آجرها را برداشته و مجدداً مورد استفاده قرار داد. ولی در این طریق (دیوار 10 سانتی متری و ملات گل) ممکن است در موقع بتن ریزی دیوارهای قالب تحمل وزن بتن را ننموده و از همدیگر متلاشی شود. که در این صورت میباید قبل از بتن ریزی پشت کلیه قالبها با خاک یا آجر و یا مصالح دیگر بسته شود بطوریکه بخوبی بتواند تحمل وزن بتن را بنماید.
مشکل اساسی در این نوع قالب بندی آن است که آجر آب بتن مجاور خود را مکیده و آنرا خشک میکند و فعل و انفعالات شیمیایی را در آن متوقف میکند و در نتیجه حد اقل به ضخامت 5 سانتی متر بتون مجاور خود را فاسد میکند. برای جلوگیری از این کار بهتر است که رویه آجر را با یک ورقه نایلون پوشیده شود تا آجر با بتون آجرها به راحتی از قالب جدا شده و میتواند در محلهای دیگر مورد استفاده قرار گیرد به هیچ وجه نباید تصور نمود که قبل از بتن ریزی میتوان دیوارهای قالب آجری با پاشیدن آب سیراب نموده بطوریکه آجرها آب بتن را نمکد زیرا اولاً با پاشیدن آب آجر کاملاً سیراب نمیشود و در ثانی مقدار زیادی آب در قالب جمع میشود که خارج کردن آن از قالب بسیار مشکل و حتی غیرممکن میباشد و این آب داخل پی جای بتن را گرفته و موجب پوکی قطعه میشود. در ساختمانهای مهم قالب پیها را با چوبهای روسی میسازند.
بدین طریق که ارتفاع پیها را که روی نقشه مشخص میباشد تعیین نموده و با کنار هم گذاشتن تختهها به همان اندازه و اتصال آنها به یکدیگر بوسیله چوبها چهار تراش قالب پی و یا هر قسمت دیگر را میسازند باید توجه داشت که تختهها باید آنچنان به یکدیگر متصل باشند که به خوبی بتواند وزن بتن و ضربهها و ارتعاشات بوجود آمده از ویبراتور را تحمل نماید مخصوصاً در مورد شناژها باید تخته را از بالا به وسیله قطعات چوب چهار تراش به یکدیگر متصل نمود به طوری که درزبندی شود که شیره بتن از آن خارج نشود. گاهی مواقع نیز از قالبهای فلزی استفاده میشود که قالبهای فلزی به مراتب گرانتر تمام میشود.
آرماتور بندی شناژ و فنداسیون
آرماتور بندی از حساسترین و با دقتترین قسمتهای ساختمانهای بتنی میباشد زیرا همان طوریکه قبلاً گفته شد کلیه نیروهای کششی در ساختمان بوسیله میلگردها متحمل میشوند بدین لحاظ در اجرا آرماتور بندی ساختمانهای بتنی باید نهایت دقت به عمل آید برای تعیین قطر و تعداد میلگردهای هر قطعه بتنی دو منبع تعیین کننده وجود دارد اول محاسبه دوم آئین نامه در مورد اول مهندس محاسب با توجه به مشخصات قطعه بتنی قطر میلگرد را تعیین نموده و در نقشههای مربوطه مشخص مینمایند کارگاه آرماتوربندی باید در قسمتی جداگانه از کارگاه اصلی تشکیل گردد.
در کارگاههای کوچک آرماتور را با دست (آچار گوساله) خم مینمایند ولی در کارگاههای بزرگ خم کردن آرماتور بوسیله ماشین انجام میگیرد. مسئول کارگاه آرموتوربندی باید از روی نقشه تعداد و شکل هر آرماتور را تعیین نموده و به کارگران مربوطه داده و خم کردن هر سری را دقیقاً زیر نظر داشته باشد تا طول آرماتور و خم بردن و زاویه خم کردن و طول قلاب ها طبق نقشه انجام گیرد.
میلگردها باید از نوع ذکر شده در نقشه باشد (آجدار یا ساده)
آرماتور بندی و خم کردن آرماتورها
در کارگاههای کوچک که مصرف کل آرماتورها از 50 تن بیشتر نیست اگر میلگرد خمیدگی موضعی داشته باشد میباید این خمیدگیها قبلاً صاف گردد بعد اقدام به شکل دادن آن گردد.
برای صاف کردن میله گردها چکش کاری مجاز نمیباشد و آرماتورها باید تمیز و در موقع کار فاقد گل و مواد روغنی باشد. میلهگردهای نمره پایین مثلاً 8 و10 که گاهی به صورت کلافی به کارگاه آورده میشود این میلگردها را باید قبلاً به طولهای مناسب بریده و بوسیله کشیدن صاف نموده و آن گاه مصرف نمود.
آرماتورها باید بطوری به هم بسته شود تا در موقع بتن ریزی از جای خود تکان نخورده و جابجا نشود و فاصله آنها از یکدیگر طوری باشد که بزرگترین دانه بتن براحتی از بین آنها رد شده و در جای خود قرار گیرد.
آرماتورها تا قطر 12 میلی متر را میتوان با دست خم کرد ولی آرماتورهای بزرگتر از 12 میلیمتر را با دستگاههای مکانیکی مجهز به فلکه خم میشود. قطر فلکه خم متناسب با قطر آرماتور بوده و باید بوسیله محاسب کارگاه تعیین گردد. کلیه آرماتورهای ساده باید به قلاب ختم شود ولی آرماتورهای آجدار را میتوان بصورت گونیا خم کرد. سرعت خم کردن باید متناسب با درجه حرارت محیط باشد و باید با نظر مهندس کارگاه بطور تجربی تعیین شود. باید از خم کردن و باز کردن آرموتورهای شکل داده شده و مصرف آن در محل دیگر خودداری نمود و در مواقع ضروری باید باز کردن هم با نظر مهندس محاسب باشد.
وصله کردن آرماتورها
با توجه به این که طول میگرد موجود در بازار 12 متری میباشد در اغلب قسمتهای ساختمانها مخصوصاً در شناژها میلگردهایی با طول بیشتر مورد نیاز است و همین طور قطعات باقیمانده از شاخههای بزرگ بالاخره بایستی مصرف شوند ناگزیر از وصله کردن میله گردها هستیم بهتر است دقت شود حتی المقدور این وصلهها به حداقل خود برسد یعنی در موقع برش کاری طوری اندازهها را باهم جور کنیم که ریزش آرماتورها زیاد نباشد و در صورت اجبار این اتصالات با نظر مهندس ناظر در جایی باشد که تنشها در آنجا حداقل است و باید توجه شود که در یک مقطع کلیه آرماتورها وصله نباشد اتصال دو آرماتور در ساختمانهای بتن آرمه اغلب به صورت پوششی بوده و باروی هم آوردن دو قطعه انجام میشود.
این نوع اتصال برای آرماتور تا نمره 32 مجاز میباشد و آن بدین طریق است که دو قطعه آرماتور را کنار هم قرار داده و بوسیله سیم آرموتور بندی به همدیگر متصل میگردد. طول دو آرماتور روی هم آمده دو قطعه نبایستی کمتر از اندازه داده شده در نقشه باشد و باید بوسیله مهندس محاسب و ناظر تعیین شود این طول معمولاً به اندازه 40 برابر قطر میل گرد مصرفی است.
آرماتور بندی شناژ- کف شالوده
در قطعات تحت خمش و خمش توام با فشار نباید در یک مقطع بیش از نصف آرماتورها وصلهدار باشد در قطعات تحت کشش و کشش توام با خمش نباید بیش از یک سوم در یک مقطع وصلهدار باشد.
پیهای نقطهای حداقل باید از دو جهت بوسیله شناژ بتنی به پیهای همجوار متصل باشد. حداقل ابعاد این کلاف بتنی باید 30 سانتیمتر بوده و بوسیله 4 میلهگرد طولی به قطر 12 میلیمتر مسلح باشد این فولادهای طولی باید با فولادهای عرضی (خاموت) به قطر حداقل 5 میلیمتر و به فاصله حداکثر 25 سانتی متر به هم دیگر بسته شوند و این قفسه بافته شده شناژ باید در تمام طول پی ادامه پیدا کند و به شناژ طرف دیگر پی متصل باشد. حداقل بتن روی قفسه شناژ 3 سانتیمتر میباشد. فاصله میله گردهای شناژ نباید از 10 سانتیمتر کمتر باشد و حداقل قطر میلهگردهای داخل شالوده نباید از 10 میلیمتر کمتر باشد.
آرماتورهای کف شالوده باید در دو جهت در تمام بعد شالوده ادامه پیدا کند ولی اگر طول پی از 3 متر تجاوز نماید میتوان آرماتورها را یک در میان کوتاهتر اختیار نمود ولی طول آرماتورهای کوتاه شده نباید از 8/0 طول اصلی کمتر باشد.
آرماتور بندی ریشه ستون
آرماتورهای ریشه با انتظار با ریشه برای اتصال شالوده به ستون بکار میرود باید تا سطح آرماتورهای زیرین پی ادامه داشته ادامه داد وبقیه آرماتورهای ستون را با اندازه 40 سانتی متر داخل پی نمود کلیه آرماتورهای ریشه باید در انتها دارای خم 90 درجه باشد .
این آرماتورها باید بوسله خاموت به یکدیگر متصل شده و داخل پی بخوبی مستقر شود و یا به عبارت دیگر باید خاموتهای ستون تا داخل پی ادامه یابد. طول آن قسمت از آرماتورهای ریشه که باید خارج از پی قرار گیرد تا میلهگردهای ستون به آن بسته شود باید بوسیله مهندس محاسب تعیین گردد ولی هیچ گاه نباید از 60 تا 50 سانتی متر کمتر گردد. اگر نتیجه محاسبات بیش از اعداد داده شده باشد باید از اعداد به دست آمده بوسیله محاسبات استفاده شود.
برای ایجاد مقاومت در مقابل نیروهای کششی در بتن داخل شناژ چند ردیف در بالا و پایین میلهگرد طولی قرار میدهند و این آرماتور بندی شناژ میلگردهای طولی را به وسیله میلگردهای عرضی که به آن خاموت گفته میشود به همدیگر متصل مینمایند. میله گردهای طول و عرضی را قبلاً مطابق شکل میبافند و بعد در داخل قالببندی شناژ قرار میدهند باید توجه داشت پهنای این قفسه بافته شده باید در حدود 5 سانتیمتر کوچکتر از پهنای این قفسه بافته شده باشد باید هر طرف 5/2 سانتیمتر باشد به طوریکه این میلگردها کاملاً در بتن غرق شده و آنرا از خوردگی در مقابل عوامل جوی محفوظ نماید. این اندازه در مناطق مختلف و آب و هوای مختلف و همچنین محل قرار گرفتن قطعه بتنی (اینکه درون زمین و یا خارج آن) قرار گیرد ونیز میزان سولفاته بودن آبهای مجاور آن متفاوت است که میزان آن بوسیله موسسه استاندارد و تحقیقات صنعتی ایران تعیین شده است. ناگفته نماند که خاموتهای شناژ اکثراً به صورت مربع و چهار ضلعی است چون چهار عدد میلگرد در داخل شناژ قرار میگیرد.
نکته: ناگفته نماند که فاصله بین خاموتها در ریشه ستون به مراتب کمتر از جاهای دیگر ستون میباشد. چون ریشه باید یکپارچگی ومقاومت بیشتری باشد یا به عبارت دیگری در یک ششم طول بالا که ستون به سقف متصل میشود فواصل بین خاموتها کمتر از جاهای دیگر ستون میباشد که این فاصله از روی نقشه خوانده میشود. که توسط مهندس محاسب محاسبه میشود ولی تقریباً حدود 15 سانتیمتر میشود ولی در جاهای دیگر ستون حدود 25 سانتیمتر میباشد.
قبل از بتن ریزی باید حتماً یک بار دیگر فاصله محور آرماتورهای ریشه کنترل گردد کف پی و آرماتورها کنترل گردد و مواد زائد از آن خارج شود. بستهای اتصال باید کنترل گردد و در مواقع قالب برداری دقت شود تا بتن تازه ریخته شده شالوده آسیب نبیند و قالبها تکه تکه و به آرامی جدا شود. اگر از قالب آجری استفاده شود و ورقه نایلون روی آجر کشیده نشده است بهتر است از آجرها صرف نظر شود و اقدام به برداشت آجرها نمائیم زیرا در این صورت آجر به بتن کاملاً چسبیده و جدا کردن آن غیر ممکن است و اگر قبل از سخت شدن بتن بخواهیم آجرها را جدا کنیم حتماً به پی آسیب خواهد رسید.
چگونه شبکه میل گرد ستون را به ریشه متصل کنیم؟
بعد از اجرای فنداسیون و گذاشتن میله گردهای ریشه اگر بخواهیم میلهگردهای ستون را کنار میلهگردهای ریشه قرار دهیم به اندازه کلفتی میله گرد ریشه ستون از محور خود منحرف خواهد گردید که اگر لاین انحراف در طبقات بالا تماماً در یک جهت باشد ممکن است ستون طبقه پنجم یا ششم چندین سانتیمتر تغییر مکان کند بدین لحاظ باید سعی شود که این تغییر مکان در هر طبقه بر خلاف تغییر مکان طبقه پایینتر باشد .بهتر آن است که در آرماتورهای ستون انحنای کوچکی مطابق کل شکل ایجاد گردد آن گاه نسبت به اتصال شبکه میلگردش ستون به ریشه اقدام گردد تا ستون درست در محل خود جای بگیرد و کوچکترین انحرافی نداشته باشد این انحراف به اندازه قطر میلگرد میباشد.
گاهی مواقع در آرماتوربندی فنداسیون اتفاق میافتد که شبکه بندی میلهگردها هم در کف فنداسیون و هم در قسمت فوقانی فنداسیون شبکههایی وجود دارد.
این زمانی اتفاق میافتد که دو ستون با هم روی یک فنداسیون قرار گرفته باشد یعنی در محل فنداسیون درز انقطاع دو ساختمان، دلیل این شبکهها در قسمت فوقانی برای تحمل کشش در آن ناحیه یعنی بین دو ستون میباشد . چون دو ستون نیروی زیادی را به فنداسیون وارد میکند و نیروی کششی در بالای و فاصله بین دو ستون ایجاد میشود که برای تحمل این نیروی کششی از میلگردهای لازم استفاده میشود.
گاهی مواقع اتفاق میافتد که فنداسیونهای مسلح نواری که دو یا چند ستون روی آن سوار میشود و حالت باسکولی دارد و هم میلگردهایی جهت تقویت در جاهایی که کشش خیلی زیاد است هم در کف و هم در بالای فنداسیون از میلهگردهای نمره بالا 24-26 استفاده میکنند البته این میلگردها به صورت تقویتی است و باید در بین شبکه میلگردها قرار گیرد و به شبکه نچسبد .
بتن سازی و بتن ریزی
برای بتن ریزی فنداسیون و شناژها باید بتن را طبق آئین نامه بسازیم. بتن سنگی است مصنوعی که از مواد سنگی (شن وماسه) و آب وسیمان تشکیل یافته و به علت روانی قالب خود را پر کرده وبه شکل قالب در میآید.
مصالح سنگی
مصالح سنگی که در بتن مصرف میشود شن و ماسه میباشد که در حدود 75% حجم بتن را تشکیل میدهد. دانههای سنگی تا بزرگی 5 میلیمتر بزرگتر را شن میگویند. قسمت اعظم مقاومت بتن بستگی به مقاومت شن و ماسه دارد و در نتیجه بایستی در انتخاب معادن شن و ماسه جهت بتن ریزی نهایت دقت به عمل آید.
دانههای نامطلوب از نظر شکل
هر قدر شکل دانهها هندسیتر باشد برای بتن ریزی مناسبتر میباشد. وجود دانههای سوزنی و یا پولکی شکل در بتن مناسب نیست و مجموع این دانهها نباید از 15% وزن کل شن و ماسه مورد مصرف در بتن بیشتر باشد دانههای سوزنی به دانههایی گفته میشود که طول بزرگترین بعد آن از 8/1 معدل دو الکی که این دانهها بین آنها قرار دارد بیشتر باشد دانههای سوزنی به علت آن که زودتر از سایر دانهها میشکنند نامطلوب میباشند. دانههای پولکی شکل به دانه هایی گفته می شود که ضخامت کمترین بعد آن کوچکتر از 60 % اندازه متوسط الکی که دانه سنگی به آن تعلق دارد .
مواد نامطلوب در شن و ماسه و اندازه دانهها:
بطور کلی شن و ماسه شکسته اغلب فاقد مواد نامطلوب میباشد ولی در مورد شن و ماسه رودخانه باید توجه داشت که مواد آلی مانند ریشه گیاهان- فضولات حیوانی- تکههای چوبی و فلزات و ذرات ذغال سنگ در شن و ماسه وجود نداشته باشد و یا حداکثر میزان آن از یک درصد وزن شن و ماسه تجاوز نکند. موادی که در برابر عوامل جوی ضعیف بوده و یا در فعل و انفعالات شیمیایی سیمان از خود واکنش نشان ندهند. مواد نامبرده نباید در شن و ماسه وجود داشته باشد درصد این مواد بوسیله آزمایشگاهها تعیین میشود و هم چنین مواد سنگی مصرفی در بتن باید فاقد خاک رس و کلوخههای رس باشد زیرا اولاً آب داخل بتن را به خود جذب کرده و فعل و انفعالات شیمیایی سیمان را متوقف میکند در ثانی دور دانههای شن و ماسه را گرفته ومانع تماس مستقیم سیمانه و دانهها میگردد.
آب در بتن:
بدیهی است فقط آب قسمت اول در بتن باقی میماند و آب قسمت دوم به مرور تبخیر گشته و جای آن به صورت فضای خالی ممکن است به صورت فضای خالی که ممکن است به صورت تارهای موئین باشد در بتن باقی بماند که این خود باعث پوکی بتن گشته و موجب تضعیف بتن میگردد.
باید توجه داشت که هر قدربتن خشکتر باشد مقاومتر خواهد بود ولی بتنهای خیلی خشک به علت لغزنده نبودن کاملاً قالب را پر نکرده و در داخل آن فضای خالی بوجود آمده و در نتیجه قطع نمی تواند بار وارده را تحمل نموده و غیر قابل استفاده میگردد و چنین می توان گفت که بتن تازه باید مانند عسل باشد .
آب در بتن
با توجه به این که در اغلب کارگاههای کوچک و حتی در بعضی از کارگاهها تقریباً بزرگ امکان تجزیه آب از لحاظ شیمیایی موجود نیست لذا به طور کلی میتوان گفت که تقریباً آبی که فاقد بو ومزه و ظاهراً قابل آشامیدن باشد میتوان در بتن از آن استفاده کرد. البته این موضوع دلیل آن نیست که آبهای غیر آشامیدنی برای بتن مضر است. در مواردی که آب آشامیدنی برای بتن در دسترس نباشد میباید مقاومت مکعب 28روزه بتن حد اقل 90 درصد مقاومت مکعبی را که با آب آشامیدنی ساخته شده است را دارا باشد در این صورت میتوان مطمئن شد که ناخالصیهای آب بر آب بتن مضر نیست.
اثر ناخالصیهای آب بر روی بتن
سنگهای سدیم و پتاسیم و منیزیم محلول در آب در فعل و انفعالات شیمیایی سیمان موجود در بتن شرکت کرده و در اثر انبساط حجمی موجب خرد شدن الیاف قطعه بتنی میگردد. این خرابی در قطعاتی که در جریان آب سولفاته قرار دارند. بیشتر میباشد. اثر نمک بر روی بتن ابتدا به صورت شوره ظاهر گشته و بعد از مدتی موجب خرد شدن قطعه میگردد.
کانالهای هدایت فاضلابهای کارخانه و هم مواد روغنی و نفتی در اثر تماس با دانهها و فولاد موجود در بتن سطح آب را چرب نموده و مانع چسبیدن دوغاب سیمان به دانهها و چسبیدن دانهها به یکدیگر میگردد.
سیمان
سیمان واژه لاتینی است که از کلمه Caementun و یا Caedimentun گرفته شده و معنی آن خرده سنگ است. سیمان ماده چسبنده است به رنگ خاکستری که در مجاورت آب و در مجاورت هوا و بعضی از انواع بدون مجاورت هوا در اثر فعل و انفعالات پیچیده شیمیایی سخت گشته و قطعات خرده سنگ مجاور خود را به یکدیگر میچسباند.
برای اولین بار سیمان در انگلستان بوسیله شخصی کشف گردید وچون رنگ آن بعد از خشک شدن به رنگ سنگهای ساحلی جزیره پرتلند بود بنام سیمان پرتلند معروف گردید سیمان پرتلند معروفترین و رایجترین سیمان در دنیا است.
مواد متشکله پرتلند : سیمان پرتلند تشکیل شده است از 65% آهک CaO و حدود 20% سیلیس به فرمول SiO2 و حدود 6% اکسید آلومینیوم به فرمول: AL2O3 و حدود 4% اکسید منیزیم به فرمول
MgO و 3% آنیدرید سولفوریک به فرمول SO3 و دو سه درصد دیگر نیز مواد دیگر که فرمول و نسبت دقیق این مواد در کارخانههای مختلف متفاوت است. این مواد را به نسبتهای معین و دقیق مخلوط کرده و به دو طریق خشک و یا ترد در کوره سیمانپزی برده و آنرا میپزند.
سیمان پزی
پختن سیمان یعنی ایجاد فعل و انفعال شیمیایی بوسیله حرارت بین مواد متشکله آن تا مواد بصورت دانههایی به درشتی فندق در اید به این دانهها که در اثر حرارت تشکیل میشود در اصطلاح سیمانپزی کلینکر میگویند.
انبار کردن سیمان
در موقع انبار کردن سیمان باید دقت شود که رطوبت هوا و زمین باعث فاسد شدن سیمان نشود. بدین لحاظ باید انرا روی قطعاتی از تخته که با زمین در حدود 10 سانتیمتر فاصله دارد و تعداد کیسههای سیمان روی هم قرار میگیرد نباید از 10 الی 12 کیسه بیشتر باشد زیرا در غیر این صورت سیمانهای زیرین در اثر فشار سخت شده و غیر قابل مصرف میگردد.
چنانچه این قطعات سخت شده به راحتی با دست به صورت پودر در اید قابل مصرف در قطعات بتنی میباشد و در غیر این صورت سیمان فاسد شده و بتن ساخته شده با این نوع سیمان باربر نبوده و نمیتوان از آن در قطعات اصلی ساختمان مانند تیرها وستونها و سقفها استفاده نمود.
اگر بخواهیم سیمان را برای مدت طولانی انبار کنیم باید حتیالمقدور باید با دیوارهای خارجی انبار فاصله داشته باشد و روی آنرا با ورقههای پلاستیکی پوشانیده شود تا حتی المقدور از نفوذ رطوبت به آن جلوگیری به عمل آید. اگر سیمان به طرز صحیح انبار شود حتی تا یکسال بعد نیز قابل استفاده است فقط ممکن است زمان گیرش آن به قدری به تعقیب افتد ولی اثری در مقاومت 28 روزه آن ندارد.
گاهی مواقع در برخی از کارگاهها که سیمان زیاد مصرف میشود سیمان را در سیلوها نگهداری میکنند یعنی سیمان را به صورت فلهای خریداری نموده و در سیلو انبار میکنند و هر گاه کارگران به سیمان احتیاج داشته باشند از این سیلوها استفاده میکنند.
نسبتهای مخلوط کردن اجزای بتن
منظور از نسبتهای مخلوط کردن اجزای بتن آن است که نسبت مناسبی برای اختلاط شن و ماسه و سی به دست آوریم تا دانههای ریزتر فضاهای بین دانههای درشتتر را بپوشاند وجسم توپری بدون فضای خالی و با حداکثر وزن مخصوص به دست آید. هم چنین تعیین مقدار آب لازم به طوریکه بتن به راحتی قابل حمل و نقل بوده و در قالب خود جا گرفته و دور میلهگردها را احاطه نموده و کلیه فضای خالی قالب را پر نماید و در مجاورت آن فعل و انفعالات شیمیایی سیمان شروع شده و تا مرحله سخت شدن ادامه یابد و بالاخره تعیین مقدار سیمان مورد لزوم
مقدمه:
به درستی قدمت استفاده بشر از سرپناه و یا به طور کلی به مفهوم امروزی قدمت استفاده بشر از مسکن معلوم نیست ولی تقریباً میتوان آن را همزمان با پیدایش بشریت دانست، زیرا چنین گمان میرود که بشر از همان ابتدا برای مصون ماندن از برف و باران و سرما و گرما و حمله حیوانات و همچنین حمله سایر اقوام از مسکن استفاده مینموده است. از آن زمان تا کنون انسانها همیشه به فکر آن بودهاند که مسکنی راحتتر و بهتر برای خود تهیه نمایند.
در قرون اخیر، رشد جمعیت در دنیا به طور چشمگیری رو به ازدیاد نهاد و بشر از لحاظ علمی و فنی مشکلات بسیاری را حل نمود و بالتبع در ساختن مسکن نیز مانند سایر امور تحولات فراوانی بوجود آورد. در این میان دیگر ساختن خانههای تک واحدی جوابگوی احتیاجات جوامع بشری نبوده و به همین علت سیستم ساختمانسازی به کلی دگرگون شده و استفاده از مصالح مقاوم نیز مانند فولاد و بتن در ساختمان رایج گردید.
بدین لحاظ در تمام دنیا خصوصاً در مملکت ما میباید به امر ساختن مسکن و استفاده هر چه بهتر و بیشتر از مصالح ساختمانی توجه مخصوص بشود و در این راستا درسی عملی تحت عنوان کارآموزی برای دانشجویان رشته معماری در نظر گرفته شده است که دانشجویان این رشته باید پس از سپری کردن دوره کارآموزی گزارشی از آنچه به طور عملی آموختهاند جهت ارائه به دانشگاه محل تحصیل تهیه و تنظیم کنند.
دستورالعمل های حفاظتی و ایمنی کارگاه های ساختمانی:
اجرای کارهای ساختمانی شامل مراحل متعددی است که ضمن آن افراد با ماشین آلات ساختمانی، ابزار و مصالح گوناگون سر و کار دارند. این روابط ویژگی ها امکان وقوع حوادث را برای نیروی انسانی را افزایش می دهند. محافظت از افراد انسانی در قبال حوادث ناشی از کار از اهمیت ویژه ای برخوردار است. از این رو باید ابزار و ماشین آلات به طور مستمر مورد بازرسی کامل قرار گرفت و از سالم بودن انها اطمینان حاصل شود. در بکارگیری ماشین ها نیز باید از افراد با تجربه استفاده شود. برای تأمین ایمنی کارگاه های ساختمانی باید همه ی کارها با دقت و برنامه ریزی دقیق انجام گیرند. در ضمن باید دقت داشته باشیم و هنگام کار یا تخلیهی مصالح مزاحمتی برای همسایگان و سایرین ایجاد نشود هم چنین از انجام کارهای پر سر و صدا در شب خودداری شود در صورتی که لازم است کاری در شب انجام شود باید قبلاً اجازهی شهرداری و مقامات مسئول کسب شود.
انواع ساختمانها:
اصولاً ساختمانها را میتوان از لحاظ مصالح مصرفی و نوع کاربری به دستههای زیر تقسیم نمود:
الف) انواع ساختمانها از لحاظ مصالح مصرفی
١.ساختمانهای بتنی
٢.ساختمانهای فلزی
٣.ساختمانهای آجری
۴.ساختمانهای خشتی و گلی
ب) انواع ساختمانها از لحاظ نوع کاربری
١.ساختمانهای مسکونی
٢.ساختمانهای اداری
٣.بیمارستانها
۴.انبارها
۵. مدارس
۶. اماکن عمومی مانند باشگاهها و ورزشگاهها
و . . .
ساختمانهای بتنی:
ساختمانهای بتنی ساختمانهایی هستند که برای اسکلت اصلی آن از بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده و یا آجدار) اسـتفاده شـده باشـد. در ساختمانهای بتنی سقفها به وسیله دالهای بتنی پوشیده میشوند، و یا از سقفهای تیرچه بلوک و یا سایر سقفهای پیش ساخته استفاده میگردد. برای دیوارهای جدا کننده (پارتیشنها) ممکن است از انواع آجر مانند سفال تیغهای، آجر ماشینی سوراخدار، آجر معمولی کورهای و یا تیغهی گچی و یا چوب استفاده شده و ممکن است از دیوار بتن آرمه هم استفاده شود.
در هر حال در این ساختمانها شاه تیرها و ستونها از بتن آرمه (بتن مسلح) ساخته میشود.
معایب و محاسن سازه های بتن آرمه:
مصالح مختلفی مثل فولاد، چوب، مصالح بنائی و بتن ممکن است به عنوان گزینه هایی برای ساخت یک بنا مطرح باشند و این گزینه ها برای بسیاری از سازه های متداول، وجود دارند. اگرچه در ساخت اسکلت سازه های بلند، ممکن است به فولاد و بتن محدود گردند. با این وجود امروزه بتن آرمه به عنوان یک گزینه قابل اعتماد برای ساخت بسیاری از سازه های کوچک و بزرگ محسوب میگردد، به طوری که شاید بتوان از آن به عنوان مهم ترین ماده ساختمانی موجود با کاربردی فراگیر در تمام دنیا نام برد.
موفقیت قابل توجه بتن آرمه نسبت به سایر مصالح ساختمانی و به خصوص فولاد در کاربرد فراگیر آن را میتوان مرهون موارد زیر دانست:
از طرف دیگر برای بتن نقاط ضعفی را نیز میتوان بر شمرد که برخی ار آنها عبارتند از:
برای اجرای ساختمانهای بتنی به کارگاههای زیر نیازمندیم:
در کارگاههای ساختمانهای بتنی سه کارگاه تهیه بتن و آرماتوربندی و قالببندی به طور هم زمان با یکدیگر همکاری میکنند. از آنجا که بتن قبل از سخت شدن روان میباشد لذا برای شکل دادن به آن نیازمند قالب هستیم. همچنین چون ساختمان به صورت بتن مسلح است، لذا باید قبل از بتنریزی، آرماتوربندی مطابق با ضوابط آییننامه و نقشههای اجرایی انجام پذیرد.
قالبها و داربستهای زیر دال بتنی باید علاوه بر شکل دادن به بتن، وزن آن را نیز تا زمان سخت شدن تحمل کنند. به همین جهت اگر در اجرای آن دقت کافی نشود ممکن است در موقع بتنریزی واژگون شده و موجب خسارت شود. پس به عبارت دیگر پایداری از مهمترین خصوصیاتی است که باید در قالببندی رعایت شود. کافی نبودن مهاربندی پایههای اطمینان و یا مهاربندی افقی سکوها، عدم تنظیم تعادل افقی بتنریزی که منجر به پر شدن یک قسمت از قالب و خالی ماندن قسمت دیگر میشود، کف نامناسب در زیر قالب، عدم وجود کارگران ماهر، خوب نبستن قطعات قالب به یکدیگر، لغزش لایه خاک مجاور قالب و مواردی از این قبیل میتواند باعث خسارت گردد.
لازم به ذکر است که برای اجرای هر قسمت از ساختمانهای بتنی نظیر شالوده، ستون، دال و تیرها باید قالببندی، آرماتوربندی و در نهایت بتنریزی انجام شود.
اجزای ساختمان های بتن آرمه:
مراحل ساختن ساختمان:
بازدید زمین و ریشهکنی
قبل از شروع هر نوع عملیات ساختمانی باید زمین محل ساختمان بازدید شده
و وضعیت و فاصلهی آن نسبت به خیابانها و جادههای اطراف مورد بازرسی قرار گیرد. همچنین باید پستی و بلندی زمین با توجه به نقشهی ساختمان مورد توجه باشد. در صورتی که ساختمان بزرگ باشد پستی و بلندی و سایر عوارض زمین میباید توسط مهندسین نقشهبردار تعیـین گردد. همـچنـیـن باید محـل چاههـای فاضـلاب و چاههای آب و نیز مسیر قناتهای قدیمی که ممکن است در هر زمینی موجود باشد تعیین شده و محل آن نسبت به پیسازی مشخص گردد. این چاهها در صورت لزوم باید با بتن پر شوند.
پس از تعیین محل احداث سـاخـتـمـان نـسـبـت بـه زمـیـن، میبایست اقدام به ریشهکنی (کندن ریشههای نباتی که ممکن است در زمین روئیده باشد) شود و خاکهای اضافی به بیرون حمل گردد و بالاخره باید شکل هندسی زمین و زوایای آن کاملاً معلوم شده و با نقشه ساختمان تطبیق داده شود.
پاک سازی و تسطیح زمین:
قبل از پیاده کردن نقشه باید عملیات تسطیح و پاک سازی محل ساختمان را انجام دهیم. این عملیات شامل تخریب بناهای موجود و غیرقابل استفاده، ریشه کنی بوتهها و درختان، تمیزکردن نخاله ها و سنگ و کلوخ است. تخریب ساختمان ها کاری تخصصی است و باید توسط افرادی که در این کار مهارت دارند انجام شود. ریشه کنی درختان را میتوان توسط ابزارهای دستی یا مکانیکی انجام داد. محل ساختمان باید کاملا از چمن و دیگر نباتات پاک سازی شود.و این عمل در واقع برای پاکسازی خاک صورت میگیرد. چون ممکن است حدود 30 سانتی متر از خاک سطحی شامل گیاهان زنده و نباتات باشد در نتیجه خاک سطحی سست شده و به آسانی فشرده میشود که این خاک برای ساختمان سازی مناسب نیست. پس این خاک باید با ماشین آلات خاک برداری یا با وسایل دستی ساده مانند بیل و فرقون برداشته و به محل مناسبی حمل شود. در ضمن چن
توانبخشی (بهسازی)، روند و شیوه تعمیرکردن یا اصلاح کردن یک سازه به منظور دستیابی به شرایط بهرهبرداری جدید و یا افزایش عمر مفید بهرهبرداری آن است.
در واقع ما در طرح و اجرای مقاوم سازی به دنبال حصول شرایط جدید در سازه بتنی از نظر بهره برداری و یا بارگذاری می باشیم. عملیات مقاوم سازی می تواند به علل زیر مورد نیاز باشد :
پر واضح است که در گزینه اول ما نیاز به شرایطی بوده ایم یا نیازمند آن می باشیم که به علت اشتباهات در طرح و اجرا الان دارای آن نبوده و نیازمند آن می باشیم که به آن برسیم . مانند زمانی که بتن نتوانسته مقاومت لازم را کسب نماید ، یا زمانی که ابعاد عضو باربر کوچک تر از ابعاد مورد نیاز اجرا گردیده است. همچنین این امر می تواند زمانی اتفاق بیافتد که ستون به صورت خارج از محور و یا دچار پیچش شده است.
در چهار گزینه بعد ، سازه در شرایط موجود مشکلی نداشته و شرایط جدید بهره برداری ایجاب می کند که تغییراتی از منظر باربری در سازه ایجاد گردد. به طور مثال سازه در زمانی طراحی و اجرا می گردد و پس از چند سال تغییراتی در آیین نامه طراحی مانند آیین نامه 2800 داده می شود که نیازمند اصلاح استراکچر سازه می باشد.
یا ما سازه ایی داریم که اکنون عمر مفید آن اتمام یافته و یا در شرف اتمام است و ما تصمیم داریم چند سال دیگر از سازه بهره برداری نماییم. همچنین ممکن است ما سازه و ساختمان داشته باشیم که طرح و اجرای ان براساس طاختمان مسکونی انجام شده باشد و در آینده ما تصمیم بگیریم از آن کاربری آموزشی و یا اداری داشته باشیم.
در خصوص گرینه آخر می توان ساختمانی را متصور شد که چند سال پس از احداث بنا به تغییرات قوانین و یا توجیهات اقتصادی تصمیم گرفته می شود طبقاتی به سازه اضافه گردد که قبلا پیش بینی نشده است.
در همه این موارد ما نیازمند ایت هستیم که باربری سازه را افزایش و به نقطه B برسانیم.
امروز روش های مختلفی برای مقاوم سازی و تقویت سازه های بتنی وجود دارد. هر یک از روش های دارای مزایا ، معایب و محدودیت هایی می باشند. از جمله مهمترین عوامل موثر در انتخاب روش تعمیر می توان به ابعاد و محدودیت های ابعادی در روش تعمیر ، محدودیت های معماری ، محدودیت ها افزایش باربری ، محدودیت های زمانی ، محدودیت های بهره برداری اشاره کرد.
برخی از انواع روش های مقاوم سازی سازه های بتنی به شرح ذیل می باشد :
لازم به ذکر است در پاره ای موارد ممکن است عملیات مقاوم سازی به صورت همزمان با فرآیند ترمیم و تعمیر انجام شود تا سازه موجود ابتدا به شرایط قابل بهره برداری رسید و سپس ظرفیت های آن ارتقاء داده شود.
روش های مقاوم سازی ستون های بتنی در ساختمان و سازه های صنعتی
تأثیر دورپیچ کردن ستونهای بتن مسلح (با مقطع دایروی) با مصالح FRP در رفتار خمشی ـ محوری
تا پیش از دهه 1990، دو روش مرسوم برای مقاوم سازی ستونهای بتن مسلح بی کفایت وجود داشت. یکی اجرای یک غلاف بتن مسلح اضافی به دور ستون موجود و دیگری استفاده از غلاف فولادی با تزریق دوغاب. استفاده از روش غلاف فولادی، به دلیل آنکه غلاف بتن مسلح فضای بیشتری اشغال کرده و وزن سازه را نیز افزایش می داد، فراگیرتر و مؤثرتر بوده است. البته هر دو روش یاد شده، نیازمند نیروی کار زیاد بوده و اغلب برای انجام در کارگاه مشکل می باشند. همچنین غلاف فولادی در مقابل حمله شرایط جوی مقاومت کمی دارد.
در سالهای اخیر کاربرد روش مقاوم سازی ستونهای بتن مسلح با استفاده از مصالح FRP به جای غلاف فولادی بطور گسترده ای توسعه یافته است. مرسومترین شکل مقاوم سازی ستونهای بتن مسلح با مصالح FRP شامل دورپیچ کردن بیرونی ستون با استفاده از ورقها یا نوارهای FRP است.
مقاوم سازی ستونهای موجود بتن مسلح با استفاده از غلاف فولادی یا FRP بر مبنای این حقیقت استوار است که محصورشدگی جانبی بتن، سبب افزایش قابل توجه مقاومت فشاری محوری، محوری ـ خمشی و شکل پذیری ستون می گردد. مطالعات بسیاری در مورد مقاومت فشاری و رفتار تنش ـ کرنش بتن محصور شده با FRP انجام شده است. این مطالعات بیانگرد آن هستند که رفتار بتن محصور شده با FRP با رفتار بتن محصور شده با فولاد متفاوت بوده و بنابراین توصیه های طراحی توسعه یافته برای ستونهای بتنی محصور شده با غلاف فولادی، علیرغم تشابه ظاهری، برای ستونهای بتنی محصور شده با FRP قابل کاربرد نیستند.
مشکلات اجرایی سازه های بتنی موجود و بهسازی آنها
حرکت استمراری علم در عرصه مهندسی سازه ـ زلزله موجب گردیده است تا نوسازی و بهسازی در سالهای در اخیر از روشهای نوین و مصالحی جدید بهره گیرد که در پیشینه طولانی ساخت و ساز سابقه نداشته است در میان این نوآوری ها FRP (مواد کامپوزیت پلیمری تقویت شده با الیاف) از جایگاه ویژه برخوردار می باشد تا آنجا که به نظر برخی از متخصصانFRP را باید مصالح ساختمانی هزاره سوم نامید. کامپوزیت FRP که ابتدا در صنایع هوا و فضا بکار برده شد با داشتن ویژگی های ممتاز چون نسبت بالای مقاومت به وزن، به وزن، دوام در برابر خوردگی، سرعت و سهولت در حمل و نصب، دریچه ای نو پیش روی مهندسین عمران گشوده است به گونه ای که امروز سازه های متعددی در سرتاسر دنیا با استفاده از این مواد تقویت شدند استفاده از مصالح کامپوزیت به طور قابل توجهی در صنعت ساختمان یک بازار تکان دهنده و با سرعت در حال توسعه می باشد. اولین تحقیقات انجام شده در این زمینه از اوایل دهه 1980 آغاز شده است، زلزله 1990 کالیفرنیا و 1995 کوبه ژاپن نیز از جمله عوامل موثرتری برای بررسی کاربرد کامپوزیت پلیمری تقویت شده با الیافFRP جهت تقویت و مقاوم سازی سازه های بتنی و بنایی در مناطق زلزله خیز گردید.
کاربرد ورق یا کامپوزیت FRP در مقاوم سازی سازه های بتن مسلح امروزه نگهداری از سازه ها به دلیل هزینه ساخت و تعمیر بسیار حائز اهمیت می باشد با مطالعه رفتار سازه های بتنی مشخص می شود عوامل متعددی مانند: اشتباهات طراحی و محاسبه، عدم اجرای مناسب تغییر کاربری سازه ها، آسیب دیدگی ناشی از وارد شدن بارهای تصادفی، خوردگی بتن و فولاد و شرایط محیطی از دوام آنها می کاهد ضمناً تغییر آیین نامه های ساختمانی (باعث تغییر در بارگذاری و ضرایب اطمینان می شود) نیز سبب ارزیابی و بازنگری مجدد طرح و سازه می گردد تا در صورت لزوم بهسازی و تقویت شود. سیستمهای الیاف مسلح شده پلیمری FRP برای تقویت سازه های بتنی پدیدار شده و به عنوان یک جانشین برای روش های سنتی از قبیل چسباندن صفحات فولادی، افزایش سطح مقطع با بتن ریزی مجدد و پیش تنیدگی خارجی می باشد.
با توجه به معایب این روشها مانند بازدهی کم و یا نیاز به امکانات و فن آوری خاص امروزه روش های مقاوم سازی با استفاده از کامپوزیت توسعه روز افزون دارد.
محدودیت استفاده و کاربرد کامپوزیت در مهندسی ساختمان به قیمت بالای آنها برمی گردد البته هزینه و قیمت آنها به تدریج رو به کاهش می باشد به این ترتیب استفاده از آنها بیشتر و بیشتر خواهد شد. استفاده از FRP در زمینه مقاوم سازی ، هر چند که هزینه بالایی در بردارد، اما با توجه به هزینه اجرای کم و نیز سایر مزایای FRP، در کل به صرفه ترین و موثر ترین راه مقاوم سازی سازه های بتنی امروزه به شمار می رود.
در این حین، جهت استفاده صحیح و مناسب از این ماده و طراحی مقاوم سازی سازه های بتنی، آیین نامه ها، راهنماها و گزارشهایی در سراسر جهان منتشر گردید با توجه به شروع رشد و استفاده از مواد FRP ، در ایران تدوین راهنمایی برای طراحی مقاوم سازی به کمک این مواد، بسیار ضروری است
مقاوم سازی ستون های بتنی موجود با بکارگیری الیاف FRP
مقاوم سازی ستون با استفاده از روکش بتنی (Concrete jacket)
مزایای استفاده از ژاکت بتنی
امروز روش های مختلفی برای مقاوم سازی و تقویت سازه های بتنی وجود دارد. هر یک از روش های دارای مزایا ، معایب و محدودیت هایی می باشند. از جمله مهمترین عوامل موثر در انتخاب روش تعمیر می توان به ابعاد و محدودیت های ابعادی در روش تعمیر ، محدودیت های معماری ، محدودیت ها افزایش باربری ، محدودیت های زمانی ، محدودیت های بهره برداری اشاره کرد.
برخی از انواع روش های مقاوم سازی سازه های بتنی به شرح ذیل می باشد :
لازم به ذکر است در پاره ای موارد ممکن است عملیات مقاوم سازی به صورت همزمان با فرآیند ترمیم و تعمیر انجام شود تا سازه موجود ابتدا به شرایط قابل بهره برداری رسید و سپس ظرفیت های آن ارتقاء داده شود.
روش های مقاوم سازی ستون های بتنی در ساختمان و سازه های صنعتی
تأثیر دورپیچ کردن ستونهای بتن مسلح (با مقطع دایروی) با مصالح FRP در رفتار خمشی ـ محوری
تا پیش از دهه 1990، دو روش مرسوم برای مقاوم سازی ستونهای بتن مسلح بی کفایت وجود داشت. یکی اجرای یک غلاف بتن مسلح اضافی به دور ستون موجود و دیگری استفاده از غلاف فولادی با تزریق دوغاب. استفاده از روش غلاف فولادی، به دلیل آنکه غلاف بتن مسلح فضای بیشتری اشغال کرده و وزن سازه را نیز افزایش می داد، فراگیرتر و مؤثرتر بوده است. البته هر دو روش یاد شده، نیازمند نیروی کار زیاد بوده و اغلب برای انجام در کارگاه مشکل می باشند. همچنین غلاف فولادی در مقابل حمله شرایط جوی مقاومت کمی دارد.
در سالهای اخیر کاربرد روش مقاوم سازی ستونهای بتن مسلح با استفاده از مصالح FRP به جای غلاف فولادی بطور گسترده ای توسعه یافته است. مرسومترین شکل مقاوم سازی ستونهای بتن مسلح با مصالح FRP شامل دورپیچ کردن بیرونی ستون با استفاده از ورقها یا نوارهای FRP است.
مقاوم سازی ستونهای موجود بتن مسلح با استفاده از غلاف فولادی یا FRP بر مبنای این حقیقت استوار است که محصورشدگی جانبی بتن، سبب افزایش قابل توجه مقاومت فشاری محوری، محوری ـ خمشی و شکل پذیری ستون می گردد. مطالعات بسیاری در مورد مقاومت فشاری و رفتار تنش ـ کرنش بتن محصور شده با FRP انجام شده است. این مطالعات بیانگرد آن هستند که رفتار بتن محصور شده با FRP با رفتار بتن محصور شده با فولاد متفاوت بوده و بنابراین توصیه های طراحی توسعه یافته برای ستونهای بتنی محصور شده با غلاف فولادی، علیرغم تشابه ظاهری، برای ستونهای بتنی محصور شده با FRP قابل کاربرد نیستند.
مشکلات اجرایی سازه های بتنی موجود و بهسازی آنها
حرکت استمراری علم در عرصه مهندسی سازه ـ زلزله موجب گردیده است تا نوسازی و بهسازی در سالهای در اخیر از روشهای نوین و مصالحی جدید بهره گیرد که در پیشینه طولانی ساخت و ساز سابقه نداشته است در میان این نوآوری ها FRP (مواد کامپوزیت پلیمری تقویت شده با الیاف) از جایگاه ویژه برخوردار می باشد تا آنجا که به نظر برخی از متخصصانFRP را باید مصالح ساختمانی هزاره سوم نامید. کامپوزیت FRP که ابتدا در صنایع هوا و فضا بکار برده شد با داشتن ویژگی های ممتاز چون نسبت بالای مقاومت به وزن، به وزن، دوام در برابر خوردگی، سرعت و سهولت در حمل و نصب، دریچه ای نو پیش روی مهندسین عمران گشوده است به گونه ای که امروز سازه های متعددی در سرتاسر دنیا با استفاده از این مواد تقویت شدند استفاده از مصالح کامپوزیت به طور قابل توجهی در صنعت ساختمان یک بازار تکان دهنده و با سرعت در حال توسعه می باشد. اولین تحقیقات انجام شده در این زمینه از اوایل دهه 1980 آغاز شده است، زلزله 1990 کالیفرنیا و 1995 کوبه ژاپن نیز از جمله عوامل موثرتری برای بررسی کاربرد کامپوزیت پلیمری تقویت شده با الیافFRP جهت تقویت و مقاوم سازی سازه های بتنی و بنایی در مناطق زلزله خیز گردید.
کاربرد ورق یا کامپوزیت FRP در مقاوم سازی سازه های بتن مسلح امروزه نگهداری از سازه ها به دلیل هزینه ساخت و تعمیر بسیار حائز اهمیت می باشد با مطالعه رفتار سازه های بتنی مشخص می شود عوامل متعددی مانند: اشتباهات طراحی و محاسبه، عدم اجرای مناسب تغییر کاربری سازه ها، آسیب دیدگی ناشی از وارد شدن بارهای تصادفی، خوردگی بتن و فولاد و شرایط محیطی از دوام آنها می کاهد ضمناً تغییر آیین نامه های ساختمانی (باعث تغییر در بارگذاری و ضرایب اطمینان می شود) نیز سبب ارزیابی و بازنگری مجدد طرح و سازه می گردد تا در صورت لزوم بهسازی و تقویت شود. سیستمهای الیاف مسلح شده پلیمری FRP برای تقویت سازه های بتنی پدیدار شده و به عنوان یک جانشین برای روش های سنتی از قبیل چسباندن صفحات فولادی، افزایش سطح مقطع با بتن ریزی مجدد و پیش تنیدگی خارجی می باشد.
با توجه به معایب این روشها مانند بازدهی کم و یا نیاز به امکانات و فن آوری خاص امروزه روش های مقاوم سازی با استفاده از کامپوزیت توسعه روز افزون دارد.
محدودیت استفاده و کاربرد کامپوزیت در مهندسی ساختمان به قیمت بالای آنها برمی گردد البته هزینه و قیمت آنها به تدریج رو به کاهش می باشد به این ترتیب استفاده از آنها بیشتر و بیشتر خواهد شد. استفاده از FRP در زمینه مقاوم سازی ، هر چند که هزینه بالایی در بردارد، اما با توجه به هزینه اجرای کم و نیز سایر مزایای FRP، در کل به صرفه ترین و موثر ترین راه مقاوم سازی سازه های بتنی امروزه به شمار می رود.
در این حین، جهت استفاده صحیح و مناسب از این ماده و طراحی مقاوم سازی سازه های بتنی، آیین نامه ها، راهنماها و گزارشهایی در سراسر جهان منتشر گردید با توجه به شروع رشد و استفاده از مواد FRP ، در ایران تدوین راهنمایی برای طراحی مقاوم سازی به کمک این مواد، بسیار ضروری است
مقاوم سازی ستون های بتنی موجود با بکارگیری الیاف FRP
مقاوم سازی ستون با استفاده از روکش بتنی (Concrete jacket)
شاتکریت را می توان به عنوان بتن یا ملاتی که از طریق شیلنگهای لاستیکی حمل شده و با استفاده از هوای فشرده با سرعت زیاد به سطح مورد نظر پاشیده می شود، تعریف کرد.
اولین کاربرد شاتکریت به سال ۱۹۰۹ میلادی بر می گردد که در آن زمان تحت عنوان گونیت نامیده می شد و به کمک دستگاهی موسوم به تفنگ سیمان به کار می رفت.
در سال ۱۹۱۴ برای اولین بار شاتکریت در یک معدن آزمایشی در ایالات متحده آمریکا مورد استفاده قرار گرفت . پس از آن این سیستم برای پوشش سطوح سنگها و حفاظت آنها در برابر هوازدگی و گاه نیز به عنوان سیستم نگهداری موقتی به کار رفت . از آنجا که شاتکریت به صورت ورقه هایی از سنگ زیرین جدا می شد ، لذا به عنوان یک سیستم نگهداری اصلی چندان مورد توجه واقع نشد. از جمله امتیازات شاتکریت آن است که سطوح ناهموار حفریات زیرزمینی را می پو شانند و به شکل یک سطح نسبتا صاف در می آورد. البته شاتکریت همراه با پیچ سنگ ، به عنوان سیستم نگهداری بسیاری از تونلها به کار رفته است.
در سالهای اخیر کاربرد شاتکریت در معادن زیرزمینی ، نگهداری حفریات دائمی از قبیل جاده های مورب ، راهروهای اصلی حمل و نقل ، ایستگاههای چاه و حجره های زیرزمینی سنگ شکن است . بازسازی پیچ سنگها و توری های متداول در سیستم نگهداری ممکن است مشکل ساز و گران باشد. تعداد حفریات زیرزمینی که بلافاصله بعد از حفاری شاتکریت می شوند روبه فزونی است. مسلح ساختن شاتکریت با الیاف فولادی یکی از مهمترین عوامل در گسترش کاربرد شاتکریت است زیرا کار طاقت فرسای نصب توری را کاهش می دهد.
آزمایشات و تجربیات اخیر نشان داده است که شاتکریت در شرایط ترکش سنگ ملایم بسیار موثر است . اگر چه نتایج این مطالعات برای نتیجه گیری قطعی در این زمینه هنوز زود است ولی علائم موجود بیانگر آن است که در آینده در مورد کاربرد شاتکریت توجه جدی تری خواهد شد.
به طور کلی شاتکریت نوعی بتن مرکب از سیمان ، ماسه و خرده سنگ است که به کمک هوای فشرده اجرا خواهد شد و در اثر سرعت زیاد به صورت دینامیکی فشرده می شود .
شاتکریت را میتوان به عنوان بتن یا ملاتی که از طریق شیلنگهای لاستیکی حمل شده وبا استفاده از هوای فشرده و با سرعت زیاد به سطح مورد نظر پاشیده میشود،تعریف کرد.
اولین کاربرد شاتکریت به سال 1909 میلادی برمیگردد که درآن زمان تحت عنوان گونیت نامیده میشد و به کمک دستگاهی موسوم به تفنگ سیمان به کار میرفت.
در سال 1914 برای اولین بار شاتکریت در یک معدنآزمایشی در ایالات متحده آمریکا مورد استفاده قرار گرفت.
پس از آن اینسیستم برای پوشش سطوح سنگها و حفاظت آنها در برابر هوازدگی و گاه نیز بعنوان سیستم نگهداری موقتی به کار میرفت.
در این سال کارلاکلی دستگاهی برای پاشیدن مخلوط ماسه و سیمان ساخت و آنرا گانایت نامید.
و بعدها نامهایی چون گان گریت، پنو کریت، بلاست کریت و جت کریت بکار برده شده است.
اما در سال 1930 واژه شاتکریت از طرف انجمن مهندسین راه و ساختمان آمریکا بکار برده شد و تاکنون مورداستفاده قرارمیگیرد.
تعریف شاتکریت از نظر مؤسسه بین المللی ACI
شاتکریت عبارتست از ملات یا بتنی که با فشار و سرعت بالا به سطح مورد نظر پاشیده میشود.
از آنجا که شاتکریت به صورت ورقههایی از سنگ زیرین جدا میشد، لذا بعنوان یک سیستم نگهداری اصلی چندانمورد توجه واقع نشد.
از جمله امتیازات شاتکریت آن است که سطوح ناهموارحفریات زیر زمینی را میپوشانند و به شکل یک سطح نسبتاً صاف در میآورد .
البته شاتکریت همراه با پیچ سنگ، بعنوان سیستم نگهداری بسیاری ازتونلها به کار رفته است.
در سالهای اخیر، کاربرد شاتکریت در معادنزیر زمینی، نگهداری حفریات دائمی از قبیل جادههای مورب، راهروهای اصلیحمل و نقل، ایستگاههای چاه و حجرههای زیر زمینی سنگ شکن است.
بازسازیپیچ سنگها و توریهای متداول در سیستم نگهداری ممکن است مشکل ساز و گرانباشد. تعداد حفریات زیر زمینی که بلافاصله بعد از حفاری شاتکریت میشوند
رو به فزونی است. مسلح ساختن شاتکریت با الیاف فولادی یکی از مهمترین عواملدر گسترش کاربرد شاتکریت است زیرا کار طاقت فرسای نصب توری را کاهش میدهد.
آزمایشاتو تجربیات اخیر نشان داده است که شاتکریت در شرایط ترکش سنگ ملایم بسیارمؤثر است.
اگرچه نتایج این مطالعات برای نتیجه گیری قطعی در این زمینههنوز زود است ولی علائم موجود بیانگر آن است که در آینده در مورد کاربرد شاتکریت توجه جدیتری خواهد شد.
بطور کلی شاتکریت نوعی بتن مرکب از سیمان، ماسه و خرده سنگ است که به کمک هوای فشرده اجرا میشودودراثرسرعت زیاد به صورت دینامیکی فشرده میشود .
(کتاب تونل سازی نوشته حسن مدنی)
شاتکریت امروزه در دنیا به دو صورت مورد استفاده قرار میگیرد:
شاتکریت را میتوان به عنوان بتن یا ملاتی که از طریق شیلنگهای لاستیکی (وبعضا دیده شده لولههای فلزی) حمل شده و با استفاده از هوای پرفشار و با سرعت زیاد به سطح مورد نظر پاشیده میشود، تعریف کرد.
اولین کاربرد شاتکریت به سال 1909 میلادی برمیگردد که در آن زمان تحت عنوان گونیت نامیده میشد و به کمک دستگاهی موسوم به تفنگ سیمان به کار میرفت.
در سال 1914 برای اولین بار شاتکریت در یک معدن آزمایشی در ایالات متحده آمریکا مورد استفاده قرار گرفت.
پس از آن این سیستم برای پوشش سطوح سنگها و حفاظت آنها در برابر هوازدگی و گاه نیز بعنوان سیستم نگهداری موقتی به کار میرفت.
در این سال کارل اکلی دستگاهی برای پاشیدن مخلوط ماسه و سیمان ساخت و آنرا گانایت نامید.
و بعدها نامهایی چون گان گریت، پنو کریت، بلاست کریت و جت کریت بکار برده شده است.
اما در سال 1930 واژه شاتکریت از طرف انجمن مهندسین راه و ساختمان آمریکا بکار برده شد و تاکنون مورد استفاده قرار میگیرد.
تعریف شاتکریت از نظر مؤسسه بین المللی ACI
شاتکریت عبارتست از ملات یا بتنی که با فشار و سرعت بالا به سطح مورد نظر پاشیده میشود.
از آنجا که شاتکریت به صورت ورقههایی از سنگ زیرین جدا میشد، لذا بعنوان یک سیستم نگهداری اصلی چندان مورد توجه واقع نشد.
از جمله امتیازات شاتکریت آن است که سطوح ناهموار حفریات زیر زمینی را میپوشانند و به شکل یک سطح نسبتاً صاف در میآورد .
البته شاتکریت همراه با پیچ سنگ، بعنوان سیستم نگهداری بسیاری از تونلها به کار رفته است.
در سالهای اخیر، کاربرد شاتکریت در معادن زیر زمینی، نگهداری حفریات دائمیاز قبیل جادههای مورب، راهروهای اصلیحمل و نقل، ایستگاههای چاه و حجرههای زیر زمینی سنگ شکن است.
سازه های فضایی بعلت پخش نیرو در جهات مختلف از استحکام توام با سبکی استثنایی برخوردار می یاشد.به نحوی که وزن آنها 35% از سازه های متداول کمتر است و بعلت استفاده حداکثر از سیستم پیش ساختگی از سرعت ساخت و نصب بیشتری برخوردار می باشد و بعلت یکپارچگی میتوان کلیه سازه و تاسیسات مربوطه را در تراز زمین سوار کرده و سپس سقف را بالا برده و نصب کرد.
سازه فضایی با گسترش فضای باز بدون ستونها مترادف است که این امر راندمان فضا را بسیار بالا می برد(تا 25%) و این گسترش در هر دو بعد براحتی میسر است .
شکل منتظم سازه های فضایی نمای خوش آیندی را عرضه می دارد که به لحاظ معماری با ارزش می باشد و از این روست که بسیاری از معماران در سالنها و مراکز اجتماعات و غیره از سقف کاذب استفاده نکرده و خود سازه را به نمایش می گذارند.
مصا لح شبکه های فضایی
جنس المانهای طولی متنوع بوده و بسته به نوع مصرف آنها متغیر خواهد بود ولی معمولاً از انواع پلاستیک و پروفیل ، فولاد و آلومینیوم استفاده می شود بیشترسیستم های شبکه های فضایی به عنوان سا زه ساختمان ها ، ا ز فولاد ساخته می شوند،اگر چه آلومینیوم نیز به صورت گسترده ای به کار می رود واز چوب ، بتن و پلاستیکمسلح هم استفاده می شود . به صورت خیلی نا متعارف ، در سازه های آ زمایشی تیر هاییاز جنس با مبو مشاهده شده وحتی شیشه هم درخرپاهای فضایی وجود داشته است، ولی اینموارد فقط د رمورد مجسمه ها به کارگرفته شده است. برای لوله ها و مقاطع ا ز فولادنرم و فولاد با درجه جاری شدن بالا ، برای اعضا ی شکل داده شده از نوار های فولادیبه صورت سرد و برای قسمت های ریخته گری شده از آهن گرافیت کروی استفاده می شود .ایناعضا اغلب به صورت گالوانیزه یا رنگ شده هستند . سیستم های شبکه های فضایی :بهاغراق ، امروزه صدها سیستم شبکه فضایی مختلف از زمانی که اولین نمونه آن ها در 50سا ل قبل به صورت تجاری مطرح شد ، توسعه یافته است. در سرتا سرجهان ، همه ساله سیستم های جدیدی به بازارمی آید.
نمونه هایی از این نوع سازه ها
به عنوان نمونه هایی از این نوع سازه ها در ایران ، پوشش مرقد مطهر امام و سقف چند غرفه نمایشگاه بین اللملی تهران را می توان نام برد . البته این نوع سازه پدیده خیلی جدیدی نیست ، زیرا گراهام بل طرحهایی از شبکه های منظم هندسی که کاربرد ساختمانی داشته باشد تهیه کرده بود . همچنین آلاچیقهای عشایر محلی ایران ، سبکی مانند این نوع سازه ها دارند ولی در دهه 60 میلادی بود که این نوع سازه ها به صورت موضوعی بین اللملی و قابل بحث مطرح شد به طوری که اولین کنفرانس بین اللملی سازه های فضایی ( فضاکار ) در سال 1966 در دانشگاه ساری انگستان برگزار شد .
یک نمونه جالب از سازه های دو لایه ، ساختمان نمایشگاه واقع در سائوپولو ، برزیل است که محوطه ای به مساحت 260 در 260 متر مربع را با تکیه بر 25 ستون و با استفاده از 48000 عضو لوله ای آلومینیومی پوشش می دهد . نمونه جالب دیگری از کاربرد سازه های فضاکار قابل جداشدن ، پارکینگ هیترو لندن است . این پارکینگ قابلیت تحمل 325 اتومبیل را داشته و استفاده از آن بسیار اقتصادی است . این را باطل می سازد . نمونه دیگر ، آشیانه هواپیما در لندن است که دهانه ای به طول 138 متر دارد . این سقف باید لوازمی به وزن حدود 700 تن را تحمل کند که 300 تن آن متحرک و شامل چندین دستگاه جرثقیل است که امکان تعمیرات و نگهداری هواپیما را به سهولت فراهم می آورد .
شهر هرمی 12 برابر هرم بزرگ جیزه خواهد بود و توانایی گنجایش 750000 نفر را خواهد داشت. در صورت ساخته شدن این سازه بزرگترین سازه ی ساخته شده به دست بشر بر روی زمین خواهد بود. هرم 2004 متر یا 6575 پا ارتفاع دارد و می تواند راه حلی برای کمبود مکان در توکیو باشد. سازه ی پیشنهاد شده به قدری بزرگ است که با مصالح موجود امروزی (به خاطر وزنشان) نمی توان آن را ساخت. این طرح نیازمند مصالح بسیار مقاوم و سبک وزنی چون نانوتیوب های کربن است. مساحت فونداسیون 8 کیلو متر مربع و زیربنا مساحتی حدود 25 کیلومتر مربع می باشد. هرم دارای 8 طبقه یا لایه است که طبقات اول تا چهارم مسکونی، اداری و طبقات پنجم تا هشتم تحقیقاتی، رفاهی و غیره می باشد. ارتفاع 250.5 متر است که در مجموع ارتفاع 2004 متری هرم را تشکیل می دهند. هرم خود از 55 هرم کوچکتر تشکیل شده که هر یک تقریبا برابر با هتل لوکسر لاس وگاس می باشد.
هرم به ناحیه های مسکونی، تجاری و رفاهی تقسیم بندی می شود که 50کیلومتر مربع آن 240000 واحد مسکونی برای 750000 نفر را در بر میگیرد و هر ساختمان انرژی مورد نیاز خود را خود به وسیله ی انرژی بادی و خورشیدی تامین می کند. 24کیلومتر مربع به ادارجات و ساختمان های تجاری که قابلیت استخدام 800000 نفر را دارا می باشد تخصیص داده می شود و 14 کیلو متر مربع باقی مانده امکانات رفاهی را تشکیل می دهد.
فونداسیون ترکیبی از 36 شمع با بتن مخصوص می باشد. به خاطر قرار گرفتن ژاپن بر روی کمربند آتش اقیانوس آرام قسمت خارجی هرم به صورت شبکه ی بازی از خرپاهای عظیم طراحی شده است. این خرپاها توسط میله هایی از جنس نانوتیوب های کربن ساخته می شوند که سازه را در مقابل بادهای شدید، زلزله ها و سونامی ها پایدار می سازد. خرپا ها توسط لایه ای از سلول های خورشیدی برای تامین انرژی لازم شهر پوشیده خواهند شد. روبوت های بزرگ وظیفه ی مونتاژ و سوار کردن خرپاها را بر عهده دارند و کیسه های هوا برای برافراشتن خرپاها استفاده می شوند که این طرح توسط آقای دانت بینی، آرشیتکت ایتالیایی، پیشنهاد شده است.
نقل و انتقال در داخل شهر توسط پیاده روهای متحرک، آسانسورهای مورب و یک سیستم ترانزیت سریع شخصی فراهم خواهد شد که همه ی این ها در داخل میله های خرپا ها جریان دارند. خانه ها و فضاهای اداری با آسمان خراشهای بلند 80 طبقه که از بالا و پایین معلق می باشند تامین می شوند. این برج ها توسط کابل های نانوتیوبی به گره های خرپاها وصل خواهند بود.
رفتار سازه ای
دو عامل ازمهمترین ملاحظات سازه ای درطراحی اعضای خرپای فضایی ، کمانش اعضای فشاری و اعضایمها ری جان ونیزطراحی گره ها برای تا ثیر وکارایی در انتقا ل نیروهای محوری بیناعضا و گره ها برای به حداقل رساندن تاثیر خمش ثا نویه است. نسبت دهانه به ا رتفاعبرای شرایط تکیه گاهی متفا وت :تعیین نسبت اقتصادی دهانه به ارتفاع برای سا زه ها یمشبک فضایی مشکل است ، چرا که آنها از شرایط تکیه گاهی ، نوع با رگذاری وتا حدزیادی ازسیستم مورد نظر تا ثیرمی پذیرند . زد ، اس ، ماکوسکی ا ظها ر د اشته کهنسبت دها نه به ا رتفاع ممکن ا ست ا ز 20 تا 40 ، بسته به صلبیت سیستم مورد استفادهتغییر کند . نسبت دهانه به ارتفاع بزرگ تر را در صورتی می توان به دست آورد که تمام( یا بیشتر ) گره های پیرامونی بر روی تکیه گاه قرار داشته باشند. این نسبت زمانیکه گره ها فقط درنزدیکی گوشه ها بر روی تکیه گاه ها نگه د اشته شده با شند ، بهحدود 15الی 20 کاهش می یابد .
انواع سازه های فضاکار
الف) شبکه های تخت : به ترکیب یک سیستم یک یا چند وجهی با لایه های واحد شبکه گفته می شود . شبکه مسطحترکیبی از یک دو وجهی که با تیرهای واحد متصل شده است می باشد . شبکه های تخت می توانند دارای یک ، دو یا سه و حتی چند لایه باشند ، ولی بیشتر به صورت دو لایه مورد استفاده قرار می گیرند. شبکه های دولایه از دو صفحه موازی که بوسیله عناصری به هم متصل گردیده اند تشکیل می شوند . یک نمونه استفاده از این شبکه ها در آشیانه هواپیما است . زمانی که اعضا در شبکه دولایه طویل شوند برای جلوگیری از خطرکمانش کردن از شبکه های سه لایه استفاده می شود و با توجه به اینکه نیمی از هزینه های سازه های فضاکار را پیوندها تشکیل می دهند این نوع سازه ها اغلب غیر اقتصادی است .نکته دیگری که در طراحی شبکه های دولایه و اکثر سازه های فضاکار باید در نظرگرفت این است که برای توزیع بهتر نیرو و کششی شدن آن ستون ها در داخل شبکه قرار می گیرند و ستون به چند گره متصل شود و بهتر است برای توزیع منظم نیرو در سازه ها در اطراف کنسول داشته باشیم .
ب) شبکه های چیلک : به شبکه ای که در یک جهت دارای انحنا باشد ، چلیک می گویند . این سازه بیشتر برای پوشش سطوح مستطیلی دالان مانند استفاده شده و بعضا فاقد ستون می باشند و روی لبه های چلیک که به تکیه گاه متصل است ، قرار می گیرند . چلیک ها دارای محور می باشند . اگر چلیک یک لایه باشد اتصالات به شکل صلب است . چلیک ها اغلب به شکل ترکیبی استفاده می شوند و تیرکمری نقش ترکیب کردن چلیک ها به یکدیگر را بازی می کنند . نکته ای که در طراحی این نوع سازه ها باید در نظرگرفت این است که انتهای چلیک باید قوی باشد و این تقویت را می شود بوسیله تیر ، و تیروستون و شکل خورشیدمانند انجام داد . انواع چلیک ها عبارتند از : چلیک اریبی ، چلیک لملا با مقاطع بیضی گونه ، سهمی گون ، هذلولی گون و...
انواع فرم های سازه های فضاکار
شناخت انواع فرم های متداول سازه های فضاکار جهت انتخاب زیباترین و به صرفه ترین فرم مطابق با نیازهای معماری بسیار حایز اهمیت است در زیر با چند نمونه از انواع فرمهای سازه های فضایی آشنا میشویم:
شبکه های تخت- چیلیک(قوسی) - گنبدی شکل – دیسکی – هرمی – سینوسی و تخت دو طرف شیب دار و شبکه های ترکیبی تخت وقوسی - تخت شیبدار وقوسی – نیم قوس - تخت و گنبد - و.....
هنگامی که برای اجرای سازه ای سایت پروژه در نظر گرفته میشود باید ابتدا جنس خاک و نوع مواد بکار رفته در آن مورد آزمایش قرار گیرد تا مشخص شود که منطقه توانایی تحمل وزن سازه و سایر عملیات های جرایی را دارد یا خیر ؟ از این رو برای جلوگیری از عواملی هچون نشست ساختمان ها و ترک برداشتن و … قبل از ساخت سازه ها عملیاتی همچون شمع کوبی برای محکم کردن خاک صورت میگیرد بنابراین شمع کوبی را میتوان به یکی از کار های قبل از اجرای پروژه اصلی و در هنگام تحلیل سایت معماریصورت می گیرد .
انواع مختلف شمع
شمعهایی که قرار گرفتن آن در زمین همراه با جا به جایی زیاد در خاک مجاور است، شامل انواع زیر هستند.
شمعهایی که قرار گرفتن آنها در زمین همراه با جابه جایی خاک مجاور نیست، به قرار زیر است.
شمع چوبی
شمعهای چوبی معمولاً در نقاطی که چوب مناسب، فراوان و ارزان باشد، در ساختمانهای موقتی یا اگر سطح فوقانی شمع چوبی در زیر تراز آب ساکن دائمی باشد، در ساختمانهای دائمی مصرف میشود.
مشخصات شمع
تمامی مشخصات شمعهای چوبی باید با مشخصات ASTM D25 تطبیق نماید.
قطر قسمت انتهایی شمع، در فاصله یک متری از انتهای شمع اندازهگیری میشود.
عرض ترک، در شمعهای چوبی خام و شمعهای چوبی اصلاح شده نباید قبل از کوبیدن به ترتیب از ۱ سانتیمتر و ۱/۲۵ سانتیمتر تجاوز نماید. کجی چوب در یک قطعه ٢ متری از شمع چوبی، میتواند حداکثر معادل ١% طول آن باشد.
اصلاح و تقویت شمع چوبی
شمعهای چوبی باید سالم و پوست کنده باشد. رطوبت طبیعی شمعهای چوبی خام که به کارگاه وارد میشود نباید کمتر از ۱۸ درصد در عمق ۵ سانتیمتری از سطح شمع باشد. شمعهای چوبی باید پس از اصلاح حداکثر ظرف مدت ۶ ماه کوبیده شوند. رطوبت طبیعی شمعهای چوبی اصلاح شده نیز نباید کمتر از ۱۸ درصد، در عمق ۵ سانتیمتری چوب، قبل از عملیات حفاظتی باشد. شمعهای چوبی باید به وسیله نوار فلزی در فاصله حداقل هر ۳ متر طول شمع، تقویت شوند.
تمامی بریدگیها و سوراخهای شمعهای چوبی باید به وسیله دو بار اضافه کردن مواد مخصوص حفاظت چوب از قبیل کرندت، گودرون، قیر مذاب و مواد مشابه که مورد تأیید دستگاه نظارت باشد اصلاح شوند. چنانچه شمع چوبی یکپارچه نبوده و اتصال قطعات آن به هم لازم باشد، جزئیات طرز اتصال باید طبق نقشه یا با تصویب دستگاه نظارت انجام گیرد. محل اتصال نباید در وسط طول شمع واقع شود. از نگاهداری شمع چوبی در محلهایی که در معرض عوامل فساد چوب است باید اکیداً خودداری شود و محل انبار کردن و نگاهداری شمعها باید مورد تأیید دستگاه نظارت قرار گیرد.
حفاظت سر شمعها
پس از کوبیدن و قطع شمعها تا ارتفاع مورد نیاز، سر تمامی آنها باید بریده و به یکی از روشهای زیر اصلاح شود.
شمع بتنی پیش ساخته
شمعهای بتنی پیش ساخته در ساختمانهای دائمی و در زمینهایی که کوبیدن شمع بتنی پیش ساخته از نظر سختی زمین میسر باشد، مورد استفاده قرار میگیرد.
ساختن شمع
شمعهای بتنی پیش ساخته باید بر روی یک سکوی محکم و هموار ساخته شوند. بتن شمعهای پیش ساخته باید در قالبهای صاف و بدون عیب و درز ریخته شود. قالبها باید به نحوی باشد که هیچ گونه نشست یا تغییر شکل در آنها به وجود نیاید. بتن شمعها باید صاف و بدون عیب و کرم خوردگی و فضای خالی باشد و ابعاد آن طوری باشد که اگر یک خط مستقیم از نوک شمع تا انتهای آن در طول شمع کشیده شود، اختلاف فاصله این خط از لبه شمع از ۲/۵ سانتیمتر تجاوز ننماید. مقاومت فشاری بتن شمعهای بتنی پیش ساخته حداقل مساوی ۲۵۰ کیلوگرم بر سانتیمتر مربع است.
شمعها باید طوری روی هم چیده و انبار شوند که عبور هوا از بین آنها ممکن باشد. محل انبار کردن شمع بتن مسلح باید طوری انتخاب شود که کف محل انبار مقاومت کافی داشته باشد. قرار دادن شمعها روی هم بدون آنکه قطعه تختهای در دو طرف شمع بین آنها قرار داده شود ممنوع است. محل مجاز برای قرار گرفتن تختهها حدود محلی است که قلاب بلند کردن در آن حدود قرار داده شده است. این قطعات چوبی باید در جهت محور عمود بر کف انبار کاملاً روی هم واقع باشد و خستگی اضافی در اثر انبار کردن به شمع تحمیل نشود.
حمل و کوبیدن شمعها
شمعها باید هنگام حمل و نقل در نقاطی که در نقشهها نشان داده شده تکیه نمایند. و هنگام جابهجا کردنها و حمل و نقل بین سکوی بتن ریزی، انبار دسته بندی و تجهیزات شمع کوبی، از یک قلاب یا وسیله مصوب دیگری استفاده شود. همچنین در موقع بلند کردن شمعها در محل شمع کوبی، باید از نوار سیمی، قلاب یا وسیله مصوب دیگر استفاده کرد.
دستگاههای شمع کوبی باید به چکش با ظرفیت کوبندگی لازم برای شمعها مجهز بوده و باید چرخهای کشش جداگانه برای بلند کردن چکش و شمعها به طور مستقل از هم داشته باشد. حداقل وزن چکش شمع کوب ۱۳۶۰ کیلوگرم ( ۳۰۰۰ پوند) است و ارتفاع افتادن چکش باید کمتر از ۳ متر باشد. وزن چکش با نیروی وارده به شمع باید طوری باشد که شمع در هر ضربه لااقل ۳ میلیمتر در زمین فرو رود. جرثقیلی که دستگاه شمع کوبی روی آن نصب شده باید قادر باشد در حالی که چکش و شمع هر دو به طور معلق از آن آویزان است تغییر مکان داده و مضافاً بتواند در حال آویزان بودن چکش و شمع دور خود بچرخد. شمع کوب باید مجهز به یک هادی محکم که به طور استوار بر جای خود تکیه کند، جهت هدایت شمعهای عمودی و همچنین شمعهای مورب، باشد.
شمعها باید در موقع قرار گرفتن و کوبیده شدن به نحوی هدایت شوند که دقیقاً شاقول و یا با زاویه مورب مقرر کوبیده شوند و از وضع صحیح شمعها اطمینان حاصل شود. شمعهایی که با دقت مقرر کوبیده نشده، باید بیرون کشیده و مجدداً کوبیده شوند. یا اینکه شمع جدیدی در مجاورت آن کوبیده شود. این گونه عملیات اضافی کلاً به هزینه پیمانکار خواهد بود.
در بعضی مواقع کوبیدن یک شمع ممکن است باعث بالا آمدن یک یا یک گروه از شمعهای مجاور که قبلاً کوبیده شدهاند شود. این احتمال در مورد شمع چوبی بیشتر است. با اتخاذ تدابیر مناسب از جمله پیش حفاری از وقوع چنین اتفاقی باید جلوگیری نمود.
ارزش باربری و نفوذ
شمعهای کوبیدنی، (به جز آن دسته از شمعهایی که تحت آزمایش بارگذاری قرار میگیرند) باید تا رسیدن به میزان باربری معینی که در نقشهها یا مشخصات فنی خصوصی ارائه شده کوبیده شوند. همچنین این شمعها باید حداقل تا ۳/۶ متر (۱۲ فوت) در داخل زمین طبیعی نفوذ کنند و در صورتی که برای نوک شمع تراز معینی تعیین شده باشد، باید حداقل به آن تراز برسند مگر آنکه دستگاه نظارت دستور دیگری در این مورد ابلاغ نماید. شمعهایی که تحت آزمایش بارگذاری قرار میگیرند باید تا تراز تعیین شده کوبیده شوند.
سطح زمین طبیعی در مناطقی که خاکریزی شده عبارت است از سطح زیر خاکریزی یا سطح زیر سر شمع، هرکدام که پایینتر است. در صورتی که بار طراحی شمع در نقشهها یا مشخصات فنی خصوصی ارائه نشده باشد، باید شمعها را تا رسیدن به میزان باربری برابر ۴۵ تن کوبید.
بریدن سر شمع
آرماتورهای موجود در شمعها باید طبق اندازههایی که در نقشهها نشان داده شده در بتن قرار گیرد. آرماتورهای سر شمعها باید با ابزارآلات دستی یا مکانیکی بریده شود. منفجر نمودن سر شمعها جز با تصویب دستگاه نظارت مجاز نخواهد بود. سر شمعها باید در ارتفاعی بین کف ابنیه فوقانی و پایین ترین لایه آرماتور فولادی آن ابنیه قطع شود. هرگاه بتن سر شمعها تا میزانی پایینتر از ارتفاع فوق آسیب ببیند، پیمانکار باید به هزینه خود سر شمع را مرمت نماید. دستگاه نظارت ممکن است در چنین مواردی برای پوشش آرماتورها ضخامت تعیین نماید.
تطویل شمع
در صورتی که طول یک قطعه شمع بتنی برای تحمل بارهای در نظر گرفته شده کافی نبوده و احتیاج به تطویل داشته باشد، معمولاً یکی از روشهای زیر باید انجام گیرد.
شمع فلزی
سازه نگهبان خرپایی (Guardian truss structures) یکی از روش های پایدار سازی جداره گودبرداری است. سازه نگهبان خرپایی متداول ترین روش پایداری سازی در گودهای با عمق متوسط است. در این روش پروفیل های فولادی خرپایی، در فواصل معین به دیواره گود، تکیه داده می شود. خرپاها با تحمل فشار جانبی ناشی از سربار خاک، و انتقال آن به زمین، مانع از ریزش دیواره گود می شود.
قبل از آن یک نکته مهم وجود دارد: در پایدارسازی گود و اجرای سازه نگهبان، کسب تجربه بسیار مهم است. گاهی مواقع آنچه در کتاب ها نوشته است، شاید نتوان به طور کامل اجرا کرد. گاهی نیاز است، با توجه به امکانات موجود پیشنهاد میکنم اگر تجربه کافی را ندارید، حتماً در این مرحله از یک مهندس باتجربه، کمک بگیرید. خود من نیز این افتخار را داشتم که مدت های زیاد در کنار یک مهندسین با تجربه ای همچون مهندس جهانیان و مهندس نصیری این کار را انجام می دادم.
مشکل اصلی در اجرای سازه نگهبان خرپایی چیست؟
به نظر من، مهم ترین مشکل این است: بسیاری از سازندگان تجربی، اجرای آن را، خرج اضافه می دانند. در پروژه های کوچک، بکار گیری مهندس مجری اجباری نیست. اکثر حوادثی هم که در گودبرداری ها اتفاق می افتد مربوط به همین ساخت و ساز های کوچک است. حال این مهندس ناظر است که باید بر سر اجرای درست سازه نگهبان با سازنده سر و کله بزند. اکثر اوقات هم، نتیجه، خیلی رضایت بخش نیست.
اگر حادثه ای اتفاق نیافتد، اجرای سازه نگهبان یک هزینه اضافی است. چند میلیون تومان هزینه در بر دارد. هم باعث اتلاف زمان می شود. اما کدام یک از این سازندگان محترم می توانند آینده را پیش گویی کنند؟ از کجا می توان، مطمئن بود که حادثه ای اتفاق نمی افتد. درست مثل بیمه نامه شخص ثالث خودرو. آیا همه خودرو هایی که بیمه می شوند، تصادف می کنند؟ مسلماً نه. با این حال، انجام بیمه نامه برای همه خودروها اجباری است.
مهندس ناظر در مواجهه با این مشکل چه باید بکند؟
من دو راه کار را پیشنهاد می کنم
در پروژه هایی که من( مهندس علی قربانی) و مهندس جهانیان نظارت میکردیم روال کارمان به همین صورت بود. تعداد دفعات بازدیدِ ما از پروژه ها، در مراحل گودبرداری و اجرای سازه نگهبان، تقریباً با تعداد کل بازدیدها در مراحل دیگر ساخت، برابر بود. مطالعه این مقاله را نیز درخصوص نظارت گودبرداری پیشنهاد می کنم:
«چگونه برعملیات گودبرداری، به خوبی نظارت کنیم؟»
از حوادثی که در گودبرداری ها، هر ساله اتفاق می افتد، برایشان بگویید. از غیر قابل پیش بینی بودن خاک بگویید. از این که اگر حادثه ای پیش بیاید، خسارت آن چنان سنگین خواهد بود، که باید عرصه و عیان ملکش را بفروشد و خسارت بدهد… قشرهای بسیاری هستند که این ها را نمی دانند. برای ما که زیاد با این مسائل سر و کار داشته ایم، بدیهی است، به همین خاطر فکر می کنیم آن ها خود می دانند. این آگاهی دادن و فرهنگ سازی وظیفه ماست.
طراحی سازه نگهبان خرپایی:
برای طراحی سازه نگهبان، کتاب های زیادی نگارش شده است. برای سادگی کار طراحی، جدول هایی، تنظیم شده است. با توجه به شرایط خاک و گودبرداری، مقاطع مورد نیاز سازه نگهبان و سایر اجزا، از این جدول ها قابل استخراج است.
روال کار سازمان نظام مهندسی استان در گودبرداری ها:
مهندس ناظر باید، شروع گودبرداری را به اطلاع سازمان نظام مهندسی استان برساند. این کار از طریق کارتابل مهندس در سایت سازمان، انجام می شود. در آن قسمت فرمی وجود دارد که باید تکمیل شود. در آن مشخصات پروژه و مجاورین و … باید تکمیل شود. بازرسان سازمان با هماهنگی قبلی با ناظر از پروژه بازدید خواهند کرد. معمولاً بازرسان گودبرداری، مهندسین با تجربه ای هستند. اکثراً نکات ارزنده ای را با مهندس ناظر به اشتراک می گذارند.
طراحی سازه نگهبان، در گود های با خطر زیاد:
در گودهای عمیق و با خطر زیاد، باید شرکت ژئوتکنیکی دارای صلاحیت، مسئولیت طراحی و اجرای گود را بر عهده بگیرد. (منبع :مبحث هفتم مقررات ملی ساختمان)که این کار به نظر من بسیار عاقلانه است. وقتی عمق گودبرداری زیاد می شود، شرایط، حساس تر می شود. نیاز به کنترل ها و طراحی های دقیق تری نیز هست. بخشی از این کنترل ها در حیطه تخصص، یک مهندس ژئوتکنیک است. ( مهندس ژئوتکینک: کارشناس ارشد عمران- خاک و پی) . در عمق های با عمق خیلی زیاد ممکن است، اجرای نوع دیگری از سازه نگهبان مثل نیلینگ، تشخیص داده شود.
زمانِ شروعِ اجرای سازه نگهبان خرپایی:
خیلی ها تصور میکنند که اجرای سازه نگهبان، باید بعد از گودبرداری آغاز شود. این یک اشتباه است. شروع اجرای سازه نگهبان خرپایی، قبل از گودبرداری است. در بعضی از مواقع، ممکن است این کار حتی قبل از تخریب سازه قدیمی آغاز شود. شروع سازه نگهبان با حفر چاهک آغاز میشود. حُسنِ این کار این است که قبل از گودبرداری خاک از تراکم خوبی برخوردار است . به همین دلیل امکان ریزش دیواره چاهک کمتر است.
مراحل اجرای سازه نگهبان خرپایی:
حَفر چاهک:
محل های اجرای سازه نگهبان خرپایی در نقشه تعیین شده است. در آن محل ها و چسبیده به دیوار همسایه چاهک هایی را حفر می کنیم. در این چاهک ها، عصو عمودی سازه نگهبان قرار خواهد گرفت. عمق چاهک باید به گونه ای باشد که، کف آن، به میزانی که در نقشه مشخص شده است، پایین تر از کف اصلی گود باشد. این مقدرا معمولاً یک متر است.
اجرای ستون عمودی سازه نگهبان خرپایی:
مقطع این ستون معمولا به صورت IPE دوبل یا نبشی دوبل است. این عضو به صورت قائم داخل چاهک می اندازند. ارتفاع آن باید مناسب عمق چاهک باشد. مقطع را کامل به دیوار می چسبانند. پای این ستون را بتن ریزی انجام می دهند. برای گیرداری بهتر با بتن، قطعات نبشی را مانند برش گیر، در انتهای ستون، حداقل سه ردیف، جوش می دهند.
برداشتن مرحله ای ترانشه های خاکی:
بعد ار اجرای ستون سازه نگهبان، گودبرداری با حفظ شانه خاکی، انجام می شود. ترانشه های خاکی در قسمتی که ستون سازه نگهبان اجرا شده است، برداشته می شود. البته نه به صورت یک جا.
اجرای عضو مورب سازه نگهبان خرپایی
این عضو نیز معمو لاً به صورت یک مقطع دوبل IPE یا نبشی طراحی می شود. این عضو با استفاده از ورق میانی باید به ستون عموی اتصال یابد. عضو موَرَّب در نقش تکیه گاه اصلی ستون ع
این پاورپوینت در موردتشریح مراحل اجرای سازه های اسکلت فلزی در 130 اسلاید زیبا شامل مقدمه،تشریح مراحل اجرای سازه های اسکلت فلزی،اصول طراحی و اجرای ساختمان های فلزی،ساختمانهای فلزی،سازه های فلزی،اصول ساخت سازه فلزی،طراحی و ساخت سازه های فولادی،ساختمانهای فلزی،سازه فلزی،ساختمان فلزی،اجرای ساختمانهای فلزی،اسکلت فلزی،سازه های اسکلت فلزی و.... و منابع می باشد.
آهن ازسنگ آهنهای زیراستخراج میشود
1- سنگ معدن ماگنتیت: این سنگ معدن که حاوی ماگنتیت به فرمول (اکسیدفروفریک) است، پرعیارترین سنگ معدن آهن میباشد و دارای تا 65 درصد آهن است. رنگ این کانی سیاه است.
2- سنگ معدن هماتیت: این سنگ معدن حاوی کانی هماتیت به فرمول (اکسیدفریک) است. 0 تا60 درصدآهن دارد. این سنگ معدن دربیشترکشورها یافت میشود. رنگ این کانی قرمزاست. (بافق، گل گهر سیرجان، خراسان )
3-سنگ معدنهای هیدراته: این سنگها حاوی کانیهای لیمونیت هستند و اغلب در نقاط باتلاقی یافت میشوند. این نوع سنگ آهن میتواند تا50 درصد سنگ آهن داشته باشد. رنگ کانی لیمونیت قهوهای مایل به زرد است. (بندر عباس، نطنز، کردستان، آذربایجان غربی)
4- سنگ معدن کربناته: این سنگ معدن حاوی سیدریت به فرمول (کربنات آهن) است وحداکثر تا 45 درصد آهن دارد. رنگ کانی این سنگ آهن سیاه مایل به قهوهای است.
تهیه فولاد:
فولادهای ساختمانی بیشتر ازکورههای بلند تهیه میشود. جهت سوزاندن کربن آهن خام مذاب از هوای داغ و یا اکسیژن صنعتی استفاده میشود. درروش هوای داغ، هوای داغ بافشاری بین07 تا2 کیلوگرم برسانتیمترمربع بهمدت 18 تا20 دقیقه بهدرون مبدل دمیده میشود. هوای مورد نیاز500 مترمکعب بهازای هرتن فلز مذاب است. درصورتی که از اکسیژن صنعتی استفاده شود، اکسیژن ازطریق لولهای که به فاصلة075 تا 3.6 متر بالای فلز مذاب قرارگرفته است، با فشار به داخل فلز مذاب دمیده میشود. دراین روش دمای فلزمذاب تا3000 درجة سانتیگراد هم میرسد.
درکارخانةذوب آهن اصفهان فلزمذاب حاصل ازکورة بلند را پس ازخالی شدن از کوره درظرفهای خمره مانند ریخته و به وسیلة واگنهای مخصوص به قسمت مبدل میبرند. دراین قسمت درحدود80 تن فلز مذاب به مدت 45 دقیقه تحت دمش اکسیژن از بالا قرارگرفته وتبدیل به فولاد میشود.
انواع فولاد:
مقدار کربن فولاد مهمترین عامل تعیینکنندة خواص مکانیکی آن است. باکم و زیاد کردن کربن میتوان فولادهایی بااستحکام و شکلپذیری مختلف به دست آورد.
زیاد شدن کربن استحکام فولاد را افزایش میدهد درحالیکه شکلپذیری آن را کاهش میدهد.
1- فولادنرم(ساختمانی) که دارای0.09 تا0.29 درصدوزنی کربن است.
2- فولادباکربن متوسط(فولاداعلای ساختمانی) که دارای0.30 تا0.59 درصد وزنی کربن است.
3- فولادپرکربن(فولادابزار) که دارای 0.6 تا1.7 درصد وزنی کربن است.
فولادهای نرم وبا کربن متوسط ضمن داشتن استحکام قابل توجه از نظر قابلیت تغییرشکل و نرمی نیزخواصی که درکارهای ساختمانی و صنعتی مورد نظراست را برآورده مینمایند.
ازفولاد باکربن زیاد درساختن ابزارماشینکاری، چاقو، اره، ساچمه، فنر و نظایرآن استفاده مینمایند. وجود منگنز در فولاد باعث بالارفتن استحکام آن میشود و از طرف دیگر منگنز سختی فولاد را بالا برده وشکل دادن آن را دشوار میسازد.
شکل دهی فولاد (ریخته گری)
دراین روش فولاد مذاب را به صورت شمش، شمشال ویا لوحه (ورق ضخیم) درمیآورند.
برای تهیة شمش، فولاد مذاب را در قالبهایی به حجم تا 800 لیتر ازجنس چدن با پوششی ازآجرهای نسوز میریزند.
بااستفاده ازریختهگری مداوم بهصورت پیوسته، از فولاد مذاب نیمرخهای طویلی با ضخامت5 تا 30 سانتیمتر ساخته میشود.