لینک فایل پاورپوینت-اجرای سازه های بتنی وفلزیpowerpoint

اجرای سازه های بتنی وفلزی


کلمات کلیدی : پاورپوینت اجرای سازه های بتنی وفلزیpowerpoint
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-اجرای سازه های بتنی- در 50 اسلاید-powerpoin-ppt


پی‌سازی
پس از گودبرداری و رسیدن به خاک مناسب که دارای مقاومت کافی باشد برای پی سازی در ابتدا بتن مگر فونداسیون می‌ریزند. که این بتن مگر لاغر هم می‌گویند مقدار سیمان در بتن مگر در حدود 100 الی 150 کیلوگرم در متر مکعب می‌باشد. در پی‌های نقطه‌ای بتن مگر به دو دلیل مورد استفاده قرار می‌گیرد.

  1. برای جلوگیری از تماس مستقیم بتن اصلی پی با خاک
  2. برای رگلاژ کف پی و ایجاد سطح صاف برای ادامه پی سازی

ضخامت بتن مگر در حدود 10 سانتی‌متر می‌باشد و معمولاً‌ قالب بندی (چوبی یا آجری) از روی بتن مگر شروع می‌شود.

قالب بندی شناژ و فنداسیون
در کارگاههای ساختمانی بتنی سه کارگاه وجود دارد که هم زمان به کار خود ادامه می‌دهند. این سه کارگاه عبارتند از : کارگاههای بتن سازی- آرماتور بندی و قالب بندی. از آنجا که بتن قبل از سخت شدن روان می‌باشد لذا برای شکل دادن به آن احتیاج به قالب داریم.
در حال حاضر در بیشتر ساختمان‌ها از قالبهای آجری استفاده می‌شود چون مقرون به صرفه‌تر از قالبهای چوبی است از قالبهای فلزی در کارهای سری سازی استفاده می‌شود. قالب بندی آجری بدین طریق است که پس از بتن مگر اندازه پی‌های اصلی را با آجر چیده و بعد شناژها را به آن نیز متصل می‌نمایند.
ضخامت این آجر چینی می‌تواند 10 سانتی متر هم باشد بهتر است برای این آجر چینی از ملات گل استفاده نمود زیرا در این صورت بعد از سخت شدن بتن می‌توان آجرها را برداشته و مجدداً‌ مورد استفاده قرار داد. ولی در این طریق (دیوار 10 سانتی متری و ملات گل) ممکن است در موقع بتن ریزی دیوارهای قالب تحمل وزن بتن را ننموده و از همدیگر متلاشی شود. که در این صورت می‌باید قبل از بتن ریزی پشت کلیه قالبها با خاک یا آجر و یا مصالح دیگر بسته شود بطوریکه بخوبی بتواند تحمل وزن بتن را بنماید.

مشکل اساسی در این نوع قالب بندی آن است که آجر آب بتن مجاور خود را مکیده و آنرا خشک می‌کند و فعل و انفعالات شیمیایی را در آن متوقف می‌کند و در نتیجه حد اقل به ضخامت 5 سانتی متر بتون مجاور خود را فاسد می‌کند. برای جلوگیری از این کار بهتر است که رویه آجر را با یک ورقه نایلون پوشیده شود تا آجر با بتون آجرها به راحتی از قالب جدا شده و می‌تواند در محلهای دیگر مورد استفاده قرار گیرد به هیچ وجه نباید تصور نمود که قبل از بتن ریزی می‌توان دیوارهای قالب آجری با پاشیدن آب سیراب نموده بطوریکه آجرها آب بتن را نمکد زیرا اولاً‌ با پاشیدن آب آجر کاملاً‌ سیراب نمی‌شود و در ثانی مقدار زیادی آب در قالب جمع می‌شود که خارج کردن آن از قالب بسیار مشکل و حتی غیرممکن می‌باشد و این آب داخل پی جای بتن را گرفته و موجب پوکی قطعه می‌شود. در ساختمان‌های مهم قالب پی‌ها را با چوبهای روسی می‌سازند.
بدین طریق که ارتفاع پی‌ها را که روی نقشه مشخص می‌باشد تعیین نموده و با کنار هم گذاشتن تخته‌ها به همان اندازه و اتصال آنها به یکدیگر بوسیله چوبها چهار تراش قالب پی و یا هر قسمت دیگر را می‌سازند باید توجه داشت که تخته‌ها باید آنچنان به یکدیگر متصل باشند که به خوبی بتواند وزن بتن و ضربه‌ها و ارتعاشات بوجود آمده از ویبراتور را تحمل نماید مخصوصاً‌ در مورد شناژها باید تخته را از بالا به وسیله قطعات چوب چهار تراش به یکدیگر متصل نمود به طوری که درزبندی شود که شیره بتن از آن خارج نشود. گاهی مواقع نیز از قالبهای فلزی استفاده می‌شود که قالبهای فلزی به مراتب گرانتر تمام می‌شود.

آرماتور بندی شناژ و فنداسیون
آرماتور بندی از حساس‌ترین و با دقت‌ترین قسمتهای ساختمانهای بتنی می‌باشد زیرا همان طوریکه قبلاً‌ گفته شد کلیه نیروهای کششی در ساختمان بوسیله میلگرد‌ها متحمل می‌شوند بدین لحاظ در اجرا آرماتور بندی ساختمان‌های بتنی باید نهایت دقت به عمل آید برای تعیین قطر و تعداد میلگردهای هر قطعه بتنی دو منبع تعیین کننده وجود دارد اول محاسبه دوم آئین نامه در مورد اول مهندس محاسب با توجه به مشخصات قطعه بتنی قطر میلگرد را تعیین نموده و در نقشه‌های مربوطه مشخص می‌نمایند کارگاه آرماتوربندی باید در قسمتی جداگانه از کارگاه اصلی تشکیل گردد.
در کارگاههای کوچک آرماتور را با دست (آچار گوساله) خم می‌نمایند ولی در کارگاههای بزرگ خم کردن آرماتور بوسیله ماشین انجام می‌گیرد. مسئول کارگاه آرموتوربندی باید از روی نقشه تعداد و شکل هر آرماتور را تعیین نموده و به کارگران مربوطه داده و خم کردن هر سری را دقیقاً‌ زیر نظر داشته باشد تا طول آرماتور و خم بردن و زاویه خم کردن و طول قلاب ها طبق نقشه انجام گیرد.
میلگردها باید از نوع ذکر شده در نقشه باشد (آجدار یا ساده)

آرماتور بندی و خم کردن آرماتورها
در کارگاههای کوچک که مصرف کل آرماتورها از 50 تن بیشتر نیست اگر میلگرد خمیدگی موضعی داشته باشد می‌باید این خمیدگی‌ها قبلاً‌ صاف گردد بعد اقدام به شکل دادن آن گردد.
برای صاف کردن میله‌ گردها چکش کاری مجاز نمی‌باشد و آرماتورها باید تمیز و در موقع کار فاقد گل و مواد روغنی باشد. میله‌گردهای نمره پایین مثلا‌ً‌ 8 و10 که گاهی به صورت کلافی به کارگاه آورده می‌شود این میلگردها را باید قبلاً‌ به طول‌های مناسب بریده و بوسیله کشیدن صاف نموده و آن گاه مصرف نمود.
آرماتورها باید بطوری به هم بسته شود تا در موقع بتن ریزی از جای خود تکان نخورده و جابجا نشود و فاصله آنها از یکدیگر طوری باشد که بزرگترین دانه بتن براحتی از بین آنها رد شده و در جای خود قرار گیرد.
آرماتورها تا قطر 12 میلی متر را می‌توان با دست خم کرد ولی آرماتورهای بزرگتر از 12 میلی‌متر را با دستگاه‌های مکانیکی مجهز به فلکه خم میشود. قطر فلکه خم متناسب با قطر آرماتور بوده و باید بوسیله محاسب کارگاه تعیین گردد. کلیه آرماتورهای ساده باید به قلاب ختم شود ولی آرماتورهای آجدار را می‌توان بصورت گونیا خم کرد. سرعت خم کردن باید متناسب با درجه حرارت محیط باشد و باید با نظر مهندس کارگاه بطور تجربی تعیین شود. باید از خم کردن و باز کردن آرموتورهای شکل داده شده و مصرف آن در محل دیگر خودداری نمود و در مواقع ضروری باید باز کردن هم‌ با نظر مهندس محاسب باشد.

وصله کردن آرماتورها
با توجه به این که طول میگرد موجود در بازار 12 متری می‌باشد در اغلب قسمتهای ساختمانها مخصوصاً‌ در شناژها میلگردهایی با طول بیشتر مورد نیاز است و همین طور قطعات باقیمانده از شاخه‌های بزرگ بالاخره بایستی مصرف شوند ناگزیر از وصله کردن میله گردها هستیم بهتر است دقت شود حتی المقدور این وصله‌ها به حداقل خود برسد یعنی در موقع برش کاری طوری اندازه‌ها را باهم جور کنیم که ریزش آرماتورها زیاد نباشد و در صورت اجبار این اتصالات با نظر مهندس ناظر در جایی باشد که تنش‌ها در آنجا حداقل است و باید توجه شود که در یک مقطع کلیه آرماتورها وصله نباشد اتصال دو آرماتور در ساختمان‌های بتن آرمه اغلب به صورت پوششی بوده و باروی هم آوردن دو قطعه انجام می‌شود.
این نوع اتصال برای آرماتور تا نمره 32 مجاز می‌باشد و آن بدین طریق است که دو قطعه آرماتور را کنار هم قرار داده و بوسیله سیم آرموتور بندی به همدیگر متصل می‌گردد. طول دو آرماتور روی هم آمده دو قطعه نبایستی کمتر از اندازه داده شده در نقشه باشد و باید بوسیله مهندس محاسب و ناظر تعیین شود این طول معمولاً‌ به اندازه 40 برابر قطر میل گرد مصرفی است.

آرماتور بندی شناژ- کف شالوده
در قطعات تحت خمش و خمش توام با فشار نباید در یک مقطع بیش از نصف آرماتور‌ها وصله‌دار باشد در قطعات تحت کشش و کشش توام با خمش نباید بیش از یک سوم در یک مقطع وصله‌دار باشد.
پی‌های نقطه‌ای حداقل باید از دو جهت بوسیله شناژ بتنی به پی‌های همجوار متصل باشد. حداقل ابعاد این کلاف بتنی باید 30 سانتی‌متر بوده و بوسیله 4 میله‌گرد طولی به قطر 12 میلی‌متر مسلح باشد این فولادهای طولی باید با فولادهای عرضی (خاموت) به قطر حداقل 5 میلی‌متر و به فاصله حداکثر 25 سانتی متر به هم دیگر بسته شوند و این قفسه بافته شده شناژ باید در تمام طول پی ادامه پیدا کند و به شناژ طرف دیگر پی متصل باشد. حداقل بتن روی قفسه شناژ 3 سانتی‌متر می‌باشد. فاصله میله گردهای شناژ نباید از 10 سانتی‌متر کمتر باشد و حداقل قطر میله‌گردهای داخل شالوده نباید از 10 میلی‌متر کمتر باشد.
آرماتورهای کف شالوده باید در دو جهت در تمام بعد شالوده ادامه پیدا کند ولی اگر طول پی از 3 متر تجاوز نماید می‌توان آرماتورها را یک در میان کوتاهتر اختیار نمود ولی طول آرماتورهای کوتاه شده نباید از 8/0 طول اصلی کمتر باشد.

آرماتور بندی ریشه ستون 
آرماتورهای ریشه با انتظار با ریشه برای اتصال شالوده به ستون بکار می‌رود باید تا سطح آرماتورهای زیرین پی ادامه داشته ادامه داد وبقیه آرماتورهای ستون را با اندازه 40 سانتی متر داخل پی نمود کلیه آرماتورهای ریشه باید در انتها دارای خم 90 درجه باشد .
این آرماتورها باید بوسله خاموت به یکدیگر متصل شده و داخل پی بخوبی مستقر شود و یا به عبارت دیگر باید خاموت‌های ستون تا داخل پی ادامه یابد. طول آن قسمت از آرماتورهای ریشه که باید خارج از پی قرار گیرد تا میله‌گردهای ستون به آن بسته شود باید بوسیله مهندس محاسب تعیین گردد ولی هیچ گاه نباید از 60 تا 50 سانتی متر کمتر گردد. اگر نتیجه محاسبات بیش از اعداد داده شده باشد باید از اعداد به دست آمده بوسیله محاسبات استفاده شود.
برای ایجاد مقاومت در مقابل نیروهای کششی در بتن داخل شناژ چند ردیف در بالا و پایین میله‌گرد طولی قرار می‌دهند و این آرماتور بندی شناژ میلگردهای طولی را به وسیله میلگردهای عرضی که به آن خاموت گفته می‌شود به همدیگر متصل می‌نمایند. میله گرد‌های طول و عرضی را قبلاً‌ مطابق شکل می‌بافند و بعد در داخل قالب‌بندی شناژ قرار می‌دهند باید توجه داشت پهنای این قفسه بافته شده باید در حدود 5 سانتی‌متر کوچکتر از پهنای این قفسه بافته شده باشد باید هر طرف 5/2 سانتی‌متر باشد به طوریکه این میلگردها کاملاً‌ در بتن غرق شده و آنرا از خوردگی در مقابل عوامل جوی محفوظ نماید. این اندازه در مناطق مختلف و آب و هوای مختلف و همچنین محل قرار گرفتن قطعه بتنی (اینکه درون زمین و یا خارج آن) قرار گیرد ونیز میزان سولفاته بودن آبهای مجاور آن متفاوت است که میزان آن بوسیله موسسه استاندارد و تحقیقات صنعتی ایران تعیین شده است. ناگفته نماند که خاموتهای شناژ اکثراً به صورت مربع و چهار ضلعی است چون چهار عدد میلگرد در داخل شناژ قرار می‌گیرد.

نکته: ناگفته نماند که فاصله بین خاموتها در ریشه ستون به مراتب کمتر از جاهای دیگر ستون می‌باشد. چون ریشه باید یکپارچگی ومقاومت بیشتری باشد یا به عبارت دیگری در یک ششم طول بالا که ستون به سقف متصل می‌شود فواصل بین خاموتها کمتر از جاهای دیگر ستون می‌باشد که این فاصله از روی نقشه خوانده می‌شود. که توسط مهندس محاسب محاسبه می‌شود ولی تقریباً‌ حدود 15 سانتی‌متر می‌شود ولی در جاهای دیگر ستون حدود 25 سانتی‌متر می‌باشد.
قبل از بتن ریزی باید حتماً‌ یک بار دیگر فاصله محور آرماتورهای ریشه کنترل گردد کف پی ‌و آرماتورها کنترل گردد و مواد زائد از آن خارج شود. بست‌های اتصال باید کنترل گردد و در مواقع قالب برداری دقت شود تا بتن تازه ریخته شده شالوده آسیب نبیند و قالب‌ها تکه تکه و به آرامی جدا شود. اگر از قالب آجری استفاده شود و ورقه نایلون روی آجر کشیده نشده است بهتر است از آجرها صرف نظر شود و اقدام به برداشت آجرها نمائیم زیرا در این صورت آجر به بتن کاملاً‌ چسبیده و جدا کردن آن غیر ممکن است و اگر قبل از سخت شدن بتن بخواهیم آجرها را جدا کنیم حتماً‌ به پی آسیب خواهد رسید.

چگونه شبکه میل گرد ستون را به ریشه متصل کنیم؟
بعد از اجرای فنداسیون و گذاشتن میله گردهای ریشه اگر بخواهیم میله‌گردهای ستون را کنار میله‌گردهای ریشه قرار دهیم به اندازه کلفتی میله گرد ریشه ستون از محور خود منحرف خواهد گردید که اگر لاین انحراف در طبقات بالا تماماً‌ در یک جهت باشد ممکن است ستون طبقه پنجم یا ششم چندین سانتی‌متر تغییر مکان کند بدین لحاظ باید سعی شود که این تغییر مکان در هر طبقه بر خلاف تغییر مکان طبقه پایین‌تر باشد .بهتر آن است که در آرماتورهای ستون انحنای کوچکی مطابق کل شکل ایجاد گردد آن گاه نسبت به اتصال شبکه میلگردش ستون به ریشه اقدام گردد تا ستون درست در محل خود جای بگیرد و کوچکترین انحرافی نداشته باشد این انحراف به اندازه قطر میلگرد می‌باشد.
گاهی مواقع در آرماتوربندی فنداسیون اتفاق می‌افتد که شبکه بندی میله‌گردها هم در کف فنداسیون و هم در قسمت فوقانی فنداسیون شبکه‌هایی وجود دارد.
این زمانی اتفاق می‌افتد که دو ستون با هم روی یک فنداسیون قرار گرفته باشد یعنی در محل فنداسیون درز انقطاع دو ساختمان، دلیل این شبکه‌ها در قسمت فوقانی برای تحمل کشش در آن ناحیه یعنی بین دو ستون می‌باشد . چون دو ستون نیروی زیادی را به فنداسیون وارد می‌کند و نیروی کششی در بالای و فاصله بین دو ستون ایجاد می‌شود که برای تحمل این نیروی کششی از میلگردهای لازم استفاده می‌شود.
گاهی مواقع اتفاق می‌افتد که فنداسیون‌های مسلح نواری که دو یا چند ستون روی آن سوار می‌شود و حالت باسکولی دارد و هم میل‌گردهایی جهت تقویت در جاهایی که کشش خیلی زیاد است هم در کف و هم در بالای فنداسیون از میله‌گردهای نمره بالا 24-26 استفاده می‌‌کنند البته این میلگردها به صورت تقویتی است و باید در بین شبکه میلگردها قرار گیرد و به شبکه نچسبد .

بتن سازی و بتن ریزی
برای بتن ریزی فنداسیون و شناژها باید بتن را طبق آئین نامه بسازیم. بتن سنگی است مصنوعی که از مواد سنگی (شن وماسه) و آب وسیمان تشکیل یافته و به علت روانی قالب خود را پر کرده وبه شکل قالب در می‌آید.

مصالح سنگی
مصالح سنگی که در بتن مصرف می‌شود شن و ماسه می‌باشد که در حدود 75% حجم بتن را تشکیل می‌دهد. دانه‌های سنگی تا بزرگی 5 میلی‌متر بزرگتر را شن می‌گویند. قسمت اعظم مقاومت بتن بستگی به مقاومت شن و ماسه دارد و در نتیجه بایستی در انتخاب معادن شن و ماسه جهت بتن ریزی نهایت دقت به عمل آید.

دانه‌های نامطلوب از نظر شکل
هر قدر شکل دانه‌ها هندسی‌تر باشد برای بتن ریزی مناسب‌تر می‌باشد. وجود دانه‌های سوزنی و یا پولکی شکل در بتن مناسب نیست و مجموع این دانه‌ها نباید از 15% وزن کل شن و ماسه مورد مصرف در بتن بیشتر باشد دانه‌های سوزنی به دانه‌هایی گفته می‌شود که طول بزرگترین بعد آن از 8/1 معدل دو الکی که این دانه‌ها بین آنها قرار دارد بیشتر باشد دانه‌های سوزنی به علت آن که زودتر از سایر دانه‌ها می‌شکنند نامطلوب می‌باشند. دانه‌های پولکی شکل به دانه هایی گفته می شود که ضخامت کمترین بعد آن کوچکتر از 60 % اندازه متوسط الکی که دانه سنگی به آن تعلق دارد .

مواد نامطلوب در شن و ماسه و اندازه دانه‌ها:
بطور کلی شن و ماسه شکسته اغلب فاقد مواد نامطلوب می‌باشد ولی در مورد شن و ماسه رودخانه باید توجه داشت که مواد آلی مانند ریشه گیاهان- فضولات حیوانی- تکه‌های چوبی و فلزات و ذرات ذغال سنگ در شن و ماسه وجود نداشته باشد و یا حداکثر میزان آن از یک درصد وزن شن و ماسه تجاوز نکند. موادی که در برابر عوامل جوی ضعیف بوده و یا در فعل و انفعالات شیمیایی سیمان از خود واکنش نشان ندهند. مواد نامبرده نباید در شن و ماسه وجود داشته باشد درصد این مواد بوسیله آزمایشگاهها تعیین می‌شود و هم چنین مواد سنگی مصرفی در بتن باید فاقد خاک رس و کلوخه‌های رس باشد زیرا اولاً‌ آب داخل بتن را به خود جذب کرده و فعل و انفعالات شیمیایی سیمان را متوقف می‌کند در ثانی دور دانه‌های شن و ماسه را گرفته ومانع تماس مستقیم سیمانه و دانه‌ها می‌گردد.

آب در بتن:

  1. سیمان در مجاورت آب شروع به فعل و انفعالات شیمیایی نموده و تشکیل سیلیکاتها و آلومیناتها کلسیم متبلور می‌‌دهد که اساس گرفتن و سخت شدن بتن می‌باشد. این مقدار در حدود 20 الی 25 درصد وزن سیمان می‌باشد.
  2. آب سطح دانه‌های سنگی را تر نموه و باعث لغزش این عناصر به روی یکدیگر می‌گردد بدیهی است هر قدر سطح دانه‌ها بیشتر باشد آب بیشتری در این قسمت مصرف می‌شود به همین علت مقدار این آب متفاوت بوده و در حدود 25% وزن سیمان می‌باشد.
  3. آب باعث روان شدن بتن می‌گردد تا بهتر بتوان آن را حمل نموده و در قالب ریخته و آنرا به شکل قالب در آورد.

بدیهی است فقط آب قسمت اول در بتن باقی می‌ماند و آب قسمت دوم به مرور تبخیر گشته و جای آن به صورت فضای خالی ممکن است به صورت فضای خالی که ممکن است به صورت تارهای موئین باشد در بتن باقی بماند که این خود باعث پوکی بتن گشته و موجب تضعیف بتن می‌گردد.
باید توجه داشت که هر قدربتن خشکتر باشد مقاوم‌تر خواهد بود ولی بتن‌های خیلی خشک به علت لغزنده نبودن کاملاً‌‌ قالب را پر نکرده و در داخل آن فضای خالی بوجود آمده و در نتیجه قطع نمی تواند بار وارده را تحمل نموده و غیر قابل استفاده می‌گردد و چنین می توان گفت که بتن تازه باید مانند عسل باشد .

آب در بتن
با توجه به این که در اغلب کارگاههای کوچک و حتی در بعضی از کارگاهها تقریباً‌ بزرگ امکان تجزیه آب از لحاظ شیمیایی موجود نیست لذا به طور کلی می‌توان گفت که تقریباً‌ آبی که فاقد بو ومزه و ظاهراً‌ قابل آشامیدن باشد می‌توان در بتن از آن استفاده کرد. البته این موضوع دلیل آن نیست که آبهای غیر آشامیدنی برای بتن مضر است. در مواردی که آب آشامیدنی برای بتن در دسترس نباشد می‌باید مقاومت مکعب 28روزه بتن حد اقل 90 درصد مقاومت مکعبی را که با آب آشامیدنی ساخته شده است را دارا باشد در این صورت می‌توان مطمئن شد که ناخالصی‌های آب بر آب بتن مضر نیست.

اثر ناخالصیهای آب بر روی بتن
سنگ‌های سدیم و پتاسیم و منیزیم محلول در آب در فعل و انفعالات شیمیایی سیمان موجود در بتن شرکت کرده و در اثر انبساط حجمی موجب خرد شدن الیاف قطعه بتنی می‌گردد. این خرابی در قطعاتی که در جریان آب سولفاته قرار دارند. بیشتر می‌باشد. اثر نمک بر روی بتن ابتدا به صورت شوره ظاهر گشته و بعد از مدتی موجب خرد شدن قطعه می‌گردد.
کانالهای هدایت فاضلاب‌های کارخانه و هم مواد روغنی و نفتی در اثر تماس با دانه‌ها و فولاد موجود در بتن سطح آب را چرب نموده و مانع چسبیدن دوغاب سیمان به دانه‌ها و چسبیدن دانه‌ها به یکدیگر می‌گردد.

سیمان
سیمان واژه لاتینی است که از کلمه Caementun و یا Caedimentun گرفته شده و معنی آن خرده سنگ است. سیمان ماده چسبنده است به رنگ خاکستری که در مجاورت آب و در مجاورت هوا و بعضی از انواع بدون مجاورت هوا در اثر فعل و انفعالات پیچیده شیمیایی سخت گشته و قطعات خرده سنگ مجاور خود را به یکدیگر می‌چسباند.
برای اولین بار سیمان در انگلستان بوسیله شخصی کشف گردید وچون رنگ آن بعد از خشک شدن به رنگ سنگهای ساحلی جزیره پرتلند بود بنام سیمان پرتلند معروف گردید سیمان پرتلند معروف‌ترین و رایج‌ترین سیمان در دنیا است.
مواد متشکله پرتلند : سیمان پرتلند تشکیل شده است از 65% آهک CaO و حدود 20% سیلیس به فرمول SiO2 و حدود 6% اکسید آلومینیوم به فرمول: AL2O3 و حدود 4% اکسید منیزیم به فرمول 
MgO و 3% آنیدرید سولفوریک به فرمول SO3 و دو سه درصد دیگر نیز مواد دیگر که فرمول و نسبت دقیق این مواد در کارخانه‌های مختلف متفاوت است. این مواد را به نسبت‌های معین و دقیق مخلوط کرده و به دو طریق خشک و یا ترد در کوره سیمان‌پزی برده و آنرا می‌پزند.

سیمان پزی 
پختن سیمان یعنی ایجاد فعل و انفعال شیمیایی بوسیله حرارت بین مواد متشکله آن تا مواد بصورت دانه‌هایی به درشتی فندق در اید به این دانه‌ها که در اثر حرارت تشکیل می‌شود در اصطلاح سیمان‌پزی کلینکر می‌گویند.

انبار کردن سیمان
در موقع انبار کردن سیمان باید دقت شود که رطوبت هوا و زمین باعث فاسد شدن سیمان نشود. بدین لحاظ باید انرا روی قطعاتی از تخته که با زمین در حدود 10 سانتی‌متر فاصله دارد و تعداد کیسه‌های سیمان روی هم قرار می‌گیرد نباید از 10 الی 12 کیسه بیشتر باشد زیرا در غیر این صورت سیمان‌های زیرین در اثر فشار سخت شده و غیر قابل مصرف می‌گردد.

چنانچه این قطعات سخت شده به راحتی با دست به صورت پودر در اید قابل مصرف در قطعات بتنی می‌باشد و در غیر این صورت سیمان فاسد شده و بتن ساخته شده با این نوع سیمان باربر نبوده و نمی‌توان از آن در قطعات اصلی ساختمان مانند تیرها وستونها و سقفها استفاده نمود.
اگر بخواهیم سیمان را برای مدت طولانی انبار کنیم باید حتی‌المقدور باید با دیوارهای خارجی انبار فاصله داشته باشد و روی آنرا با ورقه‌های پلاستیکی پوشانیده شود تا حتی المقدور از نفوذ رطوبت به آن جلوگیری به عمل آید. اگر سیمان به طرز صحیح انبار شود حتی تا یکسال بعد نیز قابل استفاده است فقط ممکن است زمان گیرش آن به قدری به تعقیب افتد ولی اثری در مقاومت 28 روزه آن ندارد.
گاهی مواقع در برخی از کارگاهها که سیمان زیاد مصرف می‌شود سیمان را در سیلوها نگهداری می‌کنند یعنی سیمان را به صورت فله‌ای خریداری نموده و در سیلو انبار می‌کنند و هر گاه کارگران به سیمان احتیاج داشته باشند از این سیلوها استفاده می‌کنند.

نسبت‌های مخلوط کردن اجزای بتن
منظور از نسبت‌های مخلوط کردن اجزای بتن آن است که نسبت مناسبی برای اختلاط شن و ماسه و سی به دست آوریم تا دانه‌های ریزتر فضاهای بین دانه‌های درشتتر را بپوشاند وجسم توپری بدون فضای خالی و با حداکثر وزن مخصوص به دست آید. هم چنین تعیین مقدار آب لازم به طوریکه بتن به راحتی قابل حمل و نقل بوده و در قالب خود جا گرفته و دور میله‌گردها را احاطه نموده و کلیه فضای خالی قالب را پر نماید و در مجاورت آن فعل و انفعالات شیمیایی سیمان شروع شده و تا مرحله سخت شدن ادامه یابد و بالاخره تعیین مقدار سیمان مورد لزوم


کلمات کلیدی : اجرای سازه های بتنی,مراحل اجرای سازه های بتنی و محاسبات آن,سازه بتنی,اجرای سازه بتنی, سازه بتن آرمه,آرماتوربندی و بتن ریزی سازه,اجرای ساختمان
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-اجرای قالب‌های لغزنده درعمران- در55 اسلاید-powerpoin-ppt

 قالب های لغزنده

 

اجرای قالب های لغزنده بر این اساس است که قالب به ارتفاع 1 تا 1/5 متر در فواصل زمانی متناوب توسط پشت بندها و جک به بالا کشیده میشود. هم زمان با بالا کشیدن قالب عملیات بتن ریزی و آرماتوربندی نیز ادامه میابد و دائماً مخلوط بتن از بالا به درون قالب ریخته شده و ضمن حرکت قالب به سمت بالا بتن سخت شده از قسمت زیرین قالب جا میماند. سرعت حرکت قالب به نحوی تنظیم میشود که بتن در زمان خارج شدن از قالب ضمن تحمل وزن خود، جهت حفظ شکل خود از مقاومت کافی برخوردار باشد. قالب بندی لغزان را میتوان بر اساس حرکت پیوسته انجام داد و یا آن را طوری برنامه ریزی کرد که در ارتفاع معینی متوقف گردد و سپس حرکت لغزان خود را مجدداً از سر گیرد. معمولاً حرکت قالب لغزان با سرعتی یکنواخت صورت میگیرد.

 

قالب لغزنده در امتداد قائم با سرعتی یکنواخت حرکت میکند و این سرعت به اندازه ای است که هر مقطع از بتن در طول مدت زمان لازمی که برای گیرش اولیه نیلز دارد درون قالب میماند. قالب های لغزان توسط جک هائی به بالا حرکت داده میشوند که بر روی میله های صاف یا لوله های سازه ای کار گذاشته شده در بتن سخت عمل میکنند. این جک ها ممکن است از نوع دستی، بادی، برقی و یا هیدرولیکی باشند. سکوهای کار و داربست های کارگران پرداختکار نیز به قالب بندی متصل و به همراه آن حرکت میکنند.

 

اجزاء قالب لغزنده:

 

یوغ

پشت بندهای افقی (کمرکش)

قالب بدنه

یوغ دو وظیفه اصلی دارد، مقاومت در مقابل فشارهای جانبی بتن، و انتقال بارها به محل میله جک ها. وظیفه پشت بندها نیز دادن مقاومت خمشی به قالب بدنه و انتقال فشار قالب ها به یوغ ها میباشد. سکوی ترمیم و عرشه بتن ریزی به پشت بندهای افقی متصل میشوند. اتصال پشت بندها به یوغ باد قادر به حمل این بارها باشد. قالب بدنه که میتواند از الوارهای چوبی، پانل های فلزی و یا پانل های ساخته شده از چندلائی باشد، مستقیماً به پشت بندهای افقی متصل میشود. قالب های لغزان بیشتر در دیوارهای برشی ساختمان های بلند مرتبه، سیلوها، دودکش ها و مخازن مایعات و برج ها و شفت های قایم و ... مورد استفاده قرار میگیرند.

 

مزایای استفاده از قالب لغزنده:

 

سازه اجرا شده کاملاً یکپارچه بوده و عاری از وجود درزهای ساختمانی افقی و عمودی است.

سرعت اجرای سازه بسیار بالا است.

اقتصادی است.

گرچه در صورت دقت در عملیات، نمای بتن بسیار خوب و قابل قبول خواهد بود، بنابراین امکان انجام عملیات نماکاری بر روی سازه بلافاصله بعد از بتن ریزی وجود دارد که باعث میشود ملات نمای کار با بتن تازه ریخته شده چسبندگی بهتری داشته باشد.

نیازی به اجرای داربست نما به روش های کلاسیک نیست.

امکان اجرای قسمت های دیگری از کار اجرای سازه از قبل بالا کشیدن خرپاهای سقف و غیره به طور همزمان با اجرای قالب لغزنده وجود دارد.

 

 قالب های لغزنده (Slip Forms)

امروزه برای ساخت سازه های بلند و با طول زیاد نظیر سیلوها، برج های مخابراتی، هسته های برشی ساختمان های بلند، برج های خنک ساز، دودکشها، پایه های پله، کف تونلها، کانال های آب، کف جاده ها و سازه های مشابه که اجرای آنها در گذشته نیاز به داربست بندی سنگین در اطراف سازه داشت، ‌از روشی استفاده می گردد که قالب لغزنده نام دارد. با استفاده از روش قالب لغزنده بسیاری از داربست بندی های اطراف سازه حذف گردید و سرعت اجرای کار به همراه نمای بهتر برای کار افزایش می یابد.

قالب های لغزنده قائم
اساس روش اجرای قالب لغزنده عمودی این است که قالب به ارتفاع 1 تا 1.5 متر در فواصل زمانی متناوب به بالا کشیده می شود. در ضمن بالا کشیدن قالب عملیات بتن ریزی و آرماتور بندی نیز ادامه می یابد و دائما مخلوط بتن از بالا به درون قالب ریخته شده و ضمن حرکت قالب به سمت بالا بتن سخت شده از قسمت زیرین قالب جا می ماند. سرعت حرکت قالب به نحوی تنظیم می شود که بتن در زمان خارج شدن از قالب ضمن تحمل وزن خود، جهت حفظ شکل خود از مقاومت کافی برخوردار باشد. قالب بندی لغزان قائم را می توان بر اساس حرکت پیوسته انجام داد و یا آن را طوری برنامه ریزی کرد که در ارتفاع معینی متوقف گردد و سپس حرکت لغزان خود را مجددا از سر گیرد. معمولا حرکت قالب لغزان با سرعتی یکنواخت صورت می گیرد.
در صورتی که قالب لغزان دارای توقف باشد درزهایی به وجود می آیند که با درزهای میان  مراحل بتن ریزی در عملیات ساختمانی با قالب ثابت فرقی ندارد.

قالب لغزنده در امتداد قائم با سرعتی یکنواخت حرکت می کند و این سرعت به اندازه ای است که هر مقطع از بتن در طول مدت زمان لازمی که برای گیرش اولیه نیاز دارد درون قالب می ماند. روش قالب لغزنده عمودی برای سازه های پوسته ای با ضخامت جدار ثابت و یا تقریبا ثابت به کار می رود. قالب های لغزان قائم توسط جکهایی به بالا حرکت داده می شوند که بر روی میله های صاف یا لوله های سازه ای کار گذاشته شده در بتن سخت عمل می کنند. این جکها ممکن است از نوع دستی، بادی، برقی و یا هیدرولیکی باشند. سکوهای کار و داربست های کارگران پرداختکار نیز به قالب بندی متصل و به همراه آن حرکت می کنند.


قسمتهای اصلی یک قالب لغزنده
دیواره‌های قالب: دیواره‌های قالب باید به اندازه کافی محکم و مقاوم باشند. جنس این دیواره‌ها ممکن است چوبی و یا فلزی باشند. قالبهای فلزی به مراتب سنگین‌تر از قالبهای چوبی‌اند ولی در عوض استحکام بیشتری داشته و تعداد دفعات استفاده از آنها بیشتر است. تعمیرات و یا تغییرات احتمالی قالبهای فلزی نیز نسبت به قالبهای چوبی دشوارتر است در عوض تمیز کردن آنها آسانتر و نمای بتن پس از باز کردن قالب صاف‌تر است.

خود قالب ها را می توان در سه بخش در نظر گرفت :
یوغها
پشت بندهای افقی (کمرکش)
قالب بدنه 
یوغها دو وظیفه اصلی دارند: جلوگیری از باز شدن قالب ها در قالب در برابر فشارهای  جانبی بتن و انتقال بار و فشار به جکها.
پشت بندها نیز برای تقویت مقاومت خمشی بدنه قالب ساخته شده و بار قالب ها را به یوغ  ها منتقل می کنند. سکوی نازک کاری، عرشه اجرایی و سکوی طره ای به پشت بندهای افقی متصل می شوند. اتصال پشت بندها به یوغ باید قادر به حمل این بارها باشد.

قالب بدنه که نیز می تواند از پانلهای فلزی، پانلهای چند لایه و یا الوارهای چوبی باشد مستقیما به پشت بندهای افقی متصل می شود.
طوقه‌ها: برای نگهداری سکوی کار و انتقال آن و همچنین نگهداری و تحمل وزن قالب و  کابل جک در نظر گرفته می‌شوند. طوقه‌ها معمولاً فلزی و به صورت پروفیلهایی مناسب طرح و در نظر گرفته می‌شوند.

سکوی کار: معمولاً سه سطح کار در نظر می‌گیرند. یکی که بالاتر از طوقه‌ها و در ارتفاعی در حدود دو متر و بالاتر از انتهای دیوار قرار گرفته و برای استفاده از بست های فلزی ثابت‌کننده به کار می‌روند. دیگری سکویی است که در بالای کف و هم‌تراز بالای قالب قرار می‌گیرد و برای قرار دادن ظرف بتن و انبار کردن مصالح و وسایل تراز کردن و همچنین وسایل کنترل جک مورد استفاده قرار می‌گیرد و بالاخره سومین سکو به صورت چوب‌بست آویزان و یا یکسره که معمولاً در دو طرف دیوار قرار گرفته و برای دسترسی به نمای قسمتی از دیوار، که به تازگی قالب آن را باز کرده و ترمیم احتمالی آن، مورد استفاده قرار می‌گیرد.

جکهای هیدرولیکی: جکهای هیدرولیکی مورد استفاده معمولاً با ظرفیت خود، نظیر جکهای سه تنی و یا شش تنی مشخص می‌شوند.

قالب بندی دیوار های بتنی به روش لغزنده
از جمله مزایای این روش قالب‌بندی که برای دیوارهای نسبتا بلند استفاده می‌شود تعداد دفعات بیشتر استفاده از قالب و سرعت عمل بیشتر آن است. در اولین استفاده از قالب دو دیواره قالب با تکیه به پاخور بتنی (رامکا) به صورت معکوس قرار می‌گیرد. پس از ریختن بتن و سخت شدن آن، قسمتهای داخلی قالب را تا حد نهایی بتن ریخته شده بالا می‌برند و پس از محکم کردن آن قسمت دوم دیوار را بتن ریزی می‌کنند. پس از سخت شدن بتن، قالب را باز کرده و نظیر دفعه اول عمل می‌کنند. عمل قالب‌بندی و بتن‌ریزی را به همین ترتیب تا انتهای کار و اتمام بتن‌ریزی دیوار ادامه می‌دهند

قالب ها ی لغزنده و افقی
این نوغ قالب برای ریختن بتن دیوارهای طولانی، کف و جداره کانال های بزرگ، بتن ریزی شیبها، کف تونلها و سطح راه ها به کار می رود. به دلیل اینکه اکثر قالب بندی های افقی لغزان بر روی تکیه گاه ثابت قالب مانند سنگ یا خاک انجام می شود، این عملیات اصولا عملیات تحکیم، شمشه کشی، پرداختکاری است. ماشین قالب لغزان معمولا بر روی ریل یا سکوی شکل داده شده حرکت می کند. بخش دریافت بتن ماشین ناوه ای است که برای توزیع یکنواخت بتن در تمامی بخشهای قالب طراحی شده است. متراکم ساختن بتن توسط لوله لرزانی انجام می شود که با لبه جلویی قالب موازی و کمی جلوتر از آن قرار دارد. متراکم کردن بتن سازه را می توان با ویبراتورهای دستی نیز انجام داد. لوله های بتنی در جای یکپارچه نیز با استفاده از روش قالب بندب لغزان افقی تولید می شوند. ساخت پوششی کامل تونل با قالب بندی لغزان نیز انجام شده است.

قالب های رونده
قالب های رونده یا قالب های بالا رونده قالب هایی هستند که پس از هر بار بتن ریزی از سطح بتن فاصله گرفته و به صورت خزنده (با فشار جک و یا با استفاده از کارگر و جرثقیل) جابجا می شوند. این قالب ها معمولا برای اجرای دیوارهای بلند کاربرد دارند. در اجرای سنتی دیوارهای بلند لازم است که دو طرف دیوار داربست بندی گردد اما در شیوه قالب های رونده، قالب هر مرحله به مرحله قبلی متکی شده و قالب همانند یک صخره نورد به سمت بالا صعود کرده و مراحل فوقانی دیوار را به اجرا در می آورد، بدون اینکه نیاز به داربست جانبی داشته باشد. هر مرحله از اجرای دیوار به این شیوه را لیفت می گویند. در این قالب ها از دو سری قالب استفاده می شود و در هر مقطع یک سری قالب بر بالای سر قالب سری قبل استقرار پیدا می کند. بدین ترتیب که در حدود 50 تا 70 سانتی متر از بالای قالب، سوراخی کار گذاشته می شود و قالب توسط جرثقیل بلند شده و پای آن در سوراخ مذکور توسط بولت محکم می شود و قالب توسط جک در وضعیت شاقول تثبیت می شود. سوراخ لیفت اول در لیفت دوم نیز ایجاد می گردد تا در اجرای لیفت سوم مورد استفاده قرار گیرد.

قالب های پرنده
اصطلاح قالب پرنده به سیستمی اطلاق می شود که اجزا آن به یکدیگر متصل شده و یک واحد بزرگ را تشکیل می دهند که به آن عرشه می گویند. این سیستم برای قالب بندی دال بتنی در ساختمانهای چندین طبقه مورد استفاده قرار می گیرد. پس از آکه بتن هر طبقه ریخته شده و مقاومت لازم را کسب کرد،‌ قالب پرنده (بدون جاسازی اجزا) از بتن جدا شده و به صورت افقی به سمت بیرون ساختمان حرکت داده می شود و در بیرون ساختمان بالا کشیده می شود تا در موقعیت جدید برای یک دال دیگر مورد استفاده مجدد قرار گیرد. اصطلاح "قالب عرشه پرنده" از آنجا گرفته شده است که این قالب به سمت بیرون ساختمان حرکت داده می شود (پرواز می کند) و به سمت بالا کشیده می شود تا در تراز طبقه بالاتر مورد استفاده قرار گیرد. هر واحد قالب پرنده از اجزا سازه ای مختلفی از جمله: خرپاها، تیرها، ‌تیرچه ها و رویه فلزی یا پلاستیکی تشکیل و مونتاژ می شود تا چندین بار مورد استفاده قالب بندی دالهای ساختمان قرار گیرند. این قالب ها را میتوان برای نگاه داشتن تیرها و شاه تیرها، دالها و سایر اجزا سازه ای مورد استفاده قرارداد.

 مزایا و معایب بکارگیری قالب لغزنده قائم و افقی

الف) مزایای اجرا توسط قالب لغزنده قائم

- سرعت پیشروی به سمت بالا با توجه به اجرای مداوم و شانه روزی

- عدم وجود درزهای اجرایی اعم از درز افقی یا قائم و یکپارچگی و پیوستگی بهتر بتن

- اقتصادی تر و ارزان تر شدن کار در صورت مرتفع بودن سازه (معمولاً در ارتفاع های بیش از 20متر و حتی بیش از 30متر)

- امکان پرداخت سطح بتن خارج شده از زیر قالب به علت نرمی و نیمه خمیری بودن بتن در صورت نیاز

- کاهش مصالح مصرفی در قالب بندی به ویژه حذف داربست

ب) معایب اجرا توسط قالب لغزان قائم

- برای سازه هایی با ارتفاع کمتر از 20متر و به ویژه کمتر از 15متر غیر اقتصادی خواهد بود.

- آماده سازی قالب و بستن آن در ابتدا بسیار وقتگیرتر از قالب عادی است.

- در مواردی که پنجره، در یا بازشو وجود دارد کار مشکل می شود. اصولاً نباید زواید و قسمت های برجسته موضعی در سازه وجود داشته باشد وگرنه کار بسیار سخت یا غیر ممکن می گردد.

- در صورتی که قطر، ضخامت مقطع و یا شیب تغیر کند کار مشکل تر است و به قالب و تجهیزات خاص و گران قیمت نیازمند است.

- ساخت قالب و سرمایه گذاری اولیه برای آن بسیار زیاد است.

- مدیریت اجرایی و فنی آن مشکل است. تدارکات اولیه و حین اجرا بسیار حساس است. پرسنل متمرکز و قابل توجهی بکار گرفته می شود که باید در دو یا سه شیفت در طول شبانه روز کار کنند. نقدینگی زیادی برای شروع کار و در حین اجرا لازم است.

- تهیه محل اقامت و پذیرایی تمام وقت از پرسنل در حال کار و استراحت ضروری است. به طور کلی هزینه های تجهیز کارگاه زیاد می باشد.

- برای پرهیز از قطع شدن بتن سازی و بتن رسانی و ریختن آن نیاز به تأمین مرتب سیمان و مصالح دیگر وجود دارد. هم چنین باید وسایل ساخت و انتقال و ریختن و بالابر ذخیره را پیش بینی نمود و نیاز به برق اضطراری کافی وجود دارد.

- کنترل کیفی بتن و اجرای آن و میلگرد گذاری از مشکلات بیشتری برخوردار است و توقف کار برای کنترل های ضروری امکان پذیر نیست.

- مشکلاتی از نظر تغیر در زمان گیرش بتن در بخش های مختلف قالب (سمت آفتاب و مقابل آن) و در شب و روز و هم چنین در روزهای سرد و گرم در طول اجرا وجود دارد که کار را سخت می کند.

- کنترل حرکت قالب مشکل است و نیاز به افراد متخصص و با تجربه دارد.

- کار میلگرد گذاری از مشکلات خاصی برخوردار است و نیاز به برنامه ریزی دقیق دارد.

- احتمال بیشتر کاهش کیفی نمای بتن و افزایش نیاز به پرداخت سطح

- مشکل بودن اجرای سقف ها به صورت همزمان. هرچند با تدابیری می توان این کار را انجام داد و سرعت اجرا را در مجموع بالا برد.

 

7- ساز و کار کلی حرکت قالب لغزنده قائم

برای این که بتوانیم حرکت قالب لغزان قائم را به درستی درک و احساس نماییم، معمولاً به بالا رفتن یک نفر از ستون یا درخت متوسل می شویم. در ابتدا فرد پاهای خود را به شدت به ستون ف


کلمات کلیدی : اجرای قالب‌های لغزنده درعمران,قالب لغزنده,قالب پرنده,انواع قالب,قالب بندی,قالب بتن,قالب لغزنده قائم,قالب لغزنده افقی,قالب‌های رونده,قالب‌
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-اجرای اصولی سازهای بتنی و فلزی- در 35 اسلاید-powerpoin-ppt

هزینه نگهداری اسکلت بتنی کمتر است. به مرور زمان سطح بیرونی اسکلت فلزی دچار خوردگی شده و رفته رفته از ضخامت آن کاسته می شود، اقداماتی که این روند را کنترل می کنند هزینه بالایی دارند.

هزینه اجرا

از نظر هزینه اجرا، اسکلت بتنی به سه صورت زیر به صرفه تر است:

1- با احتساب کل هزینه ها، قیمت تمام شده اسکلت بتنی کمتر است.

2-هزینه خرید میلگرد، سیمان و قالب آرماتور در طول دو یا چند ماه باید پرداخت شود، اما در اسکلت فلزی همه هزینه های اجرا در دو هفته یا کمتر باید پیشپرداخت شود.

3-استاندارد و دوام اسکلت فلزی منوط به ساختن قطعات در کارخانه، استفاده از اتصالات پیچ و مهره و انجام آزمابشات تست جوش است. اما انجام این اقدامات در کشور ما هزینه های ساخت را بشدت بالاتر می برد.

حساسیت کمتر در اجرا

اجرای اسکلت بتنی در مقایسه با اسکلت فلزی از ظرافت، تخصص و حساسیت کمتری برخوردار است و با توجه به تعدد اجرای این نوع اسکلت، پیمانکاران با تجربه ای آن را اجرا می کنند.

کمانش اجزاء

کمانش اجزاء در اسکلت بتنی کمتر است و علت آن تفاوت رفتار بتن و آهن در برابر نیرو است.

دوام

در صورت رعایت استانداردهای ساخت، اسکلت بتنی با دوامتر است و در برابر عوامل محیطی کمتر فرسوده می شود.

شکل پذیری بیشتر

بدلیل امکان شکل گیری آرماتور، تنوع شکل در اسکلت بتنی بیشتر است و مقاطع متنوع تری را می توان با اسکلت بتنی ایجاد کرد.

مزایای اسکلت فلزی نسبت به اسکلت بتنی:

 

وزن کمتر سازه

اسکلت فلزی نصف اسکلت بتنی معادل خود وزن دارد.

ضریبی بعنوان مقاومت در واحد وزن وجود دارد، که در اسکلت فلزی این ضریب بزرگتر از اسکلت بتنی است. به بیان دیگر مقاومت قابل تحمل توسط یک کیلوگرم اسکلت فلزی بیشتر از یک کیلوگرم اسکلت بتنی است. در هر متر مربع ساختمان، با اسکلت فلزی (با احتساب متراژ کلیه واحدها و پارکینگ و راه پله) 250 تا 390 کیلوگرم تیر آهن استفاده می شود، اما این عدد برای ساختمان با اسکلت بتنی بین 480 تا 780 کیلوگرم در هر متر مربع است.

از نظر حجمی، در هر مترمکعب ساختمان (طول*عرض*ارتفاع سازه) با اسکلت فلزی 80 تا 130 کیلوگرم آهن استفاده می شود، اما در ساختمانهای بتنی وزن اسکلت در هر مترمکعب سازه 160 تا 250 کیلوگرم است.

تحمل نیروی کششی بیشتر

اجزاء اسکلت ساختمان (بتنی یا فلزی) در شرایط مختلف (عادی، زلزله، باد و .. ) انواع نیروهای کشش، فشار و برش را متحمل می شوند. مقاومت اسکلت فلزی در برابر نیروهای کشش، فشار و برش، نزدیک به هم و قابل قبول است، اما مقاومت اسکلت بتنی در نیروهای فشار قابل قبول بوده، اما در برابر نیروهای کششی ضعیفتر از اسکلت بتنی است.

 

نزدیکی محاسبات با واقعیت

تیر آهن (اسکلت فلزی) از جنس همگن و یکنواختی (فولاد) تشکیل شده و انواع خواص و رفتار آن در اسکلت ساختمان از نظر مهندس محاسب با دقت بالایی قابل پیشبینی است. مثلا خواص ارتجاعی آهن در اسکلت ساختمان با تقریب خوبی قابل محاسبه است اما خواص ارتجاعی بتن با چنین دقتی قابل محاسبه نیست. خواص اسکلت بتنی به عوامل بسیاری همچون دما و رطوبت هوا در حین اجرا، نوع و کارخانه سازنده سیمان، نوع و کیفیت افزودنی های سیمان و ... بستگی دارد.

سرعت در اجرا

سرعت اجرا و بالا رفتن ساختمان با استفاده از اسکلت فلزی بسیار بیشتر است. علی الخصوص وقتی تعداد سقف ها بیشتر از 6 طبقه باشد.

شرایط جوی و محدودیت اجرا

نصب اسکلت فلزی در شرایط جوی مختلف محدودیت های کمتری دارد، اما اسکلت بتنی در دماهای بسیار پایین و بارندگی های شدید متوقف می شود.

تقویت پس از اجرا

پس از اتمام اجرای اسکلت فلزی، در صورتیکه نیاز به افزایش مقاومت در قسمتهایی از آن وجود داشته باشد (تغییر در آیین نامه، اشتباه در محاسبات، اضافه شدن به بار ساختمان و ... ) این کار را با اضافه کردن قطعات جدید به اسکلت می توان انجام داد. اما در اسکلت بتنی چنین امکانی وجود ندارد.

مساحت اشغال شده کمتر

مساحت اشغال شده توسط اسکلت فلزی نصف اسکلت بتنی است. فضای اشغال شده توسط اسکلت، جزو مساحت آپارتمان محاسبه می شود اما قابل استفاده توسط ساکنین نیست.

سطح مقطع ستون در اسکلت فلزی بمراتب کوچکتر است و از یکسو فضای مفید بیشتری را برای تامین پارکینگ و انباری ایجاد کرده و از سوی دیگر نقشه زیباتری را برای واحدهای مسکونی ایجاد می کند.

به همین دلیل سازه هایی که در زمینهای کوچک (کمتر از 200 مترمربع) ساخته می شوند، معمولا از اسکلت فلزی استفاده می کنند.

هدر رفتن مصالح

هدر رفتن مصالح کار در اسکلت فلزی کمتر است.

ارزش آتی بیشتر

در صورت پایان عمر مفید ساختمان و تصمیم برای تخریب، اسکلت فلزی (تیر آهن) در بازار جهانی و ایران دارای ارزش مشخصی است و اسکلت ساختمان کهنه قابل فروش خواهد بود. اما در ساختمان های بتنی، از یکسو مقدار میلگرد استفاده شده به مراتب کمتر است و از سوی دیگر هزینه تخریب اسکلت بتنی بیشتر از اسکلت فلزی است.

نیازی به سقف کاذب ندارد

در اجرای اسکلت فلزی، نیازی به اجرای سقف کاذب نیست، ولی در صورت اجرای اسکلت بتنی، مجری برای حفظ زیبایی سقف ناگزیر از اجرای سقف کاذب خواهد بود.

 

 

 

منابع:

مباحث 22 گانه مقررات ملی ساختمان - وزارت مسکن و شهرسازی

نشریه 55 سازمان برنامه ریزی و بودجه

نشریات موسسه استاندارد و تحقیقات صنعتی ایران - مباحث ساختم

مزایای ساختمان های فلزی

مقاومت بالا : مقاومت فولاد بالا بوده و نسبت مقاومت به وزن آن از بتن بزرگتر است . این موضوع در سوله های با دهانه های بزرگ و ساختمان های مرتفع و ساختمانهائی که بر روی زمینهای سست احداث می شوند ، از اهمیت بیشتری برخوردار است . مقاومت متعادل مصالح : مقاومت فولاد در کشش و فشار یکسان و در برش نیز خوب و نزدیک به کشش و فشار است . در تغییر وضع بارها ، نیروی وارده فشاری و کششی قابل تعویض بوده و مقاطع به خوبی عکس العمل نشان می دهند . ولی مقاومت بتن در فشار مناسب بوده و در کشش و یا برش کم است . پس اگر مناطقی تحت نیروی کششی قرار گرفته و مسلح نشده باشند ، تخریب می شوند.

خواص ارتجاعی : به علت همگن بودن فولاد ، خواص ارتجاعی محاسباتی آن با تقریب بسیار خوبی مصداق عملی دارد . فولاد تا محدوده وسیعی از تنشها از قانون هوک بخوبی پیروی می کند . بعنوان مثال ، ممان اینرسی یک مقطع فولادی را می توان با اطمینان در محاسبات وارد نمود . حال اینکه در مورد بتن این ارقام خیلی معین و قابل اطمینان نیستند .

ضریب نیروی لرزه ای : در قالبهای بتن مسلح به علت وزن بیشتر ، ضریب نیروی لرزه ای از قابهای فلزی بزرگتر است .

شکل پذیری : یکی از خواص مهم مصالح فلزی شکل پذیری آنهاست . فلزات قادرند تمرکز تنش را که در واقع علت شروع خرابی است و نیروهای دینامیکی و ضربه ای را تحمل نمایند ، در حالیکه بتن ترد و شکننده بوده و عملکرد آن در مقابل این نیروها بسیار ضعیف است .

خواص یکنواخت : فولاد در داخل کارخانه و تحت نظارت دقیق تهیه می شود ، لذا خواص آن بر خلاف بتن یکنواخت است . اطمینان در یکنواختی خواص مصالح باعث انتخاب ضریب اطمینان کوچکتر می شود که این به نوبه خود منجر به صرفه جویی در مصرف مصالح می شود .

دوام: دوام فولاد بسیار خوب است . اگر در نگهداری ساختمانهای فلزی دقت کافی صورت گیرد ، برای سالیان متمادی قابل بهره برداری خواهند بود .

پیوستگی مصالح : قطعات فلزی عموما با توجه به مواد متشکه آن پیوسته و همگن هستند ، ولی در قطعات بتنی در هر زلزله به پوشش بتنی روی میلگرد صدمه وارد می گردد . ترکهائی که در پوشش بتن پدید می آید ، موجب ضعف قطعه شده و احتمال دارد که ساختمان در پس لرزه یا زلزله بعدی تخریب شود .

وزن کم : ‌میانگین وزن اسکلت فولادی بین 250 تا 390 کیلوگرم بر مترمربع و یا 80 تا 130 کیلوگرم بر مترمکعب است ، درحالی که در ساختمانهای بتن مسلح این ارقام به ترتیب بین 480 تا 780 کیلوگرم بر مترمربع یا 160 تا 250 کیلوگرم بر مترمکعب می باشد .

اشغال فضا :‌ در دو ساختمان مشابه از نظر ارتفاع و ابعاد ، ستون ها و تیرهای ساختمان فلزی از نظر ابعاد کوچکتر از ساختمان بتنی هستند ، یعنی سطح اشغال اسکلت یا فضای مرده در ساختمانهای بتنی بیشتر است .

امکان مقاوم سازی : اعضاء ضعیف ساختمان فلزی (در اثر محاسبات اشتباه ، تغییر مقررات و ضوابط ، اجراء و .... ) را می توان با اضافه نمودن قطعات جدید ، تقویت نمود ، ولی در مورد اسکلت بتنی این عمل به راحتی قابل انجام نمی باشد .

شرایط آسان ساخت و نصب : تهیه قطعات فلزی در کارخانه و نصب آن در محل ، در هر شرایط جوی با اعمال تهمیدات لازم قابل انجام است . در مورد ساختمانهای بتنی محدودیتهای بیشتری در این رابطه وجود دارد .

سرعت اجرا : سرعت نصب قطعات فلزی نسبت به قطعات بتنی بسیار بیشتر است .

پرت مصالح : با توجه به اینکه قطعات اسکلت فلزی در کارخانه تولید می شود ، میزان هدر رفتن مصالح نسبت به تهیه و بکارگیری بتن کمتر است .

معایب ساختمانهای فلزی

ضعف در برابر حرارت : مقاومت فلز با افزایش دما کاهش می یابد . اگر دمای اسکلت فلزی به حدود 600 درجه سانتی گراد برسد ، تعادل ساختمان به خطر می افتد .

خوردگی فلز در مقابل عوامل خارجی : ساختمان های فلزی در مقابل عوامل جوی دچار خوردگی شده و از ابعاد مفید آنها کاسته می شود . ضمنا مخارج نگهداری و محافظت آنها هم زیاد است .

تمایل قطعات فشاری به کمانش : با توجه به اینکه تعداد قطعات فلزی زیاد بوده و ابعاد آنها معمولا" کوچک است ، تمایل به کمانش در این قطعات زیاد بوده و این موضوع یک نقطه ضعف محسوب می شود .

جوش نامناسب : استفاده از پیچ و مهره و تهیه قطعات در کارخانه ، اقتصادی ترین و فنی ترین کار می باشد که در کشور ما برای ساختمانهای متداول انجام چنین کاری مقدور نیست . استفاده از جوش برای اتصالات ، بعلت مهارت کم جوشکاران ، قدیمی بودن ماشین آلات ، عدم کنترل دقیق توسط مهندسین ناظر ، گران بودن هزینه آزمایش جوش و ...... برزگترین ضعف اسکلتهای فلزی می باشد.

هر روز هنگام عبور از خیابان‌های شهر شاهد ساخت و سازهای روز افزونی هستیم، ساختمان‌های مختلف از یک طبقه تا ۶۰ طبقه که جلوی آنها انواع مصالح دیده می‌شود؛ سازه‌هایی که گاه از بتن ساخته می‌شوند و گاه از فولاد.در مورد اینکه کدام نوع سازه بر دیگری برتری دارد، اختلاف نظر شدیدی بین سازندگان ساختمان‌ها وجود دارد. معمولاً معیارهای ساخت، جواب‌های متفاوتی برای ما به همراه دارند.

عمده عوامل مؤثر در این روند، هزینه، زمان و کیفیت ساخت هستند. هزینه ساخت و سود حاصل از این سرمایه‌گذاری با زمان اتمام طرح رابطه تنگاتنگی دارند. بدیهی است هر چه زمان طرح طولانی‌تر ‌شود شاهد افزایش قیمت مصالح، قیمت تمام شده طرح، هزینه‌های متفرقه و بازگشت دیرتر سرمایه خواهیم بود که خوشایند هیچ سازنده‌ای نیست.

-سازه‌های بتن آرمه در مقابل سازه‌های فولادی معمولاً نیاز به هزینه کمتر و زمان بیشتری برای ساخت دارد؛ در حالی‌که سازه‌های فولادی ابتدا نیاز به سرمایه زیادی برای خرید آهن آلات دارد ولی در عوض شاهد سرعت اجرای بالاتری خواهیم بود. بنابراین در ساختمان‌های عادی کمتر از ۶ طبقه د


کلمات کلیدی : سازه های بتنی و فلزی,اجرای سازه بتنی و فلزی,سازه فلزی,سازه بتنی,انواع سازه,ساختمان بتنی,ساختمان فلزی,بتن آرمه,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-اجرای سازه های بتنی وفلزی و طرح مرمت آنها - در 40 اسلاید-powerpoin-ppt

توان‌بخشی (بهسازی)، روند و شیوه تعمیرکردن یا اصلاح کردن یک سازه به منظور دستیابی به شرایط بهره‌برداری جدید و یا افزایش عمر مفید بهره‌برداری آن است.

در واقع ما در طرح و اجرای مقاوم سازی به دنبال حصول شرایط جدید در سازه بتنی از نظر بهره برداری و یا بارگذاری می باشیم. عملیات مقاوم سازی می تواند به علل زیر مورد نیاز باشد :

  • اشتباهات و مشکلات طراحی
  • مشکلات و اشتباهات اجرایی
  • تغییر در استانداردها و آیین نامه ها
  • افزایش عمر مفید بهره برداری
  • تغییر کاربری سازه
  • افزایش طبقات و بار وارده

پر واضح است که در گزینه اول ما نیاز به شرایطی بوده ایم  یا نیازمند آن می باشیم که به علت اشتباهات در طرح و اجرا الان دارای آن نبوده و نیازمند آن می باشیم که به آن برسیم . مانند زمانی که بتن نتوانسته مقاومت لازم را کسب نماید ، یا زمانی که ابعاد عضو باربر کوچک تر از ابعاد مورد نیاز اجرا گردیده است. همچنین این امر می تواند زمانی اتفاق بیافتد که ستون به صورت خارج از محور و یا دچار پیچش شده است.

 

در چهار گزینه بعد ، سازه در شرایط موجود مشکلی نداشته و شرایط جدید بهره برداری ایجاب می کند که تغییراتی از منظر باربری در سازه ایجاد گردد. به طور مثال سازه در زمانی طراحی و اجرا می گردد و پس از چند سال تغییراتی در آیین نامه طراحی مانند آیین نامه 2800 داده می شود که نیازمند اصلاح استراکچر سازه می باشد.

یا ما سازه ایی داریم که اکنون عمر مفید آن اتمام یافته و یا در شرف اتمام است و ما تصمیم داریم چند سال دیگر از سازه بهره برداری نماییم.  همچنین ممکن است ما سازه و ساختمان داشته باشیم که طرح و اجرای ان براساس طاختمان مسکونی انجام شده باشد و در آینده ما تصمیم بگیریم از آن کاربری آموزشی و یا اداری داشته باشیم.

در خصوص گرینه آخر می توان ساختمانی را متصور شد که چند سال پس از احداث بنا به تغییرات قوانین و یا توجیهات اقتصادی تصمیم گرفته می شود طبقاتی به سازه اضافه گردد که قبلا پیش بینی نشده است.

در همه این موارد ما نیازمند ایت هستیم که باربری سازه را افزایش و به نقطه B برسانیم.

 

امروز روش های مختلفی برای مقاوم سازی و تقویت سازه های بتنی وجود دارد. هر یک از روش های دارای مزایا ، معایب و محدودیت هایی می باشند. از جمله مهمترین عوامل موثر در انتخاب روش تعمیر می توان به ابعاد و محدودیت های ابعادی در روش تعمیر ، محدودیت های معماری ، محدودیت ها افزایش باربری ، محدودیت های زمانی ، محدودیت های بهره برداری اشاره کرد.

 

برخی از انواع روش های مقاوم سازی سازه های بتنی به شرح ذیل می باشد :

  • استفاده از الیافFRP
  • ژاکت بتنی
  • ژاکلت فلزی
  • افزایش ابعاد عضو باربر
  • افزایش ظرفیت برابر بستر ( مقاوم سازی فونداسیون )
  • افزایش دیوارهای برشی
  • افزایش اعضا باربر و کاهش بار وارده به عضو باربر
  • ...

لازم به ذکر است در پاره ای موارد ممکن است عملیات مقاوم سازی به صورت همزمان با فرآیند ترمیم و تعمیر انجام شود تا سازه موجود ابتدا به شرایط قابل بهره برداری رسید و سپس ظرفیت های آن ارتقاء داده شود.

 

روش های مقاوم سازی ستون های بتنی در ساختمان و سازه های صنعتی

 

تأثیر دورپیچ کردن ستونهای بتن مسلح (با مقطع دایروی) با مصالح FRP در رفتار خمشی ـ محوری

تا پیش از دهه 1990، دو روش مرسوم برای مقاوم سازی ستونهای بتن مسلح بی کفایت وجود داشت. یکی اجرای یک غلاف بتن مسلح اضافی به دور ستون موجود و دیگری استفاده از غلاف فولادی با تزریق دوغاب. استفاده از روش غلاف فولادی، به دلیل آنکه غلاف بتن مسلح فضای بیشتری اشغال کرده و وزن سازه را نیز افزایش می داد، فراگیرتر و مؤثرتر بوده است. البته هر دو روش یاد شده، نیازمند نیروی کار زیاد بوده و اغلب برای انجام در کارگاه مشکل می باشند. همچنین غلاف فولادی در مقابل حمله شرایط جوی مقاومت کمی دارد.

در سالهای اخیر کاربرد روش مقاوم سازی ستونهای بتن مسلح با استفاده از مصالح FRP به جای غلاف فولادی بطور گسترده ای توسعه یافته است. مرسومترین شکل مقاوم سازی ستونهای بتن مسلح با مصالح FRP شامل دورپیچ کردن بیرونی ستون با استفاده از ورقها یا نوارهای FRP است.

مقاوم سازی ستونهای موجود بتن مسلح با استفاده از غلاف فولادی یا FRP بر مبنای این حقیقت استوار است که محصورشدگی جانبی بتن، سبب افزایش قابل توجه مقاومت فشاری محوری، محوری ـ خمشی و شکل پذیری ستون می گردد. مطالعات بسیاری در مورد مقاومت فشاری و رفتار تنش ـ کرنش بتن محصور شده با FRP انجام شده است. این مطالعات بیانگرد آن هستند که رفتار بتن محصور شده با FRP با رفتار بتن محصور شده با فولاد متفاوت بوده و بنابراین توصیه های طراحی توسعه یافته برای ستونهای بتنی محصور شده با غلاف فولادی، علیرغم تشابه ظاهری، برای ستونهای بتنی محصور شده با FRP قابل کاربرد نیستند.

 

مشکلات اجرایی سازه های بتنی موجود و بهسازی آنها

حرکت استمراری علم در عرصه مهندسی سازه ـ زلزله موجب گردیده است تا نوسازی و بهسازی در سالهای در اخیر از روشهای نوین و مصالحی جدید بهره گیرد که در پیشینه طولانی ساخت و ساز سابقه نداشته است در میان این نوآوری ها FRP (مواد کامپوزیت پلیمری تقویت شده با الیاف) از جایگاه ویژه برخوردار می باشد تا آنجا که به نظر برخی از متخصصانFRP را باید مصالح ساختمانی هزاره سوم نامید. کامپوزیت FRP که ابتدا در صنایع هوا و فضا بکار برده شد با داشتن ویژگی های ممتاز چون نسبت بالای مقاومت به وزن، به وزن، دوام در برابر خوردگی، سرعت و سهولت  در حمل و نصب، دریچه ای نو پیش روی مهندسین عمران گشوده است به گونه ای که امروز سازه های متعددی در سرتاسر دنیا با استفاده از این مواد تقویت شدند استفاده از مصالح کامپوزیت به طور قابل توجهی در صنعت ساختمان یک بازار تکان دهنده و با سرعت در حال توسعه می باشد. اولین تحقیقات انجام شده در این زمینه از اوایل دهه 1980 آغاز شده است، زلزله 1990 کالیفرنیا و 1995 کوبه ژاپن نیز از جمله عوامل موثرتری برای بررسی کاربرد کامپوزیت پلیمری تقویت شده با الیافFRP جهت تقویت و مقاوم سازی سازه های بتنی و بنایی در مناطق زلزله خیز گردید.

کاربرد ورق یا کامپوزیت FRP در مقاوم سازی سازه های بتن مسلح امروزه نگهداری از سازه ها به دلیل هزینه ساخت و تعمیر بسیار حائز اهمیت می باشد با مطالعه رفتار سازه های بتنی مشخص می شود عوامل متعددی مانند: اشتباهات طراحی و محاسبه، عدم اجرای مناسب تغییر کاربری سازه ها، آسیب دیدگی ناشی از وارد شدن بارهای تصادفی، خوردگی بتن و فولاد و شرایط محیطی از دوام آنها می کاهد ضمناً تغییر آیین نامه های ساختمانی (باعث تغییر در بارگذاری و ضرایب اطمینان می شود) نیز سبب ارزیابی و بازنگری مجدد طرح و سازه می گردد تا در صورت لزوم بهسازی و تقویت شود. سیستمهای الیاف مسلح شده پلیمری FRP برای تقویت سازه های بتنی پدیدار شده و به عنوان یک جانشین برای روش های سنتی از قبیل چسباندن صفحات فولادی، افزایش سطح مقطع با بتن ریزی مجدد و پیش تنیدگی خارجی می باشد. 
با توجه به معایب این روشها مانند بازدهی کم و یا نیاز به امکانات و فن آوری خاص امروزه روش های مقاوم سازی با استفاده از کامپوزیت توسعه روز افزون دارد.

محدودیت استفاده و کاربرد کامپوزیت در مهندسی ساختمان به قیمت بالای آنها برمی گردد البته هزینه و قیمت آنها به تدریج رو به کاهش می باشد به این ترتیب استفاده از آنها بیشتر و بیشتر خواهد شد. استفاده از FRP در زمینه مقاوم سازی ، هر چند که هزینه بالایی در بردارد، اما با توجه به هزینه اجرای کم و نیز سایر مزایای FRP، در کل به صرفه ترین و موثر ترین راه مقاوم سازی سازه های بتنی امروزه به شمار می رود.

در این حین، جهت استفاده صحیح و مناسب از این ماده و طراحی مقاوم سازی سازه های بتنی، آیین نامه ها، راهنماها و گزارشهایی در سراسر جهان منتشر گردید با توجه به شروع رشد و استفاده از مواد FRP ، در ایران تدوین راهنمایی برای طراحی مقاوم سازی به کمک این مواد، بسیار ضروری است

 

مقاوم سازی ستون های بتنی موجود با بکارگیری الیاف FRP

  • مقاومسازی اعضای بتنی با مصالح کامپوزیتیFRP روش نسبتا جدیدی به شمار می رود. مصالح FRP خواص فیزیکی مناسبی دارند که می توان به مقاومت کششی بالا و ضخامت و وزن کم آنها اشاره نمود . در ستونهای بتنی استفاده از FRP ضمن افزایش ظرفیت برشی ستون، مدگسیختگی آن را از حالت برشی به خمشی تغییر داده و شکل پذیری را به میزان قابل توجهی افزایش می دهد.
  • دورپیچی اعضای فشاری با الیافFRP باعث افزایش مقاومت فشاری آنها می گردد . این امر همچنین باعث افزایش شکل پذیری اعضا تحت ترکیب نیروهای محوری و خمشی می شود.
  • برای محصور کردن عضو بتنی، لازم است راستای الیاف تا حد امکان عمود بر محور طولی عضو باشد . در این وضعیت، الیاف حلقوی مشابه تنگ های بسته یا خاموت های مارپیچی فولادی عمل می کنند. در محاسبه مقاومت فشاری محوری عضو باید از سهم الیاف موازی با راستای طولی آن صرفنظر گردد.
  • هنگامی که ستون یا عضو فشاری تحت بارهای لرزه ای قرار می گیرد، مسئله ظرفیت جذب انرژی و شکل پذیری ستون اهمیت می یابد. در ا ین ارتباط مقاوم سازی یا بهسازی آن عضو با افزایش شکل پذیری انجام می گیرد.

 

 

مقاوم سازی ستون با استفاده از روکش بتنی (Concrete jacket)

  • روکش بتنی شامل لایه ای از بتن، میلگردهای طولی و خاموت های بسته می باشد. روکش بتنی مقاومت خمشی و برشی ستون را افزایش می دهد و افزایش شکل پذیری ستون در این حالت کاملاً مشهود است.
  • روکش بتن آرمه در مواردی که میزان شدت آسیب های وارده به ستون زیاد باشد و یا ستون از ظرفیت کافی در برابر نیروهای جانبی برخوردار نباشد، بکار گرفته میشود.
  • روکش بتنی بسته به شرایط می تواند دور تا دور ستون و یا در یک وجه آن اجرا شود.مناسب بودن طرح روکش بتنی به پیوستگی آن با عضو بستگی دارد
  • اگر ضخامت روکش بتنی کم باشد، افزایش سختی در ستون مقاوم سازی شده محسوس نمی باشد.
  • روکش بتنی باعث افز ایش ابعاد ستون می گردد که علاوه بر مسائل معماری، وزن ساختمان را نیز افزایش میدهد.
  • روکش بتن آرمه در مواردی که میزان شدت آسیب های وارده به ستون زیاد باشد و یا ستون از ظرفیت کافی در برابر نیروهای جانبی برخوردار نباشد، بکار گرفته میشود.
  • روکش بتنی بسته به شرایط می تواند دور تا دور ستون و یا در یک وجه آن اجرا شود.مناسب بودن طرح روکش بتنی به پیوستگی آن با عضو بستگی دارد
  • اگر ضخامت روکش بتنی کم باشد، افزایش سختی در ستون مقاوم سازی شده محسوس نمی باشد.
  • روکش بتنی باعث افز ایش ابعاد ستون می گردد که علاوه بر مسائل معماری، وزن ساختمان را نیز افزایش میدهد.

 

مزایای  استفاده از ژاکت بتنی

  1. امکان اصلاح همزمان کلیه مشکلات سختی و مقاومتی در قابهای بتنی
  2. اصلاح اتصالات در قابها
  3. امکان اصلاح باربری ثقلی ستونها
  4. سهولت ایجاد پیوستگی بین اعضا
  5. عدم نیاز به پوشش ضد حریق
  6. دخالت ناچیز در معمار

 


کلمات کلیدی : اجرای سازهای بتنی وفلزی و طرح مرمت آنها,سازه های فولادی,سازه های بتنی, اجرای سازه,مقاوم سازی سازه,مرمت سازه ها, احیا و مقاوم سازی سازه ها,مقاو
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-اجرای شمع کوبی سازه ها-100 اسلاید-pptx

هنگامی که برای اجرای سازه ای سایت پروژه در نظر گرفته میشود باید ابتدا جنس خاک و نوع مواد بکار رفته در آن مورد آزمایش قرار گیرد تا مشخص شود که منطقه توانایی تحمل وزن سازه و سایر عملیات های جرایی را دارد یا خیر ؟ از این رو برای جلوگیری از عواملی هچون نشست ساختمان ها و ترک برداشتن و قبل از ساخت سازه ها عملیاتی همچون شمع کوبی برای محکم کردن خاک صورت میگیرد بنابراین شمع کوبی را میتوان به یکی از کار های قبل از اجرای پروژه اصلی و در هنگام تحلیل سایت معماریصورت می گیرد .

انواع مختلف شمع

شمع‌هایی که قرار گرفتن آن در زمین همراه با جا به جایی زیاد در خاک مجاور است، شامل انواع زیر هستند.

  • شمع چوبی
  • شمع بتن مسلح پیش ساخته یا پیش فشرده
  • شمع بتن مسلح ریخته شده در محل
  • شمع لوله بتنی که با ته بسته در زمین کوبیده شده و داخل آن بعداً بتن ریزی شود
  • شمع لوله فلزی که با ته بسته در زمین کوبیده شده و داخل آن بعداً بتن ریزی شود اعم از آنکه لوله در جا بماند یا بعداً بیرون کشیده شود

شمع‌هایی که قرار گرفتن آنها در زمین همراه با جابه جایی خاک مجاور نیست، به قرار زیر است.

  • انواع شمع بتن مسلح با مقطع دایره یا غیر دایره که پس از حفاری در محل بتن ریزی می‌شود.
  • ‌انواع شمع‌های فلزی با مقاطع دایره و غیر دایره که قبل از کوبیده شدن در زمین، محل قرار گرفتن آنها حفاری می‌شود.

شمع چوبی

شمع‌های چوبی معمولاً در نقاطی که چوب مناسب، فراوان و ارزان باشد، در ساختمان‌های موقتی یا اگر سطح فوقانی شمع چوبی در زیر تراز آب ساکن دائمی باشد، در ساختمان‌های دائمی مصرف می‌شود.

مشخصات شمع

تمامی مشخصات شمع‌های چوبی باید با مشخصات ASTM D25 تطبیق نماید.

قطر قسمت انتهایی شمع، در فاصله یک متری از انتهای شمع اندازه‌گیری می‌شود‌.

عرض ترک، در شمع‌های چوبی خام و شمع‌های چوبی اصلاح شده نباید قبل از کوبیدن به ترتیب از ۱ سانتیمتر و ۱/۲۵ سانتیمتر تجاوز نماید. کجی چوب در یک قطعه ٢ متری از شمع چوبی، می‌تواند حداکثر معادل ١% طول آن باشد.

اصلاح و تقویت شمع چوبی

شمع‌های چوبی باید سالم و پوست کنده باشد. رطوبت طبیعی شمع‌های چوبی خام که به کارگاه وارد می‌شود نباید کمتر از ۱۸ درصد در عمق ۵ سانتیمتری از سطح شمع باشد. شمع‌های چوبی باید پس از اصلاح حداکثر ظرف مدت ۶ ماه کوبیده شوند. رطوبت طبیعی شمع‌های چوبی اصلاح شده نیز نباید کمتر از ۱۸ درصد، در عمق ۵ سانتیمتری چوب، قبل از عملیات حفاظتی باشد. شمع‌های چوبی باید به وسیله نوار فلزی در فاصله حداقل هر ۳ متر طول شمع، تقویت شوند.

تمامی بریدگی‌ها و سوراخ‌های شمع‌های چوبی باید به وسیله دو بار اضافه کردن مواد مخصوص حفاظت چوب از قبیل کرندت، گودرون، قیر مذاب و مواد مشابه که مورد تأیید دستگاه نظارت باشد اصلاح شوند. چنانچه شمع چوبی یکپارچه نبوده و اتصال قطعات آن به هم لازم باشد، جزئیات طرز اتصال باید طبق نقشه‌ یا با تصویب دستگاه نظارت انجام گیرد. محل اتصال نباید در وسط طول شمع واقع شود. از نگاهداری شمع چوبی در محل‌هایی که در معرض عوامل فساد چوب است باید اکیداً خودداری شود و محل انبار کردن و نگاهداری شمع‌ها باید مورد تأیید دستگاه نظارت قرار گیرد.

حفاظت سر شمع‌ها

پس از کوبیدن و قطع شمع‌ها تا ارتفاع مورد نیاز، سر تمامی آنها باید بریده و به یکی از روش‌های زیر اصلاح شود.

  • ‌یک لایه مواد حفاظتی چوب به سر شمع مالیده شود و سپس کلاهک حفاظتی از قشرهای قیر و گونی به آن اضافه شود، به طوری که سه قشر قیر و دو لایه گونی به کار برده شود. گونی باید از هر طرف سر شمع معادل ۱۵ سانتیمتر بلندتر بوده و بر روی شمع تا شود، سپس به وسیله سیم شماره ۱۰ گالوانیزه که دو بار بر روی آن پیچیده می‌شود به شمع متصل شود. قشر نهایی قیر بعد از عمل مهار کردن گونی بر روی آن کشیده می‌شود. بنابراین پوشش قیر، بر روی سیم نیز قرار می‌گیرد.
  • ‌محل بریده شده سر شمع، سه بار با مخلوط گرم کروئوزوت معادل ۶۰ % و قیر معادل ۴۰ %، پوشیده شود و یا سه بار با کروئوزوت گرم برس زده شود و به وسیله قیر پوشیده شود و سپس یک ورق گالوانیزه روی این پوشش قرار داده و اطراف آن را خم کنند تا آب به سر شمع برخورد ننماید. پیمانکار می‌تواند هریک از دو روش فوق را جهت حفاظت سر شمع‌ها انتخاب نماید، مگر آنکه در نقشه‌ها یا مشخصات فنی اختصاصی پیش‌بینی دیگری شده باشد. عملیات حفاظتی برای شمع‌هایی که در بتن قرار می‌گیرند ضروری است.

شمع بتنی پیش ساخته

شمع‌های بتنی پیش‌ ساخته در ساختمان‌های دائمی و در زمین‌هایی که کوبیدن شمع بتنی پیش ساخته از نظر سختی زمین میسر باشد، مورد استفاده قرار می‌گیرد.

ساختن شمع

شمع‌های بتنی پیش ساخته باید بر روی یک سکوی محکم و هموار ساخته شوند. بتن شمع‌های پیش ساخته باید در قالب‌های صاف و بدون عیب و درز ریخته شود. قالب‌ها باید به نحوی باشد که هیچ گونه نشست یا تغییر شکل در آنها به وجود نیاید. بتن شمع‌ها باید صاف و بدون عیب و کرم خوردگی و فضای خالی باشد و ابعاد آن طوری باشد که اگر یک خط مستقیم از نوک شمع تا انتهای آن در طول شمع کشیده شود، اختلاف فاصله این خط از لبه شمع از ۲/۵ سانتیمتر تجاوز ننماید. مقاومت فشاری بتن شمع‌های بتنی پیش ساخته حداقل مساوی ۲۵۰ کیلوگرم بر سانتیمتر مربع است.

شمع‌ها باید طوری روی هم چیده و انبار شوند که عبور هوا از بین آنها ممکن باشد. محل انبار کردن شمع بتن مسلح باید طوری انتخاب شود که کف محل انبار مقاومت کافی داشته باشد. قرار دادن شمع‌ها روی هم بدون آنکه قطعه تخت‌های در دو طرف شمع بین آنها قرار داده شود ممنوع است. محل مجاز برای قرار گرفتن تخته‌ها حدود محلی است که قلاب بلند کردن در آن حدود قرار داده شده است. این قطعات چوبی باید در جهت محور عمود بر کف انبار کاملاً روی هم واقع باشد و خستگی اضافی در اثر انبار کردن به شمع تحمیل نشود.

حمل و کوبیدن شمع‌ها

شمع‌ها باید هنگام حمل و نقل در نقاطی که در نقشه‌ها نشان داده شده تکیه نمایند. و هنگام جابه‌جا کردن‌ها و حمل و نقل بین سکوی بتن ریزی، انبار دسته بندی و تجهیزات شمع کوبی، از یک قلاب‌ یا وسیله مصوب دیگری استفاده شود. همچنین در موقع بلند کردن شمع‌ها در محل شمع کوبی، باید از نوار سیمی، قلاب یا وسیله مصوب دیگر استفاده کرد.

دستگاه‌های شمع کوبی باید به چکش با ظرفیت کوبندگی لازم برای شمع‌ها مجهز بوده و باید چرخ‌های کشش جداگانه برای بلند کردن چکش و شمع‌ها به طور مستقل از هم داشته باشد. حداقل وزن چکش شمع کوب ۱۳۶۰ کیلوگرم ( ۳۰۰۰ پوند) است و ارتفاع افتادن چکش باید کمتر از ۳ متر باشد. وزن چکش با نیروی وارده به شمع باید طوری باشد که شمع در هر ضربه لااقل ۳ میلیمتر در زمین فرو رود. جرثقیلی که دستگاه شمع کوبی روی آن نصب شده باید قادر باشد در حالی که چکش و شمع هر دو به طور معلق از آن آویزان است تغییر مکان داده و مضافاً بتواند در حال آویزان بودن چکش و شمع دور خود بچرخد. شمع کوب باید مجهز به یک هادی محکم که به طور استوار بر جای خود تکیه کند، جهت هدایت شمع‌های عمودی و همچنین شمع‌های مورب، باشد.

شمع‌ها باید در موقع قرار گرفتن و کوبیده شدن به نحوی هدایت شوند که دقیقاً شاقول و یا با زاویه مورب مقرر کوبیده شوند و از وضع صحیح شمع‌ها اطمینان حاصل شود. شمع‌هایی که با دقت مقرر کوبیده نشده، باید بیرون کشیده و مجدداً کوبیده شوند. یا اینکه شمع جدیدی در مجاورت آن کوبیده شود. این گونه عملیات اضافی کلاً به هزینه پیمانکار خواهد بود.

در بعضی مواقع کوبیدن یک شمع ممکن است باعث بالا آمدن یک یا یک گروه از شمع‌های مجاور که قبلاً کوبیده شده‌اند شود. این احتمال در مورد شمع چوبی بیشتر است. با اتخاذ تدابیر مناسب از جمله پیش حفاری از وقوع چنین اتفاقی باید جلوگیری نمود.

ارزش باربری و نفوذ

شمع‌های کوبیدنی، (به جز آن دسته از شمع‌هایی که تحت آزمایش بارگذاری قرار می‌گیرند) باید تا رسیدن به میزان باربری معینی که در نقشه‌ها یا مشخصات فنی خصوصی ارائه شده‌ کوبیده شوند. همچنین این شمع‌ها باید حداقل تا ۳/۶ متر (۱۲ فوت) در داخل زمین طبیعی نفوذ کنند و در صورتی که برای نوک شمع تراز معینی تعیین شده باشد، باید حداقل به آن تراز برسند مگر آنکه دستگاه نظارت دستور دیگری در این مورد ابلاغ نماید. شمع‌هایی که تحت آزمایش بارگذاری قرار می‌گیرند باید تا تراز تعیین شده کوبیده شوند.

سطح زمین طبیعی در مناطقی که خاکریزی شده عبارت است از سطح زیر خاکریزی یا سطح زیر سر شمع، هرکدام که پایین‌تر است. در صورتی که بار طراحی شمع در نقشه‌ها یا مشخصات فنی خصوصی ارائه نشده باشد، باید شمع‌ها را تا رسیدن به میزان باربری برابر ۴۵ تن کوبید.

بریدن سر شمع

آرماتورهای موجود در شمع‌ها باید طبق اندازه‌هایی که در نقشه‌ها نشان داده شده در بتن قرار گیرد. آرماتورهای سر شمع‌ها باید با ابزارآلات دستی یا مکانیکی بریده شود. منفجر نمودن سر شمع‌ها جز با تصویب دستگاه نظارت مجاز نخواهد بود. سر شمع‌ها باید در ارتفاعی بین کف ابنیه فوقانی و پایین ترین لایه آرماتور فولادی آن ابنیه قطع شود. هرگاه بتن سر شمع‌ها تا میزانی پایین‌تر از ارتفاع فوق آسیب ببیند، پیمانکار باید به هزینه خود سر شمع را مرمت نماید. دستگاه نظارت ممکن است در چنین مواردی برای پوشش آرماتورها ضخامت تعیین نماید.

تطویل شمع

در صورتی که طول یک قطعه شمع بتنی برای تحمل بارهای در نظر گرفته شده کافی نبوده و احتیاج به تطویل داشته باشد، معمولاً یکی از روش‌های زیر باید انجام گیرد.

  1. تطویل شمع به روش بتن ریزی در محل
  2. به کار بردن اتصالات مخصوص

شمع فلزی


کلمات کلیدی : اجرای شمع کوبی سازه ها,شمع کوبی,روشهای شمع کوبی,شمع پیش ساخته,شمع بتنی درجا,شمع و بتن ریزی,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...