شرح مختصر : امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد . با استفاده از پرسش های ساده در SQL و ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است .
از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند . داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند .
در پروژه داده کاوی از بخشی از علم آمار به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شود . علاوه بر این داده کاوی با هوش مصنوعی و یادگیری ماشین نیز ارتباط تنگاتنگی دارد ، بنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها ، هوش مصنوعی ، یادگیری ماشین و علم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود . باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها ، در حد مگا یا ترابایت ، مواجه باشیم . در تمامی منابع داده کاوی بر این مطلب تاکید شده است . هر چه حجم داده ها بیشتر و روابط میان آنها پیچیده تر باشد دسترسی به اطلاعات نهفته در میان داده ها مشکلتر می شود و نقش داده کاوی به عنوان یکی از روشهای کشف دانش ، روشن تر می گردد.
فهرست :
چکیده
مقدمه
پرسشنامه
پروژه داده کاوی
معرفی فیلدهای پرسشنامه
مراحل انجام کار با کلمنتاین
الگوریتم C5.O
خوشه بندی
K-means
Kohonen
قواعد تلازمی
Apriori
شبکه عصبی
Neuralnet
استفاده از پارتیشن
استفاده از C5.O
استفاده از Neuralnet
استفاده از Bayes Net
تعداد صفحات:26
دانلود پروژه داده کاوی ثبت احوال با نرم افزار کلمنتاین
حجم فایل : 2,360 کیلوبایت
شرح مختصر : با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات , بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سیستمهای داده کاوی ,این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند . داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و… داریم ، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .
فهرست :
چکیده
مقدمه
کشف دانش در پایگاه داده
آیا داده کاوی برای حل مسائل ما مناسب است؟
جمع آوری داده ها
بکارگیری نتایج
استراتژیهای داده کاوی
پیش گویی Perdiction
Unsupervised Clustering دسته بندی بدون کنترل
تکنیکهای داده کاوی تحت کنترل
شبکه عصبی
برگشت آماری
قوانین وابستگی
الگوریتم Apriori
الگوریتم Aprior TID
الگوریتم partition
الگوریتم های MaxEclat,Eclat
الگوریتم با ساختار trie
الگوریتم fp-grow
ساخت fp- tree
Fp-tree شرطی
الگوریتم برداری
نگهداری قوانین وابستگی
الگوریتم کاهشی
تعداد صفحات:22
دانلود مقاله نگاهی بر داده کاوی و کشف قوانین وابستگی
حجم فایل : 273 کیلوبایت
شرح مختصر : داده کاوی به استخراج دانش از داده ها اشاره دارد و هسته اصلی آن در فصل مشترک یادگیری ماشین، آمار و پایگاه داده است.یک اتوماتای یادگیر را میتوان بصورت یک شئ مجرد که دارای تعداد متناهی عمل است، در نظر گرفت. اتوماتای یادگیر با انتخاب یک عمل از مجموعه عمل های خود و اِعمال آن بر محیط، عمل میکند. عمل مذکور توسط یک محیط تصادفی ارزیابی میشود و اتوماتا از پاسخ محیط برای انتخاب عمل بعدی خود استفاده میکند. در این مقاله یک کاوش کننده بر پایه اتوماتای یادگیر پیشنهاد شده است که LA-miner نام گذاری شده است.
فهرست :
چکیده مقاله
داده کاوی
اتوماتای یادگیر
داده کاوی با استفاده از اتوماتای یادگیر
نتایج آزمایشات
منابع و ماٌخذ
تعداد اسلاید:52
شرح مختصر : امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد. با استفاده ار پرسش های ساده درSQL و ابزارهای گوناگون گزارش گیری معمولی، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد، کاربران هر چقدرحرفه ای و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند، هزینه عملیات از نظر نیروی انسانی و مالی بسیار بالا است. بنابراین میشود گفت که درحال حاضر یک تغییر الگو از مدل سازی و تحلیل های کلاسیک برپایه اصول اولیه به مدل های درحال پیشرفت و تحلیل های مربوط بطور مستقیم از داده ها وجود دارد. داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.
در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده اند. در برخی از این تعاریف داده کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده ها می سازد معرفی گردیده است و در برخی دیگر، تعاریف دقیقتر که درآنها به کاوش در داده ها توجه می شود موجود است.
9صفحه
مشخصات فایل
عنوان:استفاده از روشهای داده کاوی در تشخیص نفوذ به شبکه های کامپیوتری
قالب بندی: پاورپوینت
تعداد اسلاید:16
عناوین مورد بحث
نفوذ ( حمله ) :
نفوذ به عملیاتی اطلاق میشود که تلاش می کند برای دسترسی غیر مجاز به شبکه یا سیستم های کامپیوتری از مکانیسم امنیتی سیستم عبور کند. این عملیات توسط نفوذ کننده گان خارجی و داخلی انجام میشود
مشخصات فایل
عنوان: دانلود تحقیق و مقاله پیرامون داده کاوی در بانک اطلاعاتی
قالب بندی: word
تعداد صفحات:10
محتویات
معرفی دادهکاوی و دلایل پیدایش آن
تعاریف داده کاوی
جایگاه دادهکاوی در علوم کامپیوتر
1-1 مقیاس دهی اعشاری
2-1 نرمال سازی حداقل-حداکثر
3-1 نرمال سازی انحراف معیار
2-1 کاهش زمان محاسبه.
2-2 افزایش یادگیری در دقت پیشگویانه/توصیفی.
2-3 سادگی در ارائه مدل داده کاوی.
مقدمه
امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها، نیاز به ابزاری است تا بتوان داده های ذخیره شده پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.
با استفاده ار پرسش های ساده درSQL و ابزارهای گوناگون گزارش گیری معمولی، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها بالا باشد، کاربران هر چقدرحرفه ای و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شند، هزینه عملیات از نظر نیروی انسانی و مالی بسیار بالا است.
بنابراین میشود گفت که درحال حاضر یک تغییر الگو از مدل سازی و تحلیل های کلاسیک برپایه اصول اولیه به مدل های درحال پیشرفت و تحلیل های مربوط بطور مستقیم از داده ها وجود دارد.
داده کاوی یکی از مهمترین این روشها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.
تعاریف داده کاوی
در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده اند. در برخی از این تعاریف داده کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده ها می سازد معرفی گردیده است و در برخی دیگر، تعاریف دقیقتر که درآنها به کاوش در داده ها توجه می شود موجود است.
برخی از این تعاریف عبارتند از :
نکته: همانگونه که در تعاریف گوناگون داده کاوی مشاهده می شود، تقریبا در تمامی تعاریف به مفاهیمی چون استخراج دانش ، تحلیل و یافتن الگوی بین داده ها اشاره شده است.
" داده کاوی فرآیندی است که طی آن با استفاده از ابزار های تحلیل داده به دنبال کشف الگوها و ارتباطات میان داده های موجود که ممکن است منجر به استخراج اطلاعات جدیدی از پایگاه داده گردند، می باشد."
در داده کاوی از بخشی از به نام تحلیل اکتشافی داده ها استفاده می شود که در آن بر کشف اطلاعات نهفته و ناشناخته از درون حجم انبوه داده ها تاکید می شودبنابراین می توان گفت در داده کاوی تئوریهای پایگاه داده ها، هوش مصنوعی، یادگیری ماشین وعلم آمار را در هم می آمیزند تا زمینه کاربردی فراهم شود.
باید توجه داشت که اصطلاح داده کاوی زمانی به کار برده می شود که با حجم بزرگی از داده ها در حد گیگابایت یا ترابایت، مواجه باشیم که از این نظر یکی از بزرگترین بازارهای هدف، انبارجامع داده ها، مراکز داده وسیستم های پشتیبانی تصمیم برای بدست آوردن تخصص هایی در صنایعی مثل شبکه های توزیع مویرگی، تولیدف مخابرات، بیمه و... می باشد.
نکته: در تعاریفی که از داده کاوی ارائه شد به اصطلاح "فرایند" اشاره شد. حتی در بعضی محیط های حرفه ای این نظر وجود دادرد که داده کاوی شامل انتخاب و بکارگیری ابزارهای مبتنی بر کامپیوتر برای حل مسائل فعلی و بدست آوردن یک راه حل بطور اتوماتیک و خودکار میباشد.
برای اموزش داده کاوی، باید بر مفاهیم و روش های اعمال شده برخلاف همه جاذبه های ابزارهای مبتنی بر کامپیوتر که امور رابا جزئیات ودستورات با فرمت های خاصی باید به خیلی از سوالات از جمله چگونگی طراحی واستفاده از فرایندها را پاسخ داد به جای بیان جزئیات عملی ابزار مختلف داده کاوی تکیه نمود.
طبقه بندی روش های داده کاوی:
در این روش توصیف، هدف کلی بدست اوردن یک شناخت از سیستم های تجزیه و تحلیل شده توسط الگوها و روابط بین داده هایData Warehouse ها که تحت عناوینی مثل کشف الگوی ترتیبی، کشف قانون وابستگی و خوشه بندی هستند، می باشد.
مراحل فرایند کشف دانش از پایگاه داده ها
فرایند کشف دانش از پایگاه داده ها شامل پنج مرحله است که عبارتند از:
بیان مسئله و فرموله کردن فرضیه:
در ابتدای امر پیش زمینه کشف دانش، فهم درست داده و مساله می باشد. بدون این فهم درست هیچ الگوریتمی صرف نظر از خبره بودن آن نمی تواند نتیجه مطمئنی برای شما حاصل نماید و داده را جهت کاوش آماده نموده یا نتایج را به طور صحیح تفسیر نمود. برای استفاده بهتر از داده کاوی باید یک بیان واضح از هدف داشت. در این مرحله انچه نیاز است ترکیبی از تخصص یک زمینه کاربردی و یک مدل داده کاوی است و شاید بتوان گفت یک تقابل نزدیک سر یک مسئله واحد و چندین فرضیه فرموله شده بین متخصصین داده کاوی و متخصصین کاربردی میباشد.
این مرحله درارتباط با چگونگی تولید و جمع آوری داده ها است.
بطور کلی، دو امکان وجود دارد:
روش آزمون طراحی: زمانی است که فرایند تولید داده ها تحت کنترل یک متخصص کاربردی)مدل ساز سیستم( باشد.
روش دیداری: امکان دوم زمانی مطرح است که متخصص قادر به تولید فرآیند نیست یعنی تولید داده بصورت تصادفی در نظر گرفته شود.
پس از اینکه داده ها جمع اوری شدند یا در فرایند جمع اوری داده ها تا اندازه ای قرار گرفتند، توزیع نمونه گیری کاملا نامعلوم است.(یعنی داده هایی که بعدا برای تست و بکارگیری آن مدل بکار می روند از چند نمونه مشابه استفاده می شوند.)
نکته: برای فرایند داده کاوی داده ها ی مورد نیاز موجود در انبار داده ها باید انتخاب شوند. درک این مطلب که برای ارزیابی یک مدل که بعدا برای تست و بکارگیری آن مدل بکار می رود، موفقیت آمیز باشد، بسیار مهم است در غیر اینصورت نتایج درستی حاصل نمی گردد.
مثلا انبار داده ها شامل انواع مختلف و گوناگونی از داده ها است به عنوان مثال در یک پایگاه داده های مربوط به سیستم فروشگاهی، اطلاعاتی در مورد خرید مشتریان، خصوصیات آماری آنها،dispatcher ها (توزیع کنندگان)، مشتریان، حسابداری و ... وجود دارند که همه آنها در داده کاوی مورد نیاز نیستند.
زمانی که که داده های مورد نیاز از پایگاه داده های موجود در انبار داده ها "جمع اوری" شدند و داده های مورد کاوش مشخص گردیدند، معمولا به تبدیلات خاصی روی داده ها نیاز است که شامل حداقل دو مرحله متداول می باشد:
داده های غیرعادی یا غیر معمول درحقیقت داده های نتیجه سنجش خطاها، کدنویسی و ثبت خطاها است. دراینجا باید یا 1. داده های غیرعادی را تشخیص داد و خذف کرد ویا 2. باید روش های قوی مدل سازی رابگونه ای توسعه داد که نسبت به این نوع داده ها غیر حساس باشند.
در تبدیل داده ها توصیه میشود که داده ها را جهت تحلیل و بررسی مقیاس بندی و ورمزگذاری کرد. مثلا یک مشخصه با دامنه [0,1] ودیگری با دامنه [-100,1000] دارای ارزش مشابهی در تکنیک های اعلام شده نیستند. که در صورت نادیده گرفتن همین تفاوت در دامنه داده ها، روی نتایج نهایی داده کاوی تاثیر خواهند گذاشت.
و . . .
مشخصات فایل
عنوان: پاورپوینت درمورد وب کاوی
قالب بندی: پاورپوینت
تعداد اسلاید: 27
محتویات
عناوین
قسمتی از پاورپوینت
مقدمه:
در حال حاضر وب،یکی از مهمترین پایگاههای اطلاعاتی است که تعداد صفحات موجود در آن از مرز 4 میلیارد هم گذشته است.
استخراج داده مفید و مناسب از وب، برای کاربران یک چالش واقعی است، بنابراین نیاز به تکنیک ها و روشهایی برای دستیابی کارا به داده مورد نیاز می باشد.
مشکلات کاربران در استفاده از وب
کاربران معمولا از موتورهای جستجو که مهمترین و رایج ترین ابزار برای یافتن اطلاعات در وب می باشند، استفاده میکنند.
موتورهای جستجو دارای دو مشکل اصلی هستند:
تکنیک های وب کاوی قادر به حل این مشکلات می باشند.