لینک فایل دانلود مقاله نگاهی بر داده کاوی و کشف قوانین وابستگی(word)

شرح مختصر : با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات , بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سیستمهای داده کاوی ,این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند . داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و… داریم ، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .

فهرست :

چکیده

مقدمه

کشف دانش در پایگاه داده

آیا داده کاوی برای حل مسائل ما مناسب است؟

جمع آوری داده ها

بکارگیری نتایج

استراتژیهای داده کاوی

پیش گویی Perdiction

Unsupervised Clustering دسته بندی بدون کنترل

تکنیکهای داده کاوی تحت کنترل

شبکه عصبی

برگشت آماری

قوانین وابستگی

الگوریتم  Apriori

الگوریتم Aprior TID

الگوریتم partition

الگوریتم های MaxEclat,Eclat

الگوریتم با ساختار trie

الگوریتم fp-grow

ساخت fp- tree

Fp-tree شرطی

الگوریتم برداری

نگهداری قوانین وابستگی

الگوریتم کاهشی

تعداد صفحات:22

دانلود مقاله نگاهی بر داده کاوی و کشف قوانین وابستگی
حجم فایل : 273 کیلوبایت


کلمات کلیدی : Unsupervised Clustering ,دسته بندی بدون کنترل ,آیا داده کاوی برای حل مسائل ما مناسب است,استراتژیهای داده کاوی ,الگوریتم fp grow ,الگوریتم partition ,الگوریتم با
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...