لینک فایل پروژه و تحقیق- موتورهای احتراق داخلی و اجزاء آنها- در 200صفحه-docx

موتور و انواع آن

 

 

 

 

 

 

 

 

 

 

 

موتور:

موتورها دستگاه‌هایی هستند که انرژی را برای بکار انداختن وسایل نقلیه، دستگاه‌های دیگر یا تولید الکتریسیته، به کار مکانیکی تبدیل می‌کنند.

انواع اصلی موتورها عبارتند از:موتور بخار، بنزینی، دیزل، الکتریکی، جت و موشک. در هر یک از این موتورها انرژی از سوختهایی چون زغال سنگ، بنزین و گازوئیل بدست می‌آید. همه موتورها، موتورهای درون سوز هستند. به این معنا که سوخت درون موتور می‌سوزد. موتور بخار، تنها موتور برون سوز است.

نخستین موتورهای بخار:

در قرن هجدهم میلادی، بیشتر نیروی صنایع مربوط به انقلاب صنعتی، از موتورهای بخار بدست می‌آمد. در سال ۱۷۱۲، یک انگلیسی بنام تامس نیو کامن، نخستین موتور بخار کار آمد را برای تلمبه زدن آب به بیرون از معادن زغال سنگ را اختراع کرد. در سال ۱۷۶۵، یک مهندس اسکاتلندی بنام جیمز وات، موتور بخار نیوکامن را کاملتر کرد و دستگاهی با کارایی بیشتر ساخت. چیزی نگذشت که موتورهای بخار را برای فراهم آوردن نیروی ماشین آلات کارخانه‌ها بکار گرفتند. پس از آن نیز برای لوکوموتیوها، از جمله لوکوموتیو راکت، استفاده کردند. این لوکوموتیو را جورج استیونسون، مهندس انگلیسی، در سال ۱۸۲۹ میلادی ساخت.

موتور از دیدگاه علم برق

موتور الکتریکی

در دنیای برق موتور وسیله‌ای است که انرژی الکتریکی را به انرژی مکانیکی دورانی تبدیل می‌کند. با توجه به نوع انرژی الکتریکی مورد استفاده در موتور، موتورها به دسته‌های:
1- موتورهای AC یا جریان متناوب
2- موتورهای DC یا جریان مستقیم
تقسیم بندی می‌شوند که البته هر کدام از این دو نوع، خود به دسته‌های جزیی تری تقسیم بندی می‌شوند. تمام موتورهای الکتریکی از ۲ قسمت کلی استاتور و روتور تشکیل شده‌اند.

 

موتورهای درون‌سوز: 

      موتورهای درون‌سوز یا موتورهای احتراق داخلی به موتور‌هایی گفته می‌شود که در آن‌ها مخلوط سوخت و اکسید کننده (معمولاً هوا یا اکسیژن) در داخل محفظهٔ بسته‌ای واکنش داده و محترق می‌شوند. بر اثر احتراق گازهای داغ با دما و فشار بالا حاصل می‌شوند و بر اثر انبساط این گازها قطعات متحرک موتور به حرکت درآمده و کار انجام می‌دهند. هرچند غالباً منظور از به‌ کار بردن اصطلاح موتورهای درون‌سوز، موتورهای معمول در خودروها می‌باشند، با این حال موتورهای موشک و انواع موتورهای جت نیز مشمول تعریف موتورهای درون‌سوز می‌شوند.

      موتور درون‌سوز، یک وسیلهٔ گردنده‌ است که در خودروها، هواگردها، قایق موتوری، موتورسیکلتها و صنایع کاربرد دارد. بدون بهره‌گیری از موتورهای درون‌سوز، اختراع و ساخت هواپیماها ممکن نبود. تا پیش از پرواز نخستین هواپیمای جت در سال ۱۹۳۹، نیروی محرکه تمام هواپیماها در واقع توسط موتورهای درون‌سوز تأمین می‌شد.

      نخستین موتور درون‌سوز چهارزمانه توسط نیکلاس اوگوست اوتو[1] و مخترع آلمانی ویلیام وگنر در سال ۱۸۷۶ ساخته‌ شد.

 

نیکلاس اوگوست اوتو

انواع موتورهای درون‌سوز

موتور درون سوز اتو

     این موتورها را به دو دسته کلی موتور چهارزمانه و موتورهای دو زمانه می‌توان تقسیم کرد. اصول کاری این موتورها مشابه ‌است. لیکن نحوه عمل آنها به علت تفاوت‌های ساختاری اندکی متفاوت است. البته ازنوع امروزی تر باید به چهار زمانه اشاره کرد که حتی تاثیر کمتری بر روی الودگی هوا دارد.

موتور چهارزمانه:

      این موتورها برای هر انفجار (مرحلهٔ تبدیل انرژی سوخت به انرژی مکانیکی) بایستی چهار مرحلهٔ مکش، تراکم، انفجار و تخلیه را انجام دهند.

موتورهای دوزمانه:

      این موتورها در هر دور چرخش دارای یک انفجار هستند. این کار با ترکیب کردن مراحل انفجار و دم و بازدم به‌ عنوان یک مرحله و ترکیب تخلیه و تراکم به‌عنوان مرحلهٔ بعدی صورت می‌گیرد. راندمان موتورهای دو زمانه به مراتب از موتورهای چهارزمانه بیشتر است.

موتور درون سوز دیزل:

     موتور دیزل گونه‌ای موتور درون‌سوز است که در آن از چرخه دیزل برای ایجاد حرکت استفاده می‌شود. فرق اصلی آن با موتور اتو ایجاد احتراق در اثر تراکم است. یعنی انفجار بر اثر تراکم سوخت و هوا بدون نیاز به جرقه زنی می­باشد(سیستم احتراق داخلی دیزل(.

موتور دو زمانه:

     موتور درون سوزی که 2 فرایند اصلی دارد.

  • مکش سوخت + انفجار یا احتراق سوخت.
  • تراکم سوخت+ خروج دود

موتور چهار زمانه:

    موتور درون سوزی با چهار فرایند اصلی 1-مکش سوخت 2- تراکم 3-احتراق و 4- خروج دود است.

موتور شش زمانه:

      موتور درون سوزی بر اساس موتور چهار زمانه با افزایش فرآیند و کارکرد نسبت به آن و با ۶ عمل در چرخه فرایند­ می باشد.

موتورهای دوار بدون پیستون:

     به موتورهایی که پیستون ندارند و بجای آن روتور دارند که بصورت دورانی حرکت می کند اطلاق می شود. مانند موتور وانکل و موتور شبه توربین. این نوع موتور ها در پهپاد هایی استفاده میشود که در منطقه ای وسیع به شعاع km 300 تا km 500  مورد نیاز باشد استفاده می شود.

موتور شبه توربین:

      موتور شبه توربین خیلی شبیه موتور دورانی است، یک روتور درون بدنه ی تقریباً بیضی شکل می چرخد. موتور شبه توربین روتور چهار جزیی دارد. گوشه های روتور با بدنه به خوبی آب بندی شده اند و نیز گوشه های روتور نسبت به بخش داخلی آب بندی اند. در نتیجه چهار محفظه ی مجزا تشکیل می شود.

موتور درون سوز وانکل:

      موتور دورانی که مخترع آن دکتر فلیکس وانکل بود، گاهی موتور وانکل یا موتور دورانی وانکل نامیده می شود. اجزائ اصلی آن روتور، محفظه روتور، محور خروجی، شمع جرقه زنی، قطعات آبندی می باشد. در موتور وانکل مانند موتور های بنزینی چهار زمانه مخلوط هوا و بنزین وارد محفظه ی بزرگی از موتور می شود سپس با کوچک شدن حجم آن مخلوط هوا و بنزین تحت فشار قرار گرفته و با ایجاد جرقه به وسیله شمع انفجار حاصل می شود، مولکول های گاز دراثر احتراق منبسط می گردند و فشار محفظه ی تراکم به شدّت بالا می رود و نیروی حاصل از آن به روتور اعمال شده و به علّت اختلاف مرکز دوران بین روتورومیل لنگ نیروی چرخشی درروتور ایجاد می گردد.این نیروی چرخشی به بادامک محور لنگ که در داخل روتور قرار دارد، وارد شده و به فلایویل و سیستم انتقال قدرت می رسد.

موتورهای احتراق پیوسته:

     به موتور هایی که عمل احتراق به صورت منظم و پیوسته انجام میشود مانند موتورهای راکت و انواع موتور جت و توربین گازی اطلاق می شود.

موتورهای احتراق ناپیوسته:

     به موتور هایی گفته میشود که عمل احتراق در آنها به صورت متناوب انجام می شود مانند موتور های پیستونی و پالس جت و موتور وانکل.

چرخه اتکینسون:

     در علم ترمودینامیک و در بحث چرخه‌های ترمودینامیکی، موتور چرخهٔ اتکینسون[2] یک نوع موتور درون‌سوز می‌باشد که توسط جیمز اتکینسون در سال ۱۸۸۲ میلادی ابداع شد. چرخهٔ اتکینسون برای فراهم کردن ماکزیمم چگالی توان به ازای هزینهٔ خرج شده، طراحی می‌شود و امروزه در برخی از خودروهای برقی دو گانه(همچون تویوتا پریوس) کاربرد دارد.

 

جیمز اتکینسون

چرخهٔ ایده‌آل ترمودینامیکی:

منحنی فشار - حجم چرخهٔ ایده‌آل اتکینسون

 

چرخهٔ اتکینسون ایده‌آل شامل فرآیندهای زیر می‌باشد:

۱ به ۲ – فرآیند تراکم هم آنتروپی) بی‌درو و برگشت‌پذیر(

۲ به ۳ – فرآیند گرمایش هم حجم

۳ به ۴ – فرآیند گرمایش هم فشار

۴ به ۵ – فرآیند انبساط هم آنتروپی

۵ به ۶ – فرآیند سرمایش هم حجم

۶ به ۱ - فرآیند سرمایش هم فشار

 

توربین گازی:

     توربین گاز:Gas Turbine  یک ماشین دوار است که بر اساس انرژی گازهای ناشی از احتراق کار می‌کند. هر توربین گاز شامل یک کمپرسور برای فشرده کردن هوا، یک محفظه احتراق برای مخلوط کردن هوا با سوخت و محترق ‌کردن آن و یک توربین برای تبدیل کردن انرژی گازهای داغ و فشرده به انرژی مکانیکی است. بخشی از انرژی مکانیکی تولی شده در توربین، صرف چرخاندن کمپرسور خود توربین شده و باقی انرژی، بسته به کاربرد توربین گاز، ممکن است ژنراتور برق را بچرخاند (توربو ژنراتور)، به هوا سرعت دهد (توربوجت و توربوفن) و یا مستقیماً (یا بعد از تغییر سرعت چرخش توسط جعبه دنده) به همان صورت مصرف شود (توربوشفت، توربوپراپ و توربوفن).  موتور جت شامل توربوجت، توربوفن، توربوشفت، توربوپراپ، رم‌جت، موشک می باشد.

تاریخچه توربین گازی:

     در سال ۱۷۹۱، یک مخترع انگلیسی به نام جان باربر، یک ماشین طراحی کرد که از نظر ماهیت کارکرد شبیه به توربین‌های گاز امروزی بود و حق امتیاز این طرح را به نام خود ثبت کرد .او این توربین را برای به حرکت درآوردن یک کالسکه بدون اسب طراحی کرده بود. در سال ۱۹۰۴، یک پروژه ساخت توربین گاز توسط فرانتس استولز در برلین انجام شد که اولین کمپرسور محوری جهان در ساخت آن مورد استفاده قرار گرفته بود، ولی این پروژه ناموفق بود. در طی سال‌های بعد، افراد مختلف بر روی ایده توربین گاز فعالیت کردند، به طوری که شرکت جنرال الکتریک آمریکا که امروزه بزرگ‌ترین تولیدکنندهٔ توربین گاز در جهان است، در سال ۱۹۱۸ بخش توربین گاز خود را راه‌اندازی کرد. با این وجود، نخستین توربین گازی برای تولید انرژی برق، در سال ۱۹۳۹ میلادی و در شرکت براون باوریدر سوئیس ساخته شد که ظرفیت آن ۴ مگاوات بود.

مبنای کارکرد:

 

 

 

چرخهٔ برایتون، اساس کارکرد توربین‌های گاز:

     مبنای کار توربین‌های گاز از نظر ترمودینامیکی، بر اساس چرخهٔ برایتون است که در آن، هوا به صورت بی‌دررو فشرده شده، احتراق در فشار ثابت رخ داده و انبساط هوای فشرده و داغ در توربین، به صورت بی‌دررو رخ می‌دهد و هوا به فشار اولیه می‌رسد. در عمل، اصطکاک و توربولانس باعث می‌شوند که:

  1. فشرده ‌سازی هوا در کمپرسور به صورت بی‌دررو نباشد. این موجب می‌شود که برای دست‌یافتن به یک نسبت فشارمعین، دمای خروجی کمپرسور بیشتر از حالت ایده‌آل باشد.
  2. انبساطهوا در توربین به صورت بی‌دررو نباشد. این موجب می‌شود که با ثابت بودن مقدار کاهش دما در توربین، کاهش فشار ناشی از آن افزایش یافته و انبساط کمتری برای تولید کار در توربین فراهم باشد.
  3. افت فشار در ورودی هوا، محفظهٔ احتراق و اگزوز وجود داشته باشد. این موضوع باعث می‌شود که نسبت فشار موجود برای تولید کار کاهش یابد. افت فشار در ورودی هوا باعث کاهش فشار در ورودی کمپرسور و در نتیجه کاهش فشار ورودی محفظهٔ احتراق و توربین می‌شود. افت فشار در محفظه و اگزوز، به ترتیب به کاهش فشار ورودی به توربین و افزایش فشار خروجی توربین می‌انجامند که همهٔ این عوامل، باعث کاهش نسبت فشار موجود در توربین برای تولید کار می‌شوند.

با افزایش دمای هوای ورودی به توربین، راندمان توربین‌های گاز افزایش می‌یابد؛ بنابراین، بهتر است که این دما هر چه بیشتر انتخاب شود. اما در این مورد از نظر تحمل مواد تشکیل‌دهندهٔ محفظهٔ احتراق و پره‌های توربین، محدودیت وجود دارد؛ بنابراین، در این قسمت‌ها که به آنها بخش‌های داغ یا Hot Sections، گفته می‌شود، از مواد مقاوم به دماهای زیاد مانند سوپرآلیاژها استفاده می‌شود. همچنین این قسمت‌ها با استفاده از تکنولوژی‌های پیچیده‌ای خنک‌کاری می‌شوند.

انواع توربین گاز:

  • توربین‌های گاز صنعتی برای تولید توان الکتریکی

 

توربین گاز سری H شرکت جنرال الکتریک، این توربین ۴۸۰ مگاواتی در چیدمان سیکل ترکیبی، بازده حرارتی ۶۰٪ دارد.

توربین‌های گاز صنعتی برای تولید توان الکتریکی، که توربوژنراتور گاز هم نامیده می‌شوند، توربین‌های گازی هستند که توان تولیدشده به وسیلهٔ آنها، مستقیماً و یا پس از تغییر سرعت دوران در جعبه‌دنده، به ژنراتور منتقل شده و در آنجا به انرژی الکتریکی تبدیل می‌شود. این نوع توربین گاز، می‌تواند به صورت سیکل ساده (به انگلیسی: Single Cycle) و یا سیکل ترکیبی (به انگلیسی: Combined Cycle) باشد. در حالت سیکل ساده، گازهای خروجی از اگزوز توربین که می‌توانند تا ۶۰۰ درجه سانتیگراد دما داشته باشند، مستقیماً وارد هوا شده و انرژی باقی‌مانده در آن هدر می‌رود؛ ولی در حالت سیکل ترکیبی، یک یا دو توربین گاز با یک توربین بخار کوپل می‌شوند و گازهای خروجی از توربین گاز در بخشی به نام بویلر بازیاب، آب بازگشتی از کندانسور توربین بخار را که توسط پمپ فشرده شده، به بخار تبدیل می‌کنند. در نتیجه در حالت سیکل ترکیبی، از انرژی موجود در گازهای خروجی از اگزوز توربین گاز استفاده شده و بویلر توربین بخار بدون نیاز به سوخت، بخار آب تولید می‌کند؛ بنابراین، با استفاده از این روش، راندمان سیکل افزایش می‌یابد. توربوژنراتورها همچنین می‌توانند به صورت تولید همزمان برق و گرما (به انگلیسی: Cogeneration) استفاده شوند که در این ترکیب، گاز خروجی از آنها برای تولید آب گرم و یا هوای گرم ساختمان‌ها و کارخانجات استفاده می‌شود.

  • توربین‌های گاز برای تولید انرژی مکانیکی[ویرایش]

این نوع از توربین‌های گاز که شامل توربوکمپرسورها و توربوپمپ‌ها می‌شوند، توربین‌های گازی هستند که در آنها انرژی تولید شده توسط توربین، صرف به گردش درآوردن یک کمپرسور (جهت فشرده‌کردن یک مادهٔ گازی) یا پمپ (جهت بالابردن فشار یک مایع) می‌شود.

موتورهای جت[ویرایش]

 

اصول کار توربوجت

موتورهای جت، نوعی موتور هستند که از شتاب دادن و تخلیه سیال برای ایجاد پیش‌رانش بر پایه قانون سوم نیوتن استفاده می‌کنند. دو نوع از موتورهای جت یعنی توربوجت‌ها و توربوفن‌ها شامل توربین گاز بوده و در واقع یک نوع توربین گاز هستند.

توربوجت‌ها، نوعی توربین گاز هستند که در آنها همهٔ انرژی تولید شده در توربین صرف چرخاندن کمپرسور می‌شود و هوای داغ خروجی از توربین پس از عبور از یک نازل، سرعت گرفته و به صورت یک جت سیال با سرعت زیاد از انتهای آن خارج می‌شود.


[1] نیکلاس اوگوست اوتو، مخترع آلمانی بود که در سال 1876 اولین موتور درون‌سوز چهارزمانه را ساخت که الگو و مدلی شد برای صدها میلیون موتور مشابه که از آن زمان تا کنون ساخته شده است. موتور درون‌سوز یک وسیله گردنده است که در قایق موتوری و موتورسیکلت‌ها کاربرد دارد. علاوه بر موارد استعمال فراوان آن در صنعت، اختراع هواپیما بدون استفاده از آن غیر ممکن بود. تا قبل از پرواز اولین هواپیمای جت در سال 1939، نیروی محرکه تمام هواپیماها در واقع توسط موتورهای درون‌سوز که چرخه‌کار آنها بر مدار اوتو بودف تأمین می‌شد. امّا مهمترین مورد کاربرد موتورهای درون‌سوز استفاده ازآنان در اتومبیل‌ها است. قبل از آنکه اوتو موتور خود را اختراع کند برای ساخت اتومبیل تلاش‌های فراوان و عدیده‌ای شده بود. برخی مخترعین نظیر زیگفرید مارکوس (در سال 1875) اتین لنور (در سال 1862) و نیکلاژوزف کنوت (در سال 1769) موفق به ساخت مدل‌هایی شدند که حرکت می‌کرد. اما به علت نبودن موتور مناسب، موتوری که هر دو مزیت وزن کم و قدرت زیاد را با هم داشته باشد هیچ کدام از آن مدل‌ها در عمل قابل استفاده نبود. ولی در خلال پانزده سال پس از اختراع موتور چهار زمانه اوتو، دو مخترع آلمانی دیگر، کارل بنز و گوتلمب دایملر، هر یک اتومبیل‌هایی قابل استفاده و قابل فروش ساختند...

[2] جیمز اتکینسون : James Atkinson (physicist ۱۷ فوریه ۱۹۱۶ – ۹ مه ۲۰۰۸) یک فیزیک آزمایشگاهی اهل بریتانیا بود.

 


کلمات کلیدی : موتورهای احتراق داخلی,موتورهای درون سوز,موتورهای برون سوز,موتور,شناخت موتور, اجزا موتور, سیلندر,پیستون,میللنگ,سوپاپ,سرسیلندر,میل سوپاپ,موتو
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پروژه و تحقیق-سازه های ضد زلزله و نحوه اجرای آنها- در 30 صفحه-docx

مقدمه:

بلایای طبیعی همواره در کمین هستند و خسارت ناشی از آنها کمتر از جنگ نخواهند بود. اما می توان با استفاده از فناوریهای نوین و بکارگیری اصولی بعضا ساده میزان این خسارتها را کاهش داده و در بسیاری از اوقات به صفر رسانید.
کشور ژاپن با توجه به زلزله خیز بودن تمرکز بسیاری در زمینه کاهش خسارتهای آن داشته و نتایج درخشانی نیز بدست آورده است. نمونه هائی از این نوآوریها شرح داده می شود:
زلزله ، بلائی مهلک اما قابل کنترل بر اساس تحقیقات و مطالعاتی که در طول 30 سال گذشته صورت گرفته هر سال حدود یکصد و پنجاه زلزله با بزرگی 5 ریشتر و بیشتر در جهان رخ می دهد. زلزله بزرگ "هانشین" که در هفدهم ژانویه سال 1995 بوقوع پیوست با بزرگی 3/7 ریشتر سبب کشته شدن بیش از 6000 نفر شده و خسارتی بالغ بر یکصد میلیارد دلار به بار آورد. امروزه تحقیقات مختلفی برای مقابله با این بلایای طبیعی در دست اقدام است. در همین راستا صنعت ساختمان سازی در ژاپن به دنبال دستیابی به فناوریهایی است تا امکان ساخت بناهایی را فراهم کند که نه تنها بر اثر زلزله فرو نمی ریزند بلکه میزان ارتعاش و لرزش نیز در آنها کاسته شده و کنترل می گردد. در این راستا تحقیقات و آزمایشات متعددی به منظور درک صحیح نحوه بروز سوانح و خسارتها انجام شده است. بر اساس تحقیقات بعمل آمده حتی در ساختمانهایی که خود تخریب نمی شوند، عدم مدیریت صحیح اشیاء و وسایل داخل فضاهای مختلف سبب وارد آمدن صدمات جرحی و فوتی می گردند.

ضربه گیرها: به منظور کنترل لرزش های وارد آمده به ساختمان، امروزه استفاده از لاستیک های ضربه گیر با ساختار لایه ای در پایه های ساختمان بسیار متداول شده است. این لاستیکها ساده ترین ضربه گیرهایی هستند که می توان در اکثر ساختمانها نصب و تا حد بسیاری مانع از وارد آمدن ضربه، به سازه بالای آن گردد. در کنار ضربه گیرهای لاستیکی، بکار گیری نوعی سیستم هیدرولیکی دیگر که در طبقات فوقانی ساختمان کاربرد دارد نیز استفاده شده است. این سیستم که نوعی ضربه گیر هیدرولیکی است سبب می شود تا جابجائی های افقی طبقات بالای ساختمانها تا 50 درصد مستهلک شود. بکار گیری این دو نوع وسیله به جهت مقابله با زلزله کمک شایانی خواهد نمود. قانون ستون آزاد وسط برج بزرگ توکیو به نام "Tokyo Sky Tree"در حال ساخت بوده و به ارتفاعی حدود 600 متر خواهد رسید. در این برج از روشهای مختلفی برای ممانعت از آسیب دیدن توسط زلزله استفاده شده است.

سیستم مهندسی ضد زلزله ای که در این برج استفاده شده است برپایه روش سنتی بکار رفته در معابد بلند مرتبه ژاپنی استوار شده است. مطابق روشی که در ساخت معبد "Gojyu-no-tou" استفاده شده، معبد در میانه خود دارای ستونی است که تا سقف امتداد یافته و تنها به همان سقف متصل شده است. تحقیقات نشان داده است که وجود این ستون در سازه به هنگام وقوع زمین لرزه سبب اعمال نیروی مخالف جهت حرکت بقیه سازه خواهد شد. در این روش وجود ستون مرکزی سبب می شود که تکانهای افقی تا حدود 40درصد کاهش یابد. در حقیقت در زمان وقوع زمین لرزه جهت حرکت ستون میانی سازه خلاف جهت خود سازه بوده و به این ترتیب ستون میانی جلوی تشدید حرکتهای سازه را خواهد گرفت. در برج توکیو راه پله میانی برج نقش ستون وسط را باز می کند.

اتصالات آلوروی پلاستیکی: نوع دیگری از فناوری که در ساختمان سازی بکار گرفته شده است شامل استفاده از نوعی آلیاژ آلومینیم روی و پلاستیک است. ویژگی اصلی این آلیاژ قدرت تحمل کشش و فشار متناوب بسیار و در نتیجه جذب و خنثی نمودن ضربات می باشد. از این آلیاژ برای ساخت اتصالات سازه استفاده شده است. این اتصالات می توانند تا دو برابر اندازه اولیه خود کشیده یا فشرده شده، بدون آنکه شکسته شوند و به این ترتیب بخشهای سازه در طول زلزله در جای خود باقی مانده و سازه سرپا می ماند.

سطوح لغزنده: نوآوری دیگر استفاده از سطوح فلزی خاصی است که از جابجائی اشیاء و وسایل داخل ساختمان بر اثر نیروی وارد آمده از سطح و ناشی از زلزله ممانعت بعمل می آورد و به این ترتیب از آسیب رسیدن به ساکنین جلوگیری می شود. استفاده از این سطوح ساده فلزی در کف ساختمانهای اداری و مسکونی سبب می شود تا تجهیزات و مبلمان اداری بر اثر زمین لرزه های تا شدت 7 ریشتر کمترین مقدار جابجائی را داشته و تقریبا از واژگون شدن آنها ممانعت بعمل آورد. نوع برآمدگی های شکل داده شده در این سطوح به گونه ای است که قدرت زلزله باید بیش از 5 ریشتر باشد تا سبب وارد آمدن نیرو به اشیاء روی آن باشد. به این ترتیب در حالت عادی نیز اشیاء به سادگی جابجا نمی شوند.

تعلیق ساختمان: نوآوری دیگری که بصورت آزمایشی اجرا شده است سیستم تعلیق تمام خانه بر روی بستری از هوای فشرده است. در این فناوری خانه ای به وزن 80 تن در زمان زلزله بصورت شناور درمی آید. در این روش وجود یک سنسور، بروز زلزله را تشخصی داده و بلافاصله هوای فشرده در زیر ساختمان تزریق می شود و تمام ساختمان را به اندازه 2 تا 3 سانتی متر از زمین بلند می کند و از انتقال هر نوع نیروئی به ساختمان ممانعت بعمل می آورد. با توجه به آنکه حتی فاصله ای به اندازه یک میلیمتر نیز برای مقابله با زلزله کافی است، این سیستم می تواند در کمتر از نیم دقیقه فعال شده و جان ساکنین را نجات دهد.

« بازگشت به لیست مقالات|شنبه 27 دی 1393|نظرات کاربران ( 0 )

 

تکنولوژی ضد زلزله سنتی ژاپن

ژاپن یکی از زلزله خیز تزین کشور های جهان است. ساختمان پاگودا که یکی از معابد سنتی ژاپن محسوب می شود، بار ها طی زلزله هایی به بزرگی 7 ریشتر لرزیده است و همچنان پابرحا مانده هست. این ساختمان 5 طبقه همراه با آیین بودایی از چین به ژاپن وارد گردید. در چین این ساختمان از سنگ ساخته میشد، اما در ژاپن به دلیل شدت زلزله، تغیراتی در روند ساخت این معابد به وجود آمد.

یکی از دلایل بروز ویرانی در ساختمان ها به هنگام زلزله، ورود آب به اطراف پی و فروریزش سازه در خاک می باشد. از آنجایی که ژاپن کشوری پر باران است، برای جلوگیری از بروز این مشکل، لبه های سقف این سازه را بلند در نظر گرفته اند. همچنین برای جلوگیری از اشتعال سقف ها در هنگام رعد و برق، روی سقف پاگودای چوبی از سفال های سنگین استفاده میکنند. این امر سبب می شود که از اصابت رعد و برق، اشتعلال صورت  نگیرد.

از دیگر خواص این سقف های سفالی  سنگین این است که باعث می شود در زمان زلزله سازه کمتر تکان بخورد و به عنوان یک میراگر عمل میکند. در زمان زلزله هر طبقه در جهت مخالف طبقه قبل و بعد از خود ، حرکت میکند. به همین دلیل طبقه های مختلف این ساختمان ها از هم جدا هستند و با اتصال های آزاد بر روی یکدیگر قرارگرفته اند و با جدا کردن آنها سازه در هنگام زلزله می تواند نرم تر حرکت کند.

از خاصیت های ویژه این معبد، ستون غیر باربری است که shinbsshira  نام دارد که از زیر سقف بالایی تا پایین سازه در مرکز آن قرار می گیرد که گاهی آن را تا زیر زمین ادامه می دهند و باعث می شود که سازه زیاد جابجا نشود و لرزش زلزله را جبران میکند. این ستون با جلوگیری از جابحایی بیش از حد طبقه ها از تخریب آنها جلوگیری میکند.

 

نکات ساخت ساختمان های ضد زلزله


کلمات کلیدی : سازه های ضد زلزله,زلزله,سازه های ضد زلزله در معماری, ساختمان ضد زلزله,اجرای سازه ضد زلزله
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پروژه و تحقیق-انواع سد و ساختار آنها- در 85 صفحه-docx

مقدمه:

سدهای خاکی مصالحشان را از همان منطقه احداث و یا نواحی نزدیک تأمین می کنند ، و اصولاً دارای هسته رسی می باشند . رس بر اثر تماس با آب مانع نفوذ و انتقال آب و رطوبت می گردد و مانند نوعی عایق رطوبتی عمل می کند . اگر عمده مصالح تشکیل دهنده سد خاکی یکسان باشند ، سد را همگن می گویند و در غیر اینصورت ناهمگن. اگر کل سد خاکی از رس باشد سد خاکی همگن است ، اما اگر هسته مرکزی سد رس باشد و دور هسته مرکزی را با سنگهای دانه درشت پر کرده باشند ، سد غیر همگن محسوب می شود. از نظر تحلیل و آنالیز این نوع سدها بسیار حساس می باشند و در عین حال از نظر اجرا و پیاده سازی ساده تر می باشند.اجرای این سد در رودخانه های عریض ساده تر است. مصالح این سد اعم از ریز دانه و درشت دانه بایستی در دسترس باشد. این سدها برای زمینهایی نامناسب  از نظر مقاومت مناسب ترین نوع سد می باشند.

سدهای سنگریز:

این سدها خودبخود غیر همگن می باشند و حتماً باید یک بافت آب بند در مرکز آن قرار گرفته باشد. شکل این سدها درست مانند سد ناهمگن خاکی با هسته رسی می باشد با این تفاوت که در مرکز سد به جای رس از سنگ ریزه نفوذ ناپذیر استفاده می شود و در دور تا دور سد سنگریزه های دشت تر ریخته می شود. در برخی موارد رویه سد را به جای سنگریزه با بتن می پوشانند که در آنصورت دیگر نیازی به هسته آب بند نمی باشد. اینگونه سدها اغلب از نوع بلند می باشند. این نوع سد در برابر زلزله بسیار مقاوم هستند . سنگهای ریخته شده برای سد بایستی خاصیتهایی از قبیل جذب کم آب ، سایش کم ، مقاومت فشاری بالا و در برابر سرد و گرم شدن مقاومت خوبی داشته باشند.

سدهای بتنی وزنی:

این سدها عمدتاً کوتاه هستند و ارتفاع آنها بین ۱۵ تا ۲۰ متر می باشد ، این سدها به دلیل وزن زیادی که با بتن برای آن بوجود می آورند بر اثر فشار آب حرکت نمی کند و از جای خود تکان نمی خورد. در این نوع سد سرریز شدن آب مشکلی ایجاد نمی کند . این سدها در دره های عریض ساخته می شوند . این نوع سد در برابر تغییر درجه حرارت  نیز هیچگونه حساسیتی ندارد.

سدهای بتنی قوسی :

این سدها معمولاً در درهای باریک با شیب زیاد و از جنس سنگ اجرا می گردد و می تواند دو قوسی نیز باشند و در راستای عمود ی و افقی در ره دو حالت قوس داشته باشند. حسن این سدها این است که اگر به هر علتی در بدنه آنها ترک ایجاد شود خود نیروی فشار اعمالی از جانب آب پشت سد باعث هم آمدن این ترکها ( ترکهای حرارتی) می شود.

سدهای بتنی پشت بند دار:

سدهای پشت بند دار از نوع بلند هستند و با عث جلوگیری از خمشهای زیاد در بتن می شوند و برای تصور آن می توان اینگونه آنرا تشبیه کرد که دیواری بلند را که دارای پی در زمین است با تیرچه هایی در پشت آن نیز محکم نگه داشته شود تا فرو نریزد.

سدهای لاستیکی:

این سدهای اغلب بر روی رودخانه های فصلی زده می شود و این سدها از جنس لاستیک می باشند که در زمان مورد نیاز این سدها را از باد پر می کنند و این عمل باد کردن حجم سد را بالا می برد و سد مانع عبور آب می گردد. از این نوع سد که کوتاه نیز می باشد در شمال کشور خودمان نیز وجود دارد.

حال با انواع سدها بطور مختصر آشنا شدیم و بایستی کاربرد این سدها را نیز بدانیم و دلایل استفاده از آنها را نیز به دقت مد نظر بگیریم.

حال پس از آشنایی کوتاه و مختصر با این نوع سدها نحوه ارزیابی برای ساختن یک سد را مورد بررسی قرار می دهیم.

از نظر فنی برای ساختن یک سد می بایست مراحلی سپری شود تا ساختن یک سد آغاز گردد ، هر کدام از این مراحل را یک فاز می نامند به شرح ذیل:

  • فاز صفر: آیا ساختن این سد از نظر اقتصادی و مورد کاربری توجیه دارد یا خیر؟
  • فاز یک: انواع سدهایی که با توجه به شرایط جغرافیایی و اقتصادی پیشنهاد می شود بطور ریز می بایست مورد بررسی قرار گیرد و میزان ذخیره آب و هزینه ریالی آن مورد بررسی قرار گیرد.
  • فاز دو : هندسه و تحلیل سد و ریختن نقشه اجرای سد.
  • فاز سه : اجرای سد.

اما در مورد گروههای فنی که برای ساختن یک سد مورد نیاز است به گروههای زیر می توان اشاره کرد:

۱-       گروه هیدرولیک.

۲-       گروه هیدرولوژی.

۳-       گروه زیست محیطی.

۴-       گروه آبهای زیر زمینی.

۵-       گروه نقشه برداری.

۶-       گروه شهر سازی.

۷-       گروه کشاورزی.

۸-       گروه زمین شناسی.

۹-       گروه مدیریت و هماهنگی.

گروههای فنی ذکر شده در کنار یکدیگر پس از تصمیم برای اجرای یک سد گرد می آیند تا یک پروژه به نتیجه برسد. پس از انجام مقدمات مطالعاتی بر روی سد، نوع سد بر اساس منطقه جغرافیایی و مصالح در دسترس سد مورد ارزیابی قرار می گیرد. یکی از نکاتی که جغرافیای منطقه برای ما در ساختن سد مشخص می کند نوع خاک و زمین منطقه و یا دره ای که در آن سد می خواهد اجرا شود ، می باشد ، زیرا نوع بدنه سد و خاک منطقه بسیار حساس است . برای مثال در منطقه ای سنگی با تنگه ای باریک و تنگ ساختن سد خاکی  اشتباه است زیرا تماس این دو ماده ( بدنه سد و سنگی بودن منطقه) مانند چسباندن دوماده که یکی صلب و دیگری غیر صلب است می باشد و بر اثر تکان ( زلزله) این دو در نقطه اتصال جدا می شوند که این خطر ناک است.

آبند در سدها

مهندسان برای کاستن از احتمال گسیختگیها ناشی از عملکرد آب زیرزمین ، همواره درصدد اند تا بخش در حال حفاری را آبکشی و خشک نمایند. البته باید توجه داشت که کنترل نیروهای ناشی از نشت آب هم می‌تواند به همان اندازه در جلوگیری از گسیختگی موثر واقع شود. روشهای متنوعی را که برای کنترل نشت و فرار آب زیرزمینی وجود دارد، می‌توان به سه دسته عمده تقسیم کرد که عبارتند از : آب بندها و موانع ، سیستمهای آبکشی ، زهکشها ، صافی ها (فیلترها).

آب بندها و موانعی را که بر سر راه جریان آب ایجاد می‌شود، می‌توان به سه دسته آسترها و پوششها ، دیوارها و تزریق تقسیم کرد.

آسترها و پوششها

آسترها و پوششها به صورت لایه‌ای نفوذ ناپذیر اجرا می‌شوند و دارای انواع زیراند:

  • تعبیه ورقه‌ای از رس که در بستر دریاچه (به سمت سراب) ایجاد می‌شود و وظیفه آن افزایش مسیر افقی جریان آب در زیر زمین و در نتیجه کاهش فشار آب و میران نشت آن در پاشنه پایاب سد است.
  • یک لایه (آستر) رسی یا پلاستیکی که برای جلوگیری از فرار آب از مخزن یا نشت سیالات از حمل تجمع زباله‌ها اجرا می‌شود.

دیوارها Walls

بسیار متنوع بوده و مهمترین انواع آن را به نحو زیر می‌توان خلاصه کرد.

دیوار خاکی متراکم شده

این دیوارها می‌توانند به عنوان یک خاکریز همگن برای سد ، به صورت یک هسته در داخل سد یا ترانشه‌ای در پی سد ، که هسته آن با رس پر شده باشد، اجرا شوند.

دیواره های بتنی

این نوع دیوار معمولا در حفاری پی ها یا به عنوان پوشش داخل تونلها ، مخصوصا در جاهایی که جلوگیری دایم از نفوذ آب لازم باشد، بکار می‌روند. در سدها برای جلوگیری از فرار آب از زیر سد ، دیوار بتنی قایمی را از پایینترین قسمت سد تا لایه‌های نفوذ ناپذیر احداث می‌کنند.

دیوار با شمعهای صفحه‌ای

این نوع دیوار ، که با راندن شمعهای صفحه‌ای به داخل خاک ایجاد می‌شود، موقعی از کارایی خوبی برخوردار است که قفل و بست بین صفحات کامل باشد و این مسئله‌ای است که در زمینهای دارای قلوه سنگ و قطعات درشت تر یا حاوی مواتع دیگر به خوبی امکان پذیر نیست. با افزایش طول شمعها ، امکان خم شدن آنها در خلال راندن وجود دارد. این نوع دیوار تا حدی می‌تواند از نفوذ آب جلوگیری کند. این دیوار را معمولا برای نگاهداری دیواره بخشهای حفاری شده بکار می‌برند. در خاکهای با زهکشی آزاد ، دیوار باید همراه با یک سیستم آبکشی باشد تا فشار جانبی وارده از زمین و آب به دیوار شمعی کاهش یابد.

دیوارهای گلی

دیوارهای گلی و ترانشه‌های پر شده از گل به عنوان عاملی کارآمد برای جلوگیری از نشت آب در پی سدها ، حفاریهای باز ، حفاری تونلها و سیستمهای کنترل آلودگی ، روز به روز مصرف بیشتری پیدا می‌کنند. روش احداث این دیوارها به جز در تونلها ، به این ترتیب است که ابتدا یک ترانشه حفر می‌شود و برای اینکه دیوارهایی ترانشه در طول حفاری ریزش نکند، داخل آن را با گل روانی از بنتونیت پر می‌کنند. در پایان حفر ترانشه ، این گل روان با موادی که بتواند یک دیوار دایمی و نسبتا غیرقابل تراکم و نفوذ ناپذیر را بسازد، تعویض می‌شود.

دیوار دیافراگمی

بتنی نوع سازه دایمی است که توسط تکنیک ترانشه‌های حاوی گل روان ایجاد می‌شود. به این منظور قطعه‌ای از ترانشه تا عرض ۷ متر را تا عمق دلخواه حفر می‌کنیم. در مرحله بعد یک شبکه (جوشن) فولادی پیش ساخته به داخل آن رانده می‌شود. در کلیه مراحل حفاری و راندن شبکه فولادی ، ترانشه توسط گل روانی که داخل آن ریخته می‌شود، از ریزش محفوظ می‌ماند. در مرحله بعد گل روان توسط بتن جایگزین می‌شود و پس از گرفتن بتن ، قطعه بعدی اجرا می‌شود.

دیوارهای یخی

این دیوارها که با یخ زدن بخشی از زمین اشباع شده ایجاد می‌شوند به عنوان عامل موقتی در جلوگیری از نشت آب در حفاریهای باز ، تونلها و شفتها مورد استفاده قرار می‌گیرند. این روش بیش از همه در رسوبات ضخیم ماسه‌ای و لایه‌ای اشباع شده و یا در جاهایی که مواد سازنده گل روان ممکن است منابع آب را آلوده سازد، بکار می‌رود. از دیوارهایی یخی سالهاست که در معادن و برای احداث چاههایی قایم (شفتها) تا عمق ۳۰۰ متر استفاده شده است.

این روش پرهزینه و وقتگیر است و معمولا یک تاخیر ۶ ماهه در کار را باعث می‌شود. علاوه بر آن باید دقت زیادی در اجرای آن بشود. زیرا حتی یک جریان کوچک آب از میان دیوار به داخل بخش حفاری شده می‌تواند فاجعه آمیز باشد. بر اثر یخ زدن ممکن است تورم قابل ملاحظه‌ای نیز در خاکهای سطحی اطراف ساختگاه بوجود آید که پس از آب شدن یخها می‌تواند با فروریزش زمین همراه شود. مقدار تورم و فروریزش متعاقب آن وابسته به نوع مواد واقع در نزدیک سطح زمین است.

تزریق

تزریق دوغاب به داخل خاکهای نفوذ پذیر و سنگ ، روش رایج و دایمی برای جلوگیری از جریان آب زیرزمینی است. البته در اغلب موارد دیواری که به این ترتیب بوجود می‌آید کاملا نفوذ پذیر نیست. از تزریق همچنین برای افزایش مقاومت سنگ و خاک سود جسته می‌شود. دوغابها متنوع اند و می‌توانند ترکیبی از سیمان ، سیمان و خاک یا مواد شیمیایی باشند. انتخاب نوع دوغاب به تخلخل سازندهای زمین شناسی ، سرعت جریان آب و مقاومت فشاری نهایی بخشهای تزریق شده بستگی دارد.

بطور کلی دوغابهای ماسه – سیمان برای بستن حفره‌های بزرگ و شکستگیها و دوغابهای رس و سیمان پرتلند برای بستن شکستگیهای نسبتا کوچک و خاکهای دانه درشت بکار می‌روند. به منظور کنترل جریان آب زیرزمینی ، حفر رشته منفردی از گمانه‌ها و تزریق در آنها اغلب کافی است. پرده تزریق را می‌توان با افزودن رشته‌های دیگری از گمانه‌های تزریق شده ضخیم تر نمود. در سنگهای شکافدار یا جاهایی که جریان زیاد است، موفقیت عملیات تزریق کمتر است.

انواع سدها از نظر کاربرد:
۱) سدهای مخزنی:به منظور ذخیره آب برای تاءمین مصارف شرب، کشاورزی و صنعت احداث می گردد.حجم مخزن این سدها بسیار بزرگ است.این نوع سدها شامل سدهای بتنی دو قوسی و بتنی وزنی و سدهای خاکی می شوند.
۲) سدهای تنظیمی:هدف از ساخت این سدها تنظیم دبی ثابتی برای رودخانه می باشد.این نوع سدها در پائین دست سدهای مخزنی بزرگ احداث می گردند.ارتفاع آنها کم و میزان حجم آبی که در آن ها ذخیره می شود، کم می باشد.جنس این سدها اکثرا بتنی با حاشیه های سنگریزه ای می باشد.

۳)سدهای انحرافی:برای منحرف کردن آب مورد استفاده قرار می گیرند،این سدها در مسیر رودخانه ها احداث می گردند و با افزایش هد آب باعث سوار شدن آب بر زمین های مجاور می گردد.همچنین از این سدها برای منحرف کردن آب قبل و بعد از محل های ساخت سدهای بزرگ استفاده می شود.

۴)سدهای رسوبگیر
این نوع سدها دارای ارتفاع کمی می باشد و جنس آنها بتن و سنگ می باشد.هدف ازاین سدها برای جلوگیری از ورود رسوبات به داخل سدهای بزرگ می باشد و قبل از این سدها احداث می شوند.

سازه های وابسته به سد:
پی ها وتکیه گاهها : از ارکان بسیار مهم سدها می باشند که نیاز به پایداری در طول ساخت و بهره برداری دارند.
اگرچه اغلب سدهای بتنی چه از نوع وزنی و پایدار و چه از نوع قوسی بر روی بسترهای سنگی مقاوم ساخته می شوند، ولی نیاز به کنترل مخصوصا مقاومت لغزشی و تراوشی دارند
سدهای بتنی قوسی نیاز به پی و تکیه گاههای مقاوم دارند و سدهای بتنی وزنی باید از نظر پی مقاوم باشند ولی اهمیت پی و دیواره در سدهای خاکی بسیار کمتر می باشد.
گالری ها ، اتاقک ها و شفت ها:
این سازه ها جهت حفاری ، تزریق،جمع آوری زهکش ها،نصب و راه اندازی و نگهداری وسایل جنبی در سدهابه کار می روندو قسمتی از ساختمان سد می باشند.
پائین ترین گالری در دیواره سد که عموما در داخل پی قرار دارد، گالری زهکش نامیده می شود و کلیه آبهای نشتی و زه ابهای خروجی از زهکش ها وارد این گالری می شود و سپس از آن تخلیه می گردد.

سریزها:
سریزها سازه های تنظیم کننده مانند دریچه ها و سازه های آرام کننده جریان مانند حوضچه آرامش از تاسیسات وابسته به سد هستند و در سدهای بتنی عموما بر زاویه پائین دست بدنه سد قرار می گیرند.

تخلیه کننده ها :
جهت انتقال آب از دریاچه سد به پائین دست آن به کار می روند و اجزاء آن عبارتند از:
کانل ورودی
آبراه
اتاقک دریچه
شوت و سرسره
انرژی گیر
از سازه های وابسته به سد هستند که کنترل رفتار و اطمینان از عملکرد آن در رفتار سد بسیار مهم است.
دریچه ها:
تمام دریچه ها و شیر آلات نصبی از تاسیسات وابسته به شمار می روند.

نیروهای وارد بر سد:

۱ ) نیروی فشار منفذی
۲ ) نیروی وزن سد
۳ ) نیروی افقی آب در بالادست
۴) نیروی عمودی آب در بالادست

موارد کنترل در سدهای بتنی:
تراز آب مخزن :
تراز آب مخزن با ذکر تاریخ اندازه گیری نوشته می شود و به صورت روزانه اندازه گیری می گردد.
تمام پارامترها از قبیل تغییر شکل ها و جابجایی هاو تاثیر درجه حرارت و تنش ها،کرنش ها و نیروی uplift تابع تراز آب می باشد.
دما :
اندازه گیری های دما شامل دمای آب و دمای هوا و دمای بتن در ترازها ئ نقاط مختلف است.
تراز آب بیشتر باشد بر دمای بتن تاثیر درجه حرارت کمتر است چون خود یک عایق است.
تغییر شکل ها :

تغییر جابجایی ها و،تغییر مکان های افقی و قائم و تغییر شکل های داخلی و دورانی
فشار منفذی :
که این فشار توسط پیزومتر بدست می آید.
(
پیزومتر برای بدست آوردن فشار نقطه ای در خاک است‌.)
فشار ناشی از آب در خاک زیری که به سمت بالا وارد می شود را فشار منفذی گویند و با نصب پیزومترها در جهت سراب به پایاب در پی سد می توانیم فشار در هر نقطه را مشخص نماییم.علاوه بر آن از پیزومترها برای کاهش فشار منفذی استفاده می گردد.
نشت آب :
اگر نشت زیاد شود یعنی دیواره در حال ریزش است.

حرکات کل سد
زلزله :
با استفاده از دستگاه های زلزله نگار
بدنه،پی تکیه گاهها و سنگ بستر :
در طول عمر مفید سد حالات مختلفی اتفاق می افتد که باید سد در مقابل تمام این حالات پایدار و ایمن باشد.این حالات شامل وضعیت زمان ساخت اولین آبگیری در طولانی مدت تخلیه سریع،شرایط سیلابی و زلزله می باشد.
در تمام شرایط بایستی سد در مقابل واژگونی در هر یک از صفحات افقی در مقاطع میانی سد ، در کف و صفحه های پائین تر از کف ایمن باشدو نیز صفحات میانی بدنه و صفحات پی و یا ترکیبی از آن ها لغزش رخ ندهد و بالاخره تنش ها در حد مجاز باشد.
در مورد سدهای قوسی رفتار سد به صورت انتقال نیرو از طریق قوس ها به تکیه گاه هاو انتقال بخشی دیگر به پی می باشد.
عموما رفتار سد در مواقع سیلابی و زلزله باید پیش بینی گردد.پاسخ سد در مواقع زلزله به مشخصات حرکت زمین در عرض و ارتفاع بستگی دارد.
حرکت آب مخزن در اثر زلزله تغییر شکل پذیری سنگ کف و تاثیر متقابل حرکات آب ، سد و بستر باید بررسی گردد.

اثر بارها و نیروهای خارجی بر جسم سد به صورت های زیر در رفتار سد ظاهر می شود:
۱) تغییر شکل سد به صورتشعاعی در جهت افق و مماسی از سراب به پایاب در سدهای قوسی و به صورت افقی و قائم در سدهای وزنی و خاکی می باشد
۲) تغییر شکل سنگ که شامل تراکم،تورم و یا چرخش می شود.
۳) تغییرات در درزهای اتصال افقی
۴) تغییرات کرنش و تنش در بتن
۵) چرخش بدنه سد یا سنگ بستر
۶) ایجاد فشار uplift
7)
نشت آب
۸ ) ایجاد ترک در بدنه و تکیه گاه ها

محل های کنترل در سدهای بتنی:
۱) وجه بالادست بدنه سد:
کنترل درزها و ترک،وضعیت بتن از نظر فرسایش و خوردگی
۲) وجه پائین دست:
کنترل درزها و ترک،شوره زدگی بتن (اگر زیاد باشد علاوه بر نشت آب املاح بتن نیز در حال شسته شدن است)و وضعیت خود بتن
۳) تاج سد:
کنترل سواره و پیاده رو از لحاظ خوردگی و فرسایش عوامل طبیعی ترک و وضعیت نقاط ثابت پنج مارک
)
گالری های بدنه سد :
نشت و ترک های احتمالی و درزها و وضعیت زهکش ها(در گالری تحتانی)باید کنترل شود.
۵) وضعیت پی در پنجه:
کنترل نشت آب،ترک و فرسایش بتن
۶) گالری تحتانی :
کنترل ترک ها وضعیت نشت آب و زهکش ها کنترل سطح بتن و شوره زدگی
۷) سریزها:
کنترل دریچه و عملکرد آن،تکیه گاهها و کابل ها و زنگ زدگی دیواره دریچه،کنترل درزها و ترک در رویه بالادست سریز،فرسایش بتن در آبگذر و تاج سریز کنترل بتن در کانال هوادهی

۸)حوضچه آرامش:
حوضچه آرامش از لحاظ رسوب گذاری،فرسایش لبه ها،دیواره و کف حوضچه و وضعیت بتن
بلوک های ضربه گیر در داخل حوضچه آرامش باعث ایجاد پرش هیدرولیکی در حوضچه می گردد.ایجاد پرش هیدرولیکی و افزایش عمق ثانویه باعث افت انرژی جریان می گردد.
۹) آبگیر :
کنترل سطح بتن و لبه هافوضعیت آشغال گیرها،خوردگی و زنگ زدگی
آبگیر محل هایی هستند که برای انتقال آب از دریاچه سد به پائین دست و یا انتقال آب از دریاچه سد که نیروگاهها از آن ها استفاده می شود.

برای جل


کلمات کلیدی : انواع سد و ساختار آنها,سد,سد قوسی,انواع سدها,سد بتنی,سد خاکی,ساختار سدها,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پروژه و تحقیق-دیوارهای پیش ساخته و ساختار آنها- در 30 صفحه-docx

سبک سازی در ساختمان

مقاوم سازی سازه در برابر زلزله یکی از مهم ترین اهداف طراحی سازه است. (اگرچه بایستی به نکات طراحی معماری نیز توجه شود.) هرچه سازه سبک تر باشد، در مقابل زلزله رفتار بهتری از خود نشان  می دهد. لذا سبک سازی سازه از اهمیت ویژه ای برخوردار است. فن سبک سازی سازه عبارتست از کاهش وزن تمام شده ی ساختمان با استفاده از تکنیک های نوینِ ساخت و استفاده از مصالح سبک و بهینه سازی روش های اجرا. کاهش وزن ساختمان علاوه بر صرفه جویی در هزینه، زمان و انرژی، زیان های ناشی از حوادث طبیعی مانند زلزله را کاهش داده و صدمات ناشی از وزن زیاد ساختمان را به حداقل می رساند.

روش های سبک سازی ساختمان به طور عمده به دو دسته تقسیم می گردند :

  • سبک کردن اجزای باربر ساختمان ( مثل دیوار سبک )
  • سبک کردن سازه ساختمان

یکی از روش های سبک سازی ساختمان ها، کاهش وزن تیغه های جداکننده در ساختمان می باشد. استفاده از دیوارهای سبک ترکیبی به عنوان دیوارهای داخلی و پیرامونی، از جمله این روش ها می   باشد

شرح ساختار

فونداسیون این نوع ساختمان ها متشکل از یک دال بتنی بوده که یک شاسی فولادی در آن مدفون می باشد. دیوارها از نوع ساندویچ پنل باربر بوده که متشکل از یک قاب بندی فولادی درون ساخت (به عنوان سیستم باربر)، پنل گچی (به عنوان پوشش داخلی)، پنل سیمانی (به عنوان پوشش خارجی) و لایه عایق (به عنوان ماده پرکننده میانی) می باشد. سیستم سقف متشکل از خرپای فولادی (به عنوان سازه باربر)، پنل گچی (به عنوان سقف کاذب) و ساندویچ پنل موج دار (به عنوان پوشش بام) می باشد. سیمکشی برق ساختمان به صورت روکار و در کانال های پی وی سی اجرا شده و لوله کشی آب سرد و گرم و فاضلاب به روش معمول انجام می گردد. هیچ گونه محدودیتی در انتخاب جنس درها، پنجره ها، کفسازی و پوشش نمای داخلی و خارجی وجود ندارد.

کاربردها

  • شهرک سازی و انبوه سازی
  • ساختمان های تجهیز کارگاه
  • ساختمان های اسکان اضطراری
  • ساختمان های روستایی (نظیر مدارس، خانه های بهداشت و مراکز مخابراتی)
  • ساختمان های بین جاده ای (نظیر مجتمع های رفاهی و پایگاه های امداد)
  • کمپ های نظامی
  • سرعت اجرایی بسیار بالا: تفاوت این سیستم با ساختمان های پیش ساخته دیگر در این است که پنل ها باربر بوده و نیازی به اجرای سازه اضافی وجود ندارد (عناصر سازه ای در درون پنل ها جاسازی شده اند). این امر تاثیر بسزایی در سرعت اجرا دارد.
  • مقاومت در برابر حریق: با توجه به مقاومت کم فوم های پلی یورتان و پلی استایرن در برابر آتش، همواره این معضل به عنوان نقطه ضعف ساندویچ پنل های متداول مطرح بوده است. اما، در ساندویچ پنل های بنابوم از عایق پشم معدنی به جای فوم استفاده شده و کلیه اجزا و مصالح تشکیل دهنده پنل های تولیدی این شرکت غیر قابل اشتعال می باشند.
  • حفظ شکل سنتی ساختمان: در ساندویچ پنل های معمولی، به دلیل استفاده از ورق فولادی به عنوان نما، ساختمان ظاهری صنعتی به خود می گیرد؛ در صورتی که در ساندویچ پنل های بنابوم، با به کارگیری صفحات گچی و سیمانی، شکل سنتی ساختمان حفظ شده و ساکنان احساس آرامش و رضایت می نمایند.
  • برتری نسبت به کانکس: استفاده از کانکس، به خصوص در محیط های پر تردد، به دلیل صداهای کوبه ای ناشی از انعطاف کف، مناسب نبوده و آرامش متصرفین را از بین می برد (ساختمان پیش ساخته بنابوم بر روی دال مستحکم بتنی اجرا شده و بدین ترتیب صداهای کوبه ای ناشی از تردد در آن به حداقل می رسد). همچنین، در کانکس فضا و نقشه معماری به حداکثر سی و شش متر مربع (عرض سه و طول دوازده متر) محدود شده و همان گونه که می دانیم کار در فضاهای محبوس با روحیات انسان ناسازگار بوده و اثر نامطلوبی بر کارایی آن ها دارد. حال تصور نمایید فضای اداری به مساحت سیصد و شصت متر مربع مورد نیاز باشد. در آن صورت باید از ده دستگاه کانکس استفاده نمود که هیچ گونه ارتباطی میان فضای آن ها وجود نداشته و کارکنان برای ارتباط با یکدیگر می باید در طول یک روز کاری چندین مرتبه از یک کانکس خارج و به کانکس دیگری وارد شوند. این امر موجب تولید صداهای مزاحم ناشی از باز و بسته شدن در و اختلال حواس شده و نیز باعث خستگی و اتلاف زمان قابل ملاحظه ای می شود (در ساختمان پیش ساخته بنابوم، هرگونه نقشه معماری بدون محدودیت در ابعاد و طرح قابل اجرا می باشد). به دلایل فوق استفاده از کانکس کاربر پسند نبوده و توصیه نمی شود.
  • وزن بسیار کم دیوار سبک : (برای سبک سازی دیوارهای داخلی H1:35 کیلوگرم بر مترمربع ودیوارهای خارجی H2:48 کیلوگرم بر مترمربع) چنان چه در محاسبات اولیه سازه از دیوار سبک حیات وال استفاده شود، می توان شاهد کاهش ۲۵ درصدیِ مصرف میلگرد و بتن در سازه بود. کاهش این رقم قابل توجه می تواند قیمت دیوارها را در پروژه های انبوه سازی، تعدیل و بعضاً رایگان نماید.
  • عایق حرارتی بسیارمناسب :بامقاومت حرارتی ۲٫۱۸ (m2.k/w)
  • عایق صوت: ۵۰db
  • مقاومت در برابر آتش :جداره های بیرونی که متشکل از کامپوزیت معدنی چند گانه است، یکی از بهترین مصالح مقاوم در برابر آتش سوزی می باشد.
  • عدم آوار در زلزله:به دلیل استفاده از شبکه توری و استحکام جداره ها، امکان جداشدن جداره ها از هسته ی مرکزی بسیارضعیف بوده و باعث کاهش دومین عامل کشتار(آوار دیوار) در زلزله می  گردد.
  • سهولت و سرعت درنصب وحذف مصالح بنایی واندود کاری.
  • بهداشتی بودن وسازگاری با انسان:درترکیبات این دیوار پیش ساخته هیچ نوع ماده ای که برای انسان یامحیط زیست ضررداشته باشداستفاده نشده است.
  • نمای سیمانی دیوارهای خارجی H2 می تواند باعث حذف پلاسترماسه سیمان شود.
  • مستقل بودن از واردات و تحریم های سیاسی به دلیل تولید ۱۰۰% داخلی و همسویی با اهداف اقتصاد مقاومتی.
  • صرفه اقتصادی:این دیوار پیش ساخته به دلایل امتیازات بسیار می تواند یکی از پرطرفدارترین دیوارها به لحاظ فنی و قیمت مناسب باشد. به طور کلی هزینه های مستقیم و غیر مستقیم این  محصول بسیار پایین تر از روش های سنتی و یا صنعتی قبلی می باشد.

مزایا


کلمات کلیدی : دیوارهای پیش ساخته و ساختار آنها,دیوار پیش ساخته,پانل پیش ساخته, پانل گچی,پانل بتنی,دیوار پیش ساخته گچی,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-دیوارهای پیش ساخته و ساختار آنها- در 35 اسلاید-powerpoin-ppt

سبک سازی در ساختمان

مقاوم سازی سازه در برابر زلزله یکی از مهم ترین اهداف طراحی سازه است. (اگرچه بایستی به نکات طراحی معماری نیز توجه شود.) هرچه سازه سبک تر باشد، در مقابل زلزله رفتار بهتری از خود نشان  می دهد. لذا سبک سازی سازه از اهمیت ویژه ای برخوردار است. فن سبک سازی سازه عبارتست از کاهش وزن تمام شده ی ساختمان با استفاده از تکنیک های نوینِ ساخت و استفاده از مصالح سبک و بهینه سازی روش های اجرا. کاهش وزن ساختمان علاوه بر صرفه جویی در هزینه، زمان و انرژی، زیان های ناشی از حوادث طبیعی مانند زلزله را کاهش داده و صدمات ناشی از وزن زیاد ساختمان را به حداقل می رساند.

روش های سبک سازی ساختمان به طور عمده به دو دسته تقسیم می گردند :

  • سبک کردن اجزای باربر ساختمان ( مثل دیوار سبک )
  • سبک کردن سازه ساختمان

یکی از روش های سبک سازی ساختمان ها، کاهش وزن تیغه های جداکننده در ساختمان می باشد. استفاده از دیوارهای سبک ترکیبی به عنوان دیوارهای داخلی و پیرامونی، از جمله این روش ها می   باشد

شرح ساختار

فونداسیون این نوع ساختمان ها متشکل از یک دال بتنی بوده که یک شاسی فولادی در آن مدفون می باشد. دیوارها از نوع ساندویچ پنل باربر بوده که متشکل از یک قاب بندی فولادی درون ساخت (به عنوان سیستم باربر)، پنل گچی (به عنوان پوشش داخلی)، پنل سیمانی (به عنوان پوشش خارجی) و لایه عایق (به عنوان ماده پرکننده میانی) می باشد. سیستم سقف متشکل از خرپای فولادی (به عنوان سازه باربر)، پنل گچی (به عنوان سقف کاذب) و ساندویچ پنل موج دار (به عنوان پوشش بام) می باشد. سیمکشی برق ساختمان به صورت روکار و در کانال های پی وی سی اجرا شده و لوله کشی آب سرد و گرم و فاضلاب به روش معمول انجام می گردد. هیچ گونه محدودیتی در انتخاب جنس درها، پنجره ها، کفسازی و پوشش نمای داخلی و خارجی وجود ندارد.

کاربردها

  • شهرک سازی و انبوه سازی
  • ساختمان های تجهیز کارگاه
  • ساختمان های اسکان اضطراری
  • ساختمان های روستایی (نظیر مدارس، خانه های بهداشت و مراکز مخابراتی)
  • ساختمان های بین جاده ای (نظیر مجتمع های رفاهی و پایگاه های امداد)
  • کمپ های نظامی
  • سرعت اجرایی بسیار بالا: تفاوت این سیستم با ساختمان های پیش ساخته دیگر در این است که پنل ها باربر بوده و نیازی به اجرای سازه اضافی وجود ندارد (عناصر سازه ای در درون پنل ها جاسازی شده اند). این امر تاثیر بسزایی در سرعت اجرا دارد.
  • مقاومت در برابر حریق: با توجه به مقاومت کم فوم های پلی یورتان و پلی استایرن در برابر آتش، همواره این معضل به عنوان نقطه ضعف ساندویچ پنل های متداول مطرح بوده است. اما، در ساندویچ پنل های بنابوم از عایق پشم معدنی به جای فوم استفاده شده و کلیه اجزا و مصالح تشکیل دهنده پنل های تولیدی این شرکت غیر قابل اشتعال می باشند.
  • حفظ شکل سنتی ساختمان: در ساندویچ پنل های معمولی، به دلیل استفاده از ورق فولادی به عنوان نما، ساختمان ظاهری صنعتی به خود می گیرد؛ در صورتی که در ساندویچ پنل های بنابوم، با به کارگیری صفحات گچی و سیمانی، شکل سنتی ساختمان حفظ شده و ساکنان احساس آرامش و رضایت می نمایند.
  • برتری نسبت به کانکس: استفاده از کانکس، به خصوص در محیط های پر تردد، به دلیل صداهای کوبه ای ناشی از انعطاف کف، مناسب نبوده و آرامش متصرفین را از بین می برد (ساختمان پیش ساخته بنابوم بر روی دال مستحکم بتنی اجرا شده و بدین ترتیب صداهای کوبه ای ناشی از تردد در آن به حداقل می رسد). همچنین، در کانکس فضا و نقشه معماری به حداکثر سی و شش متر مربع (عرض سه و طول دوازده متر) محدود شده و همان گونه که می دانیم کار در فضاهای محبوس با روحیات انسان ناسازگار بوده و اثر نامطلوبی بر کارایی آن ها دارد. حال تصور نمایید فضای اداری به مساحت سیصد و شصت متر مربع مورد نیاز باشد. در آن صورت باید از ده دستگاه کانکس استفاده نمود که هیچ گونه ارتباطی میان فضای آن ها وجود نداشته و کارکنان برای ارتباط با یکدیگر می باید در طول یک روز کاری چندین مرتبه از یک کانکس خارج و به کانکس دیگری وارد شوند. این امر موجب تولید صداهای مزاحم ناشی از باز و بسته شدن در و اختلال حواس شده و نیز باعث خستگی و اتلاف زمان قابل ملاحظه ای می شود (در ساختمان پیش ساخته بنابوم، هرگونه نقشه معماری بدون محدودیت در ابعاد و طرح قابل اجرا می باشد). به دلایل فوق استفاده از کانکس کاربر پسند نبوده و توصیه نمی شود.
  • وزن بسیار کم دیوار سبک : (برای سبک سازی دیوارهای داخلی H1:35 کیلوگرم بر مترمربع ودیوارهای خارجی H2:48 کیلوگرم بر مترمربع) چنان چه در محاسبات اولیه سازه از دیوار سبک حیات وال استفاده شود، می توان شاهد کاهش ۲۵ درصدیِ مصرف میلگرد و بتن در سازه بود. کاهش این رقم قابل توجه می تواند قیمت دیوارها را در پروژه های انبوه سازی، تعدیل و بعضاً رایگان نماید.
  • عایق حرارتی بسیارمناسب :بامقاومت حرارتی ۲٫۱۸ (m2.k/w)
  • عایق صوت: ۵۰db
  • مقاومت در برابر آتش :جداره های بیرونی که متشکل از کامپوزیت معدنی چند گانه است، یکی از بهترین مصالح مقاوم در برابر آتش سوزی می باشد.
  • عدم آوار در زلزله:به دلیل استفاده از شبکه توری و استحکام جداره ها، امکان جداشدن جداره ها از هسته ی مرکزی بسیارضعیف بوده و باعث کاهش دومین عامل کشتار(آوار دیوار) در زلزله می  گردد.
  • سهولت و سرعت درنصب وحذف مصالح بنایی واندود کاری.
  • بهداشتی بودن وسازگاری با انسان:درترکیبات این دیوار پیش ساخته هیچ نوع ماده ای که برای انسان یامحیط زیست ضررداشته باشداستفاده نشده است.
  • نمای سیمانی دیوارهای خارجی H2 می تواند باعث حذف پلاسترماسه سیمان شود.
  • مستقل بودن از واردات و تحریم های سیاسی به دلیل تولید ۱۰۰% داخلی و همسویی با اهداف اقتصاد مقاومتی.
  • صرفه اقتصادی:این دیوار پیش ساخته به دلایل امتیازات بسیار می تواند یکی از پرطرفدارترین دیوارها به لحاظ فنی و قیمت مناسب باشد. به طور کلی هزینه های مستقیم و غیر مستقیم این  محصول بسیار پایین تر از روش های سنتی و یا صنعتی قبلی می باشد.

مزایا


کلمات کلیدی : دیوارهای پیش ساخته و ساختار آنها,دیوار پیش ساخته,پانل پیش ساخته, پانل گچی,پانل بتنی,دیوار پیش ساخته گچی,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پروژه و تحقیق-موتورهای احتراق داخلی و خارجی و نحوه عملکرد آنها- در 100 صفحه-docx

موتور:

موتورها دستگاه‌هایی هستند که انرژی را برای بکار انداختن وسایل نقلیه، دستگاه‌های دیگر یا تولید الکتریسیته، به کار مکانیکی تبدیل می‌کنند.

انواع اصلی موتورها عبارتند از:موتور بخار، بنزینی، دیزل، الکتریکی، جت و موشک. در هر یک از این موتورها انرژی از سوختهایی چون زغال سنگ، بنزین و گازوئیل بدست می‌آید. همه موتورها، موتورهای درون سوز هستند. به این معنا که سوخت درون موتور می‌سوزد. موتور بخار، تنها موتور برون سوز است.

نخستین موتورهای بخار:

در قرن هجدهم میلادی، بیشتر نیروی صنایع مربوط به انقلاب صنعتی، از موتورهای بخار بدست می‌آمد. در سال ۱۷۱۲، یک انگلیسی بنام تامس نیو کامن، نخستین موتور بخار کار آمد را برای تلمبه زدن آب به بیرون از معادن زغال سنگ را اختراع کرد. در سال ۱۷۶۵، یک مهندس اسکاتلندی بنام جیمز وات، موتور بخار نیوکامن را کاملتر کرد و دستگاهی با کارایی بیشتر ساخت. چیزی نگذشت که موتورهای بخار را برای فراهم آوردن نیروی ماشین آلات کارخانه‌ها بکار گرفتند. پس از آن نیز برای لوکوموتیوها، از جمله لوکوموتیو راکت، استفاده کردند. این لوکوموتیو را جورج استیونسون، مهندس انگلیسی، در سال ۱۸۲۹ میلادی ساخت.

موتور از دیدگاه علم برق

موتور الکتریکی

در دنیای برق موتور وسیله‌ای است که انرژی الکتریکی را به انرژی مکانیکی دورانی تبدیل می‌کند. با توجه به نوع انرژی الکتریکی مورد استفاده در موتور، موتورها به دسته‌های:
1- 
موتورهای AC یا جریان متناوب
2- 
موتورهای DC یا جریان مستقیم
تقسیم بندی می‌شوند که البته هر کدام از این دو نوع، خود به دسته‌های جزیی تری تقسیم بندی می‌شوند. تمام موتورهای الکتریکی از ۲ قسمت کلی استاتور و روتور تشکیل شده‌اند.

 

موتورهای درون‌سوز: 

      موتورهای درون‌سوز یا موتورهای احتراق داخلی به موتور‌هایی گفته می‌شود که در آن‌ها مخلوط سوخت و اکسید کننده (معمولاً هوا یا اکسیژن) در داخل محفظهٔ بسته‌ای واکنش داده و محترق می‌شوند. بر اثر احتراق گازهای داغ با دما و فشار بالا حاصل می‌شوند و بر اثر انبساط این گازها قطعات متحرک موتور به حرکت درآمده و کار انجام می‌دهند. هرچند غالباً منظور از به‌ کار بردن اصطلاح موتورهای درون‌سوز، موتورهای معمول در خودروها می‌باشند، با این حال موتورهای موشک و انواع موتورهای جت نیز مشمول تعریف موتورهای درون‌سوز می‌شوند.

      موتور درون‌سوز، یک وسیلهٔ گردنده‌ است که در خودروها، هواگردها، قایق موتوری، موتورسیکلتها و صنایع کاربرد دارد. بدون بهره‌گیری از موتورهای درون‌سوز، اختراع و ساخت هواپیماها ممکن نبود. تا پیش از پرواز نخستین هواپیمای جت در سال ۱۹۳۹، نیروی محرکه تمام هواپیماها در واقع توسط موتورهای درون‌سوز تأمین می‌شد.

      نخستین موتور درون‌سوز چهارزمانه توسط نیکلاس اوگوست اوتو[1] و مخترع آلمانی ویلیام وگنر در سال ۱۸۷۶ ساخته‌ شد.

 

نیکلاس اوگوست اوتو

انواع موتورهای درون‌سوز

موتور درون سوز اتو

     این موتورها را به دو دسته کلی موتور چهارزمانه و موتورهای دو زمانه می‌توان تقسیم کرد. اصول کاری این موتورها مشابه ‌است. لیکن نحوه عمل آنها به علت تفاوت‌های ساختاری اندکی متفاوت است. البته ازنوع امروزی تر باید به چهار زمانه اشاره کرد که حتی تاثیر کمتری بر روی الودگی هوا دارد.

موتور چهارزمانه:

      این موتورها برای هر انفجار (مرحلهٔ تبدیل انرژی سوخت به انرژی مکانیکی) بایستی چهار مرحلهٔ مکش، تراکم، انفجار و تخلیه را انجام دهند.

موتورهای دوزمانه:

      این موتورها در هر دور چرخش دارای یک انفجار هستند. این کار با ترکیب کردن مراحل انفجار و دم و بازدم به‌ عنوان یک مرحله و ترکیب تخلیه و تراکم به‌عنوان مرحلهٔ بعدی صورت می‌گیرد. راندمان موتورهای دو زمانه به مراتب از موتورهای چهارزمانه بیشتر است.

موتور درون سوز دیزل:

     موتور دیزل گونه‌ای موتور درون‌سوز است که در آن از چرخه دیزل برای ایجاد حرکت استفاده می‌شود. فرق اصلی آن با موتور اتو ایجاد احتراق در اثر تراکم است. یعنی انفجار بر اثر تراکم سوخت و هوا بدون نیاز به جرقه زنی می­باشد(سیستم احتراق داخلی دیزل(.

موتور دو زمانه:

     موتور درون سوزی که 2 فرایند اصلی دارد.

  • مکش سوخت + انفجار یا احتراق سوخت.
  • تراکم سوخت+ خروج دود

موتور چهار زمانه:

    موتور درون سوزی با چهار فرایند اصلی 1-مکش سوخت 2- تراکم 3-احتراق و 4- خروج دود است.

موتور شش زمانه:

      موتور درون سوزی بر اساس موتور چهار زمانه با افزایش فرآیند و کارکرد نسبت به آن و با ۶ عمل در چرخه فرایند­ می باشد.

موتورهای دوار بدون پیستون:

     به موتورهایی که پیستون ندارند و بجای آن روتور دارند که بصورت دورانی حرکت می کند اطلاق می شود. مانند موتور وانکل و موتور شبه توربین. این نوع موتور ها در پهپاد هایی استفاده میشود که در منطقه ای وسیع به شعاع km 300 تا km 500  مورد نیاز باشد استفاده می شود.

موتور شبه توربین:

      موتور شبه توربین خیلی شبیه موتور دورانی است، یک روتور درون بدنه ی تقریباً بیضی شکل می چرخد. موتور شبه توربین روتور چهار جزیی دارد. گوشه های روتور با بدنه به خوبی آب بندی شده اند و نیز گوشه های روتور نسبت به بخش داخلی آب بندی اند. در نتیجه چهار محفظه ی مجزا تشکیل می شود.

موتور درون سوز وانکل:

      موتور دورانی که مخترع آن دکتر فلیکس وانکل بود، گاهی موتور وانکل یا موتور دورانی وانکل نامیده می شود. اجزائ اصلی آن روتور، محفظه روتور، محور خروجی، شمع جرقه زنی، قطعات آبندی می باشد. در موتور وانکل مانند موتور های بنزینی چهار زمانه مخلوط هوا و بنزین وارد محفظه ی بزرگی از موتور می شود سپس با کوچک شدن حجم آن مخلوط هوا و بنزین تحت فشار قرار گرفته و با ایجاد جرقه به وسیله شمع انفجار حاصل می شود، مولکول های گاز دراثر احتراق منبسط می گردند و فشار محفظه ی تراکم به شدّت بالا می رود و نیروی حاصل از آن به روتور اعمال شده و به علّت اختلاف مرکز دوران بین روتورومیل لنگ نیروی چرخشی درروتور ایجاد می گردد.این نیروی چرخشی به بادامک محور لنگ که در داخل روتور قرار دارد، وارد شده و به فلایویل و سیستم انتقال قدرت می رسد.

موتورهای احتراق پیوسته:

     به موتور هایی که عمل احتراق به صورت منظم و پیوسته انجام میشود مانند موتورهای راکت و انواع موتور جت و توربین گازی اطلاق می شود.

موتورهای احتراق ناپیوسته:

     به موتور هایی گفته میشود که عمل احتراق در آنها به صورت متناوب انجام می شود مانند موتور های پیستونی و پالس جت و موتور وانکل.

چرخه اتکینسون:

     در علم ترمودینامیک و در بحث چرخه‌های ترمودینامیکی، موتور چرخهٔ اتکینسون[2] یک نوع موتور درون‌سوز می‌باشد که توسط جیمز اتکینسون در سال ۱۸۸۲ میلادی ابداع شد. چرخهٔ اتکینسون برای فراهم کردن ماکزیمم چگالی توان به ازای هزینهٔ خرج شده، طراحی می‌شود و امروزه در برخی از خودروهای برقی دو گانه(همچون تویوتا پریوس) کاربرد دارد.

 

جیمز اتکینسون

چرخهٔ ایده‌آل ترمودینامیکی:

منحنی فشار - حجم چرخهٔ ایده‌آل اتکینسون

 

چرخهٔ اتکینسون ایده‌آل شامل فرآیندهای زیر می‌باشد:

۱ به ۲ – فرآیند تراکم هم آنتروپی) بی‌درو و برگشت‌پذیر(

۲ به ۳ – فرآیند گرمایش هم حجم

۳ به ۴ – فرآیند گرمایش هم فشار

۴ به ۵ – فرآیند انبساط هم آنتروپی

۵ به ۶ – فرآیند سرمایش هم حجم

۶ به ۱ - فرآیند سرمایش هم فشار

 

توربین گازی:

     توربین گاز:Gas Turbine  یک ماشین دوار است که بر اساس انرژی گازهای ناشی از احتراق کار می‌کند. هر توربین گاز شامل یک کمپرسور برای فشرده کردن هوا، یک محفظه احتراق برای مخلوط کردن هوا با سوخت و محترق ‌کردن آن و یک توربین برای تبدیل کردن انرژی گازهای داغ و فشرده به انرژی مکانیکی است. بخشی از انرژی مکانیکی تولی شده در توربین، صرف چرخاندن کمپرسور خود توربین شده و باقی انرژی، بسته به کاربرد توربین گاز، ممکن است ژنراتور برق را بچرخاند (توربو ژنراتور)، به هوا سرعت دهد (توربوجت و توربوفن) و یا مستقیماً (یا بعد از تغییر سرعت چرخش توسط جعبه دنده) به همان صورت مصرف شود (توربوشفت، توربوپراپ و توربوفن).  موتور جت شامل توربوجت، توربوفن، توربوشفت، توربوپراپ، رم‌جت، موشک می باشد.

تاریخچه توربین گازی:

     در سال ۱۷۹۱، یک مخترع انگلیسی به نام جان باربر، یک ماشین طراحی کرد که از نظر ماهیت کارکرد شبیه به توربین‌های گاز امروزی بود و حق امتیاز این طرح را به نام خود ثبت کرد .او این توربین را برای به حرکت درآوردن یک کالسکه بدون اسب طراحی کرده بود. در سال ۱۹۰۴، یک پروژه ساخت توربین گاز توسط فرانتس استولز در برلین انجام شد که اولین کمپرسور محوری جهان در ساخت آن مورد استفاده قرار گرفته بود، ولی این پروژه ناموفق بود. در طی سال‌های بعد، افراد مختلف بر روی ایده توربین گاز فعالیت کردند، به طوری که شرکت جنرال الکتریک آمریکا که امروزه بزرگ‌ترین تولیدکنندهٔ توربین گاز در جهان است، در سال ۱۹۱۸ بخش توربین گاز خود را راه‌اندازی کرد. با این وجود، نخستین توربین گازی برای تولید انرژی برق، در سال ۱۹۳۹ میلادی و در شرکت براون باوریدر سوئیس ساخته شد که ظرفیت آن ۴ مگاوات بود.

مبنای کارکرد:

  

چرخهٔ برایتون، اساس کارکرد توربین‌های گاز:

     مبنای کار توربین‌های گاز از نظر ترمودینامیکی، بر اساس چرخهٔ برایتون است که در آن، هوا به صورت بی‌دررو فشرده شده، احتراق در فشار ثابت رخ داده و انبساط هوای فشرده و داغ در توربین، به صورت بی‌دررو رخ می‌دهد و هوا به فشار اولیه می‌رسد. در عمل، اصطکاک و توربولانس باعث می‌شوند که:

  1. فشرده ‌سازی هوا در کمپرسور به صورت بی‌دررو نباشد. این موجب می‌شود که برای دست‌یافتن به یک نسبت فشارمعین، دمای خروجی کمپرسور بیشتر از حالت ایده‌آل باشد.
  2. انبساطهوا در توربین به صورت بی‌دررو نباشد. این موجب می‌شود که با ثابت بودن مقدار کاهش دما در توربین، کاهش فشار ناشی از آن افزایش یافته و انبساط کمتری برای تولید کار در توربین فراهم باشد.
  3. افت فشار در ورودی هوا، محفظهٔ احتراق و اگزوز وجود داشته باشد. این موضوع باعث می‌شود که نسبت فشار موجود برای تولید کار کاهش یابد. افت فشار در ورودی هوا باعث کاهش فشار در ورودی کمپرسور و در نتیجه کاهش فشار ورودی محفظهٔ احتراق و توربین می‌شود. افت فشار در محفظه و اگزوز، به ترتیب به کاهش فشار ورودی به توربین و افزایش فشار خروجی توربین می‌انجامند که همهٔ این عوامل، باعث کاهش نسبت فشار موجود در توربین برای تولید کار می‌شوند.

با افزایش دمای هوای ورودی به توربین، راندمان توربین‌های گاز افزایش می‌یابد؛ بنابراین، بهتر است که این دما هر چه بیشتر انتخاب شود. اما در این مورد از نظر تحمل مواد تشکیل‌دهندهٔ محفظهٔ احتراق و پره‌های توربین، محدودیت وجود دارد؛ بنابراین، در این قسمت‌ها که به آنها بخش‌های داغ یا Hot Sections، گفته می‌شود، از مواد مقاوم به دماهای زیاد مانند سوپرآلیاژها استفاده می‌شود. همچنین این قسمت‌ها با استفاده از تکنولوژی‌های پیچیده‌ای خنک‌کاری می‌شوند.

انواع توربین گاز:

  • توربین‌های گاز صنعتی برای تولید توان الکتریکی

 

توربین گاز سری H شرکت جنرال الکتریک، این توربین ۴۸۰ مگاواتی در چیدمان سیکل ترکیبی، بازده حرارتی ۶۰٪ دارد.

توربین‌های گاز صنعتی برای تولید توان الکتریکی، که توربوژنراتور گاز هم نامیده می‌شوند، توربین‌های گازی هستند که توان تولیدشده به وسیلهٔ آنها، مستقیماً و یا پس از تغییر سرعت دوران در جعبه‌دنده، به ژنراتور منتقل شده و در آنجا به انرژی الکتریکی تبدیل می‌شود. این نوع توربین گاز، می‌تواند به صورت سیکل ساده (به انگلیسی: Single Cycle) و یا سیکل ترکیبی (به انگلیسی: Combined Cycle) باشد. در حالت سیکل ساده، گازهای خروجی از اگزوز توربین که می‌توانند تا ۶۰۰ درجه سانتیگراد دما داشته باشند، مستقیماً وارد هوا شده و انرژی باقی‌مانده در آن هدر می‌رود؛ ولی در حالت سیکل ترکیبی، یک یا دو توربین گاز با یک توربین بخار کوپل می‌شوند و گازهای خروجی از توربین گاز در بخشی به نام بویلر بازیاب، آب بازگشتی از کندانسور توربین بخار را که توسط پمپ فشرده شده، به بخار تبدیل می‌کنند. در نتیجه در حالت سیکل ترکیبی، از انرژی موجود در گازهای خروجی از اگزوز توربین گاز استفاده شده و بویلر توربین بخار بدون نیاز به سوخت، بخار آب تولید می‌کند؛ بنابراین، با استفاده از این روش، راندمان سیکل افزایش می‌یابد. توربوژنراتورها همچنین می‌توانند به صورت تولید همزمان برق و گرما (به انگلیسی: Cogeneration) استفاده شوند که در این ترکیب، گاز خروجی از آنها برای تولید آب گرم و یا هوای گرم ساختمان‌ها و کارخانجات استفاده می‌شود.

  • توربین‌های گاز برای تولید انرژی مکانیکی[ویرایش]

این نوع از توربین‌های گاز که شامل توربوکمپرسورها و توربوپمپ‌ها می‌شوند، توربین‌های گازی هستند که در آنها انرژی تولید شده توسط توربین، صرف به گردش درآوردن یک کمپرسور (جهت فشرده‌کردن یک مادهٔ گازی) یا پمپ (جهت بالابردن فشار یک مایع) می‌شود.

موتورهای جت[ویرایش]

 

اصول کار توربوجت

موتورهای جت، نوعی موتور هستند که از شتاب دادن و تخلیه سیال برای ایجاد پیش‌رانش بر پایه قانون سوم نیوتن استفاده می‌کنند. دو نوع از موتورهای جت یعنی توربوجت‌ها و توربوفن‌ها شامل توربین گاز بوده و در واقع یک نوع توربین گاز هستند.

توربوجت‌ها، نوعی توربین گاز هستند که در آنها همهٔ انرژی تولید شده در توربین صرف چرخاندن کمپرسور می‌شود و هوای داغ خروجی از توربین پس از عبور از یک نازل، سرعت گرفته و به صورت یک جت سیال با سرعت زیاد از انتهای آن خارج می‌شود.

 

اصول کار مو


[1] نیکلاس اوگوست اوتو، مخترع آلمانی بود که در سال 1876 اولین موتور درون‌سوز چهارزمانه را ساخت که الگو و مدلی شد برای صدها میلیون موتور مشابه که از آن زمان تا کنون ساخته شده است. موتور درون‌سوز یک وسیله گردنده است که در قایق موتوری و موتورسیکلت‌ها کاربرد دارد. علاوه بر موارد استعمال فراوان آن در صنعت، اختراع هواپیما بدون استفاده از آن غیر ممکن بود. تا قبل از پرواز اولین هواپیمای جت در سال 1939، نیروی محرکه تمام هواپیماها در واقع توسط موتورهای درون‌سوز که چرخه‌کار آنها بر مدار اوتو بودف تأمین می‌شد. امّا مهمترین مورد کاربرد موتورهای درون‌سوز استفاده ازآنان در اتومبیل‌ها است. قبل از آنکه اوتو موتور خود را اختراع کند برای ساخت اتومبیل تلاش‌های فراوان و عدیده‌ای شده بود. برخی مخترعین نظیر زیگفرید مارکوس (در سال 1875) اتین لنور (در سال 1862) و نیکلاژوزف کنوت (در سال 1769) موفق به ساخت مدل‌هایی شدند که حرکت می‌کرد. اما به علت نبودن موتور مناسب، موتوری که هر دو مزیت وزن کم و قدرت زیاد را با هم داشته باشد هیچ کدام از آن مدل‌ها در عمل قابل استفاده نبود. ولی در خلال پانزده سال پس از اختراع موتور چهار زمانه اوتو، دو مخترع آلمانی دیگر، کارل بنز و گوتلمب دایملر، هر یک اتومبیل‌هایی قابل استفاده و قابل فروش ساختند...

[2] جیمز اتکینسون : James Atkinson (physicist ۱۷ فوریه ۱۹۱۶ – ۹ مه ۲۰۰۸) یک فیزیک آزمایشگاهی اهل بریتانیا بود.

 


کلمات کلیدی : موتورهای احتراق داخلی و خارجی,موتور,موتور احتراقی,موتورهای چهار زمانه,موتورهای دو زمانه, موتور خودرو,مکانیک موتور,انواع موتور,موتورهای احت
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-بادگیرها و اصول طراحی آنها- در 80 اسلاید-powerpoin-ppt

بادگیر ها به چه معنی است ؟

کویر چگونه زنده است ؟

کجا می توان این نفس های کویررا شمرد ؟

این همه زیبایی چگونه رو به نابودی است ؟

از بادگیر ها تا معماری اکوتک چقدر فاصله است ؟

شهر بادگیر ها ، شهر زیبای ایران ، یزد ؟

بادگیرها در جهان دیروز و امروز ؟

چرا دیگر کویر ایران نفس نمی کشد ؟

و ...

 

 

 

 

 

 

 

مقدمه

استفاده از بادگیر از سالهای بسیار قدیم در ایران متداول بوده است . بادگیرها با اشکال مختلف در شهرهای مرکزی و جنوب ایران ساخته شده که هر کدام بر حسب ارتفاع و جهت باد مطلوب طراحی و اجرا شده اند . هنوز هم می توان باقیمانده ی این بادگیرها را در اقلیم گرم و مرطوب جنوب در شهرهایی مانند : بندر عباس ، بندر لنگه ، قشم ، بوشهر ، و اقلیم گرم و خشک نواحی مرکزی مانند کرمان ، نائین ، یزد ، طبس ، کاشان ، سمنان ، اصفهان و حتی نواحی جنوب شهر تهران مشاهده نمود .

در این مقاله انواع بادگیر و ساختار آن را و دلیل منقزض شدنش را مورد بررسی قرار می دهیم  و  در آخر به ایده های جدید از این تفکر قدیمی نگاهی خواهیم داشت .

          

 

 

 

 

 

 

 

 

 

 

بادگیر و ایران

بادگیر از مظاهر و سمبل های تمدن ایران است  ، دقیقا معلوم نیست اولین بادگیر در کدام شهر ایرا ن ساخته شده است ولی سفرنامه نویسان قرون وسطایی بیشتر از بادگیرهای شهرهای کویری و گرم و خشک مانند : یزد و گناباد و طبس ، کرمان ، بم ، زاهدان نام برده اند .

کاریز و بادگیر و خانه های گنبدی بدون تردید از نمادهای تمدن ایرانی است .

معمارن ایرانی در گذشته از عامل باد برای تعدیل گرمای درون خانه ها ف تالار ها و آب انبار ها استفاده می کردند . بادگیر تشکیل شده است از برجکی تقریبا مرتفع تر از جاهای دیگر خانه بر روی بام با دهانه های چهار گانه که بالای آن (رو به آسمان ) بسته است ولی پایین آ ( به داخل بنا) باز است .

 

 

 

 

حوض خانه ایوانی کوچک بوده است که در انتهای اتاق های تابستانی هر امارت قرار داشته است . اتاق های تابستانی تشکیل شده اند از اتاق هایی با ابعاد بزرگ و درهای زیاد گاهی تا پنج در - بدلیل جریان یافتن هوا درآنها که در انتهای آنها حوض خانه بود . حوض خانه به شکل فضای رابط میان حیاط خانه و اتاق های تابستان است . و دراین فضا حوض کوچکی بود که به همین دلیل به آن حوض خانه می گویند .

وجود بادگیر با آب و هوای هر منطقه در رابطه ی مستقیم است . بطوری که هر چه گرمای هوا کاسته شود ، و همان میزان از تعداد بادگیرها کاسته می شود . بعنوان مثال در روستاهای کوهستانی « طرزجان» و «ده بالا» که هوای خنک دارند بادگیر برایشان مفهوم و معنا ندارد .

د رحالیکه د ر « میبد » که دارای آب و هوای گرم و خشک است می توان گفت که بیشتر خانه ها بادگیر دارند .

ساختار بادگیر

 بادگیر معمولا چهارگوشه است و در دیوارهای چهار گانه ی ان سوراخ تعبیه شده است و همان گونه که در عکس ها و اشکال این قسمت مشاهده می شود ، اغلب بادگیرها ، دارای چوب بست هایی هستند که دو طرف دهانه ی بادگیر را به هم متصل می کنند و انتهای این چوب بست ها از بدنه ی بادگیر بیرون می باشد .

 

 

 

 

 

این چوب بست ها جهت افزایش استحکام و مقاومت بادگیر در مقابل فشار باد است علت آنکه انتهای این چوبها را نمی برند این است که در زمان تعمیر و مرمت بادگیر ، داربست ها را به این چوب ها متصل می کنند و از روی داربست ها ، تعمیرات لازمه را انجام می دهند و بصورت کششی کار می کنند و نمی گذارند که پرده های داخلی و بدنه بادگیر از یکدیگر جدا شوند.

درون بادگیر با تیغه ها و جداره هایی که از خشت یا چوب ساخته شده است و پره های آجری مورب  به چهار بخش تقسیم می شده است .

بطوری که اگر در فضای بالای بنا ، از هر سو باد بوزد به درون دهانه وارد می گردد و بخاطر اینکه تیغه های مورب در داخل بادگیر به سمت پایین ادامه دارد ، کشش باد هم بسمت پایین ادامه پیدا می کند و باد از هوای آزاد بالا به درون ساختمان می رسد واز سوی دیگر هوا به بیرون می رود .

چشمه

عرض بین دوتیغه را در اصطلاح «چشمه» می نامند .

 

 

 

که بین 40 تا 60 سانتی متر است .  تعداد چشمه های هر بادگیر بستگی به عرض اتاق و همچنین بزرگی بادگیر دارد و از طرفی تعداد چشمه های هر طرف بادگیر با شدت باد همان طرف و در مجموع با هوای هر منطقه ارتباط دارد . بادگیر را بسمتی می سازند که مناسبترین جریا ن هوای منطقه را جذب کند و پشت به باد «قبله» می سازند که همراه گرد و خاک است و برحسب سرعت و جهت باد طراحی شده ند .

بام بادگیر را به شکل خرپشته در می آورند تا در کشاندن هوای مطبوع و یا در بیرون کردن هوای گرم و آلوده کمک کند .

بعد روی پشت بام بادگیر را به قطر 3 ساتی متر با نیمچه کاه می پوشانند . گاهی اوقات فاصله بین دو پایه را با خشت و نیمچه کاه تخت می کنند سپس دو یا سه رگه آجر در لبه های بام آن کار می گذارند .

بطوری که چیدن آجرها به این ترتیب علاوه بر استحکام بادگیر به زیبایی ظاهری آن نیز می افزاید . در بعضی از موارد نیز در روی دهانه ی بادگیر ، حصیر ، سفال و یا بوته های خار قرار می دادند و روی آن آب می پاشیدند و بدین ترتیب رطوبت و برودت های هوای ورودی را افزایش می دادند .

شیوه ساختن بادگیر

معماران محلی برای ساختن بادگیر از پشت بام خانه و از جایی که مشرف به اتاق کوچکی است که برای بادگیر اختصاص داده‌اند با خشت یا آجر ،تنوره بادگیر را با مقطع مستطیل می‌چینند تا به ارتفاع معینی برسد. سپس بالای این تنوره‌ها چهار دیواره را دو چوب به شکل ضربدر «×» می‌گذارند. به گونه‌ای که دو سمت هر چوب در دو زاویه مقطع قرار بگیرد و سپس دیوارهای سمت شرق و غرب


کلمات کلیدی : اصول کار بادگیر در معماری,بادگیر,بادگیرها در معماری,معماری بادگیرها,انواع بادگیر,بادگیر چپقی,بادگیر یکطرفه,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-بلایا و مخاطرات طبیعی و راه مقابله با آنها- در83 اسلاید-powerpoin-ppt

بلایای طبیعی، به مجموعه‌ای از حوادث زیانبار گفته می‌شود، که منشاء انسانی ندارند. این حوادث معمولاً غیرقابل پیش‌بینی بوده و یا حداقل از مدتهای طولانی قبل نمی‌توان وقوع آنها را پیش‌بینی نمود. از هنگامی که انسان پا به عرصه حیات در روی کره خاکی گذاشت، طبیعت همواره او را به چالش کشیده است. او برای زیستن در این مکان و به دست آوردن غذا، امنیت وآسایش باید با ناملایمات پیش رو در محیط زندگی مبارزه می کرده و بر آنها چیره می شده است. زمانی برای در امان ماندن از گزند سرما و یخبندان به غارها پناه می برده است و زمانی برای گریز از سیل و بارانهای شدید،زیستگاه خود را تغیر می داده است.
انسان با تمام تلاش و سعی فراوان و تجربیات گرانبهای خود،در طول هزاران سال ستیز با ناملایمات طبیعت،هنوز هم هر از چند گاهی اسیر چنگال طبیعت شده و خشم طبیعت جان و مال او رابه یغما می برد. امروز که عصر انفجار علم است ، در پیشرفته ترین کشورها ، ثروتمندترین انسانها نیز گاهی در مقابل قدرت عظیم نهفته در آشوبهای طبیعی ناچار به تسلیم می باشند. آنچه که با نام طوفان کاترینا در ایالات متحده روی داد ، یا پدیده سونامی در جنوب شرق آسیا و سیل گلستان در شمال ایران تنها نمونه های اندکی از عجز انسان در مقابل نیروی نهفته در محیط است.
بشر این حوادث طبیعی که انسان را به مبارزه طلبیده است را ، تحت عنوان مخاطرات طبیعی نام نهاده ، و حدوث آنها را در زندگی خود بحران می داند. دانشمندان و محققین در مراکز دانشگاهی و تحقیقاتی سراسر دنیا، بی وقفه ، با صرف زمان ، سرمایه و تلاش فراوان بدنبال شناسائی و کشف علل و معلول آنها و بدست آوردن راههائی برای پیش بینی ، پیش گیری و مقابله با آنها هستند.
برخی از این بحران ها نیروی خود را از دون زمین می گیرند و برخی دیگر منشاء در انرژی های نهفته دراتمسفر زمین دارند، دسته اخیر همان بحران های اقلیمی هستند. سیل بزرگترین و مهمترین بحران اقلیمی است ،که همه ساله جان هزاران÷ نفر را می گیرد و خسارات فراوان به جامعه انسانی و محیط زیست او وارد می سازد. این پدیده از گذشته های بسیار دور همواره انسان را به هراس انداخته است. " شواهد نشان می دهد که خسارات ناشی از سیل بیش از سایر سوانح طبیعی است"(غیور، 1371). غیور (1375) معتقد است که منشاء بیش از نیمی از بلایای طیعی آب می باشد. وقوع سیلاب های عظیم و مخرب آنچنان زندگی اقوام را دچار تحول و آشفتگی نموده که اثرات وقوع آنها تا به امروز در ذهن بشر نقش بسته است و برخی به شکل اساطیر و افسانه ها در فرهنگ ملل ثبت گردیده است. کوثر(1374) به نقل از ملوین  به صدها مورد سیلاب که در هزاره گذشته در ایران رخ داده اشاره می کند. در برخی از این سیلابها چون سیل 1668 شیراز یک سوم شهر ویران گردیده، در سیل 1851 قزوین 3000 خانه خراب شده و در 1934 سیلاب 3000 خانه را در شهر تبریز بکُلی ویران می کند. "سیلاب عظیمی در سال 1972 در ایالات متحده رخ داد که خسارتی معادل 3 میلیارد دلار به بار آورد" (طاهری و بزرگ زاده، 1375 ص 65). هنوز هم هر ساله در اقصی نقاط دنیا شاهد وقوع سیلاب های مخرب هستیم. در برخی مناطق چون بنگلادش سیل برای مردم پدیده ای عادی تلقی میشود. مطالعه و تحقیقات بسیاری برای شناخت این پدیده در سراسر دنیا صورت گرفته است. " روشها و متد های بسیاری از سوی صاحب نظرانی چون; فرانسیس،گانگیه،کوته، مانینگ،کوک، مک مث، شرمن و ... جهت مطالعه ی این پدیده عرضه گردیده است"(طاهری و بزرگ زاده،1375).
با تمام تلاشی که برای مهار این پدیده صورت گرفته، میزان خسارت ناشی از آن همچنان در حال افزایش است." خسارات سالانه سیل در ایالات متحده از 100 میلیون دلار در سال 1900 میلادی به حدود 300 میلیون دلار در سال 1960 رسیده است "(طاهری و بزرگ زاده، 1375ص65 ).وقوع سیلابهای عظیم بیانگر این واقعیت است که از جاری شدن سیل بطور قطعی نمی توان جلوگیری کرد، بلکه با اقدامات مدیریتی مفید میتوان از ورود تلفات و خسارات ناشی از آن جلوگیری بعمل آورد. یعنی در واقع سیل را باید پذیرفت و اصطلاحا" باید با آن کنار آمد.

 

انواع بلایای طبیعی

روستایی در سوماترا، پس از سونامی ناشی از وقوعزلزله در اقیانوس هند

بلایای طبیعی دارای انواع گوناگونی است. زلزله، سیل، طوفان، گردباد، سونامی، تگرگ، بهمن، رعد و برق، تغییرات شدید درجه حرارت، خشکسالی وآتشفشان نمونه‌هایی از بلایای طبیعی هستند. برخی از بلایای طبیعی، بطور غیر مستقیم، ناشی از عملکردهای انسانی هستند. برای مثال بلایای ناشی از افزایش آلودگی هوا و یا گرم شدن زمین و همچنین سیل ناشی از تخریب جنگل‌ها به‌دست انسان از این جمله‌اند

خسارات

تنها در سال ۲۰۰۸ میلادی، ۲۲۰ هزار نفر در سراسر جهان بر اثر بلایای طبیعی جان خود را از دست داده‌اند.[۴] در این میان، زنان قربانیان بیشتری نسبت به مردان داده‌اند بررسی‌های آماری بلایای طبیعی، طی سالهای ۱۹۹۰ تا ۲۰۰۲۲ نشاندهنده آن است که این بلایا روندی افزایش یابنده داشته‌اند. بر اساس آمار شدت بلایا چهار برابر، جان‌باختگان هفت برابر، آسیب‌دیدگان پنج برابر و خسارت‌های مالی سی و هشت برابر شده‌اند.

گاهی خسارات ناشی از حادثه ثانویه، بیش از خسارات ناشی از یک بلای طبیعی است. برای مثال گاهی خسارات ناشی از وقوع آتش‌سوزی پس از  وقوع زلزله، از خسارات خود زلزله بیشتر است.

 

آتشفشان

با آنکه اغلب بلایای طبیعی خارج از کنترل انسان به نظر می‌رسند، ولی خسارات و آسیب‌های ناشی از آنها، بطور چشمگیری قابل کنترل است. این موضوع ارتباط مستقیمی با عملیات پیش‌گیرانه توسط انسان دارد. برای مثال استحکام ابنیه در برابر بارهای افقی جهت کاهش خسارات ناشی از زلزله و یا ایجاد پوشش گیاهی و ساخت بندها و سدها جهت کاهش خسارات ناشی از سیل، از جمله موارد پیش‌گیرانه‌است.

همچنین عکس‌العمل صحیح و اصولی نیز می‌تواند در کاهش آسیب‌های ناشی از بلایای طبیعی مؤثر باشد. برای مثال آوار برداری اصولی پس از وقوع یک رویداد زمین‌لرزه، می‌تواند به کاهش خسارات و آسیب‌ها کمک کند

یکی دیگر از راه‌های کاهش آثار مخرب بلایای طبیعی، آموزش است. آموزش همچنین می‌تواند به کاهش اثرات روانی منفی در بلایای طبیعی نیز کمک کند.

یادبودها

از سال ۱۹۸۹ میلادی، دومین چهارشنبه ماه اکتبر هرسال، به عنوان روز جهانی کاهش اثرات بلایای طبیعی نامگذاری شده‌است. در کشور

 

طوفان کاترینا

ایران نیز، هفته‌ای به همین عنوان وجود دارد که آغاز این هفته، همان روز جهانی می‌باشد.[۸]


منظور از مخاطرات طبیعی چیست؟

 به حوادثی که به طور ناگهانی اتفاق می افتد و باعث صدمه به انسان و محیط می شود مخاطرات طبیعی می گویند که این مخاطرات عبارتند از :

زلزله ، صاعقه ، سیل ، فوران آتش فشان ، طوفان ، حمله ملخ ها و... . که در این تحقیق به توضیح برخی از آنها می پردازیم.

زلزله

لرزش ناگهانی پوسته‌های جامد زمین ، زلزله یا زمین لرزه نامیده می‌شود. دلیل اصلی وقوع زلزله را می‌توان افزایش فشار بیش از حد داخل سنگها و طبقات درونی زمین بیان نمود. این فشار به حدی است که در سنگ گسستگی بوجود می‌آید و دو قطعه سنگ در امتداد سطح شکستگی نسبت به یکدیگر حرکت می‌کنند. به سطح شکستگی که توأم با جابجایی است، گسل گفته می‌شود. وقتی که سنگ شکسته می‌شود، مقدار انرژی که در زمان طولانی در برابر شکستگی حالتهای مختلفی را برای آزادسازی انر‍ژی نهفته شده بوجود می‌آورد.

بطوری که در ابتدا فشار و نیروهای درونی ممکن است باعث ایجاد یکسری لرزه‌های خفیف و کوچک در سنگها شود که پیش لرزه نامیده می‌شود. بعد از اینکه فشار درونی بر مقاومت سنگها غلبه کرد انرژی نهفته آزاد می‌گردد و زمین لرزه اصلی رخ می‌دهد، البته نباید از اثر لرزشهای کوچکی که بعد از زمین لرزه اصلی نیز اتفاق می‌افتد و به نام پس لرزه معروف هستند، چشم پوشی کرد. لرزه ، پیش لرزه ، لرزه اصلی و پس لرزه مجموعا یک زمین لرزه را نشان می‌دهند.

باید توجه داشت که تمام زلزله‌ها با پیش لرزه‌ها همراه نیست و همچنین پیش لرزه را نمی‌توان مقدمه وقوع یک زلزله بزرگ دانست، زیرا در بسیاری از موارد یک زلزله مخرب خود یک پیش لرزه فوق العاده مخربی بوده است که در تعقیب آن اتفاق افتاده است. همچنین در بسیاری از زمین لرزه‌ها زلزله اصلی بدون هیچ لرزه قبلی و یکباره اتفاق می‌افتند، زلزله‌هایی هم در اثر عوامل دیگر مثل ریزشها (مثلا ریزش سقف بخارهای آهکی و زمین لغزشها) و یا در بعضی موارد فعالیتهای آتشفشانی نیز بوجود می‌آید که مقدار و شدت آنها کمتر است.

چرا زلزله بوجود می‌آید؟

به درستی مشخص نیست که چرا زلزله بوجود می‌آید، اما همانطور که قبلا اشاره شد تجمع انر‍ژی در درون زمین از یک طرف و افزایش نیروی زیاد در درون زمین و عدم تحکمل طبقات زمین برای نگهداری این انرژی از طرف دیگر موجب شکسته شدن زمین در بعضی نقاط آن شده و انرژی از محل آن آزاد می شود. این شکستگی که اکثرا با جابجایی زمین اتفاق می‌افتد باعث خطرات و ایجاد لرزش زمین می‌شود که به آن زلزله گفته می‌شود.

اما این انرژی از کجا می آید؟ برخی معتقدند که زمین از ورقه‌هایی تشکیل شده است که این ورقه‌ها با صفحاتی که در کنار هم قرار دارند به یکدیگر فشار وارد کرده و باعث می‌شوند که ورقه‌هایی که دارای وزن کمتری هستند به داخل زمین فرو روند (این پدیده در اصطلاح علمی فرو رانش صفحات گفته می‌شود). همچنین ممکن است که ورقه‌ها در کنار یکدیگر به هم فشرده شوند. در اثر فرو رانش و پایین رفتن صفحه به درون زمین و به دلیل افزایش فشار و دمای طبقات درونی ، ورقه شروع به گرم شدن و ذوب شدن می‌کند و مواد مذاب حاصله سبک شده و مجددا به سمت بالا حرکت کرده و فشاری را به طبقات مجاور وارد می‌کند.

ترکیب این نیروها در درون زمین باعث ایجاد یک حالت عدم تعادل انرژی می‌شود، این وضعیت تا زمانی که طبقات فوقانی و سطحی زمین تحمل مقاومت در برابر آن را داشته باشند حفظ می‌گردد. اما زمانی که سنگها دیگر تحمل این فشارها را نداشته باشند، انرژی به یکباره آزاد می‌گردد و زلزله بوجود می‌آید. البته این بدان مفهوم نیست که تمامی زلزله‌ها بدین طریق ایجاد می‌شوند، بلکه می‌توان گفت بخش اصلی زمین لرزه‌ها ، با این فرضیه قابل توجیه است.

رابطه گسل با زلزله

رابطه گسل - زلزله دو طرفه می‌باشد. یعنی وجود گسلهای فراوان در یک منطقه سبب بروز زلزله می‌گردد. این زلزله به نوبه خود سبب ایجاد گسل جدیدی گردیده و نتیجتا تعداد شکستگیها زیادتر شده و به این ترتیب قابلیت لزره خیزی منطقه افزایش می‌یابد.

نحوه آزاد شدن انرژی زلزله

ممکن است یک زلزله به همراه خود پیش لرزه و پس لرزه‌هایی داشته باشد، که این دو قبل و بعد از زلزله اصلی ممکن است وقوع یابند، به عبارتی دیگر این موضوع به نحوه آزاد شدن انرژی زلزله بستگی دارد. بطوری که انرژی زلزله بصورتهای زیر آزاد می‌گردند:

پیش لرزه


کلمات کلیدی : بلایا و مخاطرات طبیعی و راه مقابله با آنها,مخاطرات طبیعی,بلایای طبیعی,زلزله,سونامی,سیل,زمین لرزه, رعدو برق,آتشفشانها,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل بررسی و تحقیق-بلایا و مخاطرات طبیعی و راه مقابله با آنها- در 50 صفحه-docx

بلایای طبیعی، به مجموعه‌ای از حوادث زیانبار گفته می‌شود، که منشاء انسانی ندارند. این حوادث معمولاً غیرقابل پیش‌بینی بوده و یا حداقل از مدتهای طولانی قبل نمی‌توان وقوع آنها را پیش‌بینی نمود. از هنگامی که انسان پا به عرصه حیات در روی کره خاکی گذاشت، طبیعت همواره او را به چالش کشیده است. او برای زیستن در این مکان و به دست آوردن غذا، امنیت وآسایش باید با ناملایمات پیش رو در محیط زندگی مبارزه می کرده و بر آنها چیره می شده است. زمانی برای در امان ماندن از گزند سرما و یخبندان به غارها پناه می برده است و زمانی برای گریز از سیل و بارانهای شدید،زیستگاه خود را تغیر می داده است.
انسان با تمام تلاش و سعی فراوان و تجربیات گرانبهای خود،در طول هزاران سال ستیز با ناملایمات طبیعت،هنوز هم هر از چند گاهی اسیر چنگال طبیعت شده و خشم طبیعت جان و مال او رابه یغما می برد. امروز که عصر انفجار علم است ، در پیشرفته ترین کشورها ، ثروتمندترین انسانها نیز گاهی در مقابل قدرت عظیم نهفته در آشوبهای طبیعی ناچار به تسلیم می باشند. آنچه که با نام طوفان کاترینا در ایالات متحده روی داد ، یا پدیده سونامی در جنوب شرق آسیا و سیل گلستان در شمال ایران تنها نمونه های اندکی از عجز انسان در مقابل نیروی نهفته در محیط است.
بشر این حوادث طبیعی که انسان را به مبارزه طلبیده است را ، تحت عنوان مخاطرات طبیعی نام نهاده ، و حدوث آنها را در زندگی خود بحران می داند. دانشمندان و محققین در مراکز دانشگاهی و تحقیقاتی سراسر دنیا، بی وقفه ، با صرف زمان ، سرمایه و تلاش فراوان بدنبال شناسائی و کشف علل و معلول آنها و بدست آوردن راههائی برای پیش بینی ، پیش گیری و مقابله با آنها هستند.
برخی از این بحران ها نیروی خود را از دون زمین می گیرند و برخی دیگر منشاء در انرژی های نهفته دراتمسفر زمین دارند، دسته اخیر همان بحران های اقلیمی هستند. سیل بزرگترین و مهمترین بحران اقلیمی است ،که همه ساله جان هزاران÷ نفر را می گیرد و خسارات فراوان به جامعه انسانی و محیط زیست او وارد می سازد. این پدیده از گذشته های بسیار دور همواره انسان را به هراس انداخته است. " شواهد نشان می دهد که خسارات ناشی از سیل بیش از سایر سوانح طبیعی است"(غیور، 1371). غیور (1375) معتقد است که منشاء بیش از نیمی از بلایای طیعی آب می باشد. وقوع سیلاب های عظیم و مخرب آنچنان زندگی اقوام را دچار تحول و آشفتگی نموده که اثرات وقوع آنها تا به امروز در ذهن بشر نقش بسته است و برخی به شکل اساطیر و افسانه ها در فرهنگ ملل ثبت گردیده است. کوثر(1374) به نقل از ملوین  به صدها مورد سیلاب که در هزاره گذشته در ایران رخ داده اشاره می کند. در برخی از این سیلابها چون سیل 1668 شیراز یک سوم شهر ویران گردیده، در سیل 1851 قزوین 3000 خانه خراب شده و در 1934 سیلاب 3000 خانه را در شهر تبریز بکُلی ویران می کند. "سیلاب عظیمی در سال 1972 در ایالات متحده رخ داد که خسارتی معادل 3 میلیارد دلار به بار آورد" (طاهری و بزرگ زاده، 1375 ص 65). هنوز هم هر ساله در اقصی نقاط دنیا شاهد وقوع سیلاب های مخرب هستیم. در برخی مناطق چون بنگلادش سیل برای مردم پدیده ای عادی تلقی میشود. مطالعه و تحقیقات بسیاری برای شناخت این پدیده در سراسر دنیا صورت گرفته است. " روشها و متد های بسیاری از سوی صاحب نظرانی چون; فرانسیس،گانگیه،کوته، مانینگ،کوک، مک مث، شرمن و ... جهت مطالعه ی این پدیده عرضه گردیده است"(طاهری و بزرگ زاده،1375).
با تمام تلاشی که برای مهار این پدیده صورت گرفته، میزان خسارت ناشی از آن همچنان در حال افزایش است." خسارات سالانه سیل در ایالات متحده از 100 میلیون دلار در سال 1900 میلادی به حدود 300 میلیون دلار در سال 1960 رسیده است "(طاهری و بزرگ زاده، 1375ص65 ).وقوع سیلابهای عظیم بیانگر این واقعیت است که از جاری شدن سیل بطور قطعی نمی توان جلوگیری کرد، بلکه با اقدامات مدیریتی مفید میتوان از ورود تلفات و خسارات ناشی از آن جلوگیری بعمل آورد. یعنی در واقع سیل را باید پذیرفت و اصطلاحا" باید با آن کنار آمد.

انواع بلایای طبیعی

روستایی در سوماترا، پس از سونامی ناشی از وقوعزلزله در اقیانوس هند

بلایای طبیعی دارای انواع گوناگونی است. زلزله، سیل، طوفان، گردباد، سونامی، تگرگ، بهمن، رعد و برق، تغییرات شدید درجه حرارت، خشکسالی وآتشفشان نمونه‌هایی از بلایای طبیعی هستند. برخی از بلایای طبیعی، بطور غیر مستقیم، ناشی از عملکردهای انسانی هستند. برای مثال بلایای ناشی از افزایش آلودگی هوا و یا گرم شدن زمین و همچنین سیل ناشی از تخریب جنگل‌ها به‌دست انسان از این جمله‌اند

خسارات

تنها در سال ۲۰۰۸ میلادی، ۲۲۰ هزار نفر در سراسر جهان بر اثر بلایای طبیعی جان خود را از دست داده‌اند.[۴] در این میان، زنان قربانیان بیشتری نسبت به مردان داده‌اند بررسی‌های آماری بلایای طبیعی، طی سالهای ۱۹۹۰ تا ۲۰۰۲۲ نشاندهنده آن است که این بلایا روندی افزایش یابنده داشته‌اند. بر اساس آمار شدت بلایا چهار برابر، جان‌باختگان هفت برابر، آسیب‌دیدگان پنج برابر و خسارت‌های مالی سی و هشت برابر شده‌اند.

گاهی خسارات ناشی از حادثه ثانویه، بیش از خسارات ناشی از یک بلای طبیعی است. برای مثال گاهی خسارات ناشی از وقوع آتش‌سوزی پس از  وقوع زلزله، از خسارات خود زلزله بیشتر است.

 

آتشفشان

با آنکه اغلب بلایای طبیعی خارج از کنترل انسان به نظر می‌رسند، ولی خسارات و آسیب‌های ناشی از آنها، بطور چشمگیری قابل کنترل است. این موضوع ارتباط مستقیمی با عملیات پیش‌گیرانه توسط انسان دارد. برای مثال استحکام ابنیه در برابر بارهای افقی جهت کاهش خسارات ناشی از زلزله و یا ایجاد پوشش گیاهی و ساخت بندها و سدها جهت کاهش خسارات ناشی از سیل، از جمله موارد پیش‌گیرانه‌است.

همچنین عکس‌العمل صحیح و اصولی نیز می‌تواند در کاهش آسیب‌های ناشی از بلایای طبیعی مؤثر باشد. برای مثال آوار برداری اصولی پس از وقوع یک رویداد زمین‌لرزه، می‌تواند به کاهش خسارات و آسیب‌ها کمک کند

یکی دیگر از راه‌های کاهش آثار مخرب بلایای طبیعی، آموزش است. آموزش همچنین می‌تواند به کاهش اثرات روانی منفی در بلایای طبیعی نیز کمک کند.

یادبودها

از سال ۱۹۸۹ میلادی، دومین چهارشنبه ماه اکتبر هرسال، به عنوان روز جهانی کاهش اثرات بلایای طبیعی نامگذاری شده‌است. در کشور

 

طوفان کاترینا

ایران نیز، هفته‌ای به همین عنوان وجود دارد که آغاز این هفته، همان روز جهانی می‌باشد


منظور از مخاطرات طبیعی چیست؟

 به حوادثی که به طور ناگهانی اتفاق می افتد و باعث صدمه به انسان و محیط می شود مخاطرات طبیعی می گویند که این مخاطرات عبارتند از :

زلزله ، صاعقه ، سیل ، فوران آتش فشان ، طوفان ، حمله ملخ ها و... . که در این تحقیق به توضیح برخی از آنها می پردازیم.

زلزله

لرزش ناگهانی پوسته‌های جامد زمین ، زلزله یا زمین لرزه نامیده می‌شود. دلیل اصلی وقوع زلزله را می‌توان افزایش فشار بیش از حد داخل سنگها و طبقات درونی زمین بیان نمود. این فشار به حدی است که در سنگ گسستگی بوجود می‌آید و دو قطعه سنگ در امتداد سطح شکستگی نسبت به یکدیگر حرکت می‌کنند. به سطح شکستگی که توأم با جابجایی است، گسل گفته می‌شود. وقتی که سنگ شکسته می‌شود، مقدار انرژی که در زمان طولانی در برابر شکستگی حالتهای مختلفی را برای آزادسازی انر‍ژی نهفته شده بوجود می‌آورد.

بطوری که در ابتدا فشار و نیروهای درونی ممکن است باعث ایجاد یکسری لرزه‌های خفیف و کوچک در سنگها شود که پیش لرزه نامیده می‌شود. بعد از اینکه فشار درونی بر مقاومت سنگها غلبه کرد انرژی نهفته آزاد می‌گردد و زمین لرزه اصلی رخ می‌دهد، البته نباید از اثر لرزشهای کوچکی که بعد از زمین لرزه اصلی نیز اتفاق می‌افتد و به نام پس لرزه معروف هستند، چشم پوشی کرد. لرزه ، پیش لرزه ، لرزه اصلی و پس لرزه مجموعا یک زمین لرزه را نشان می‌دهند.

باید توجه داشت که تمام زلزله‌ها با پیش لرزه‌ها همراه نیست و همچنین پیش لرزه را نمی‌توان مقدمه وقوع یک زلزله بزرگ دانست، زیرا در بسیاری از موارد یک زلزله مخرب خود یک پیش لرزه فوق العاده مخربی بوده است که در تعقیب آن اتفاق افتاده است. همچنین در بسیاری از زمین لرزه‌ها زلزله اصلی بدون هیچ لرزه قبلی و یکباره اتفاق می‌افتند، زلزله‌هایی هم در اثر عوامل دیگر مثل ریزشها (مثلا ریزش سقف بخارهای آهکی و زمین لغزشها) و یا در بعضی موارد فعالیتهای آتشفشانی نیز بوجود می‌آید که مقدار و شدت آنها کمتر است.

چرا زلزله بوجود می‌آید؟

به درستی مشخص نیست که چرا زلزله بوجود می‌آید، اما همانطور که قبلا اشاره شد تجمع انر‍ژی در درون زمین از یک طرف و افزایش نیروی زیاد در درون زمین و عدم تحکمل طبقات زمین برای نگهداری این انرژی از طرف دیگر موجب شکسته شدن زمین در بعضی نقاط آن شده و انرژی از محل آن آزاد می شود. این شکستگی که اکثرا با جابجایی زمین اتفاق می‌افتد باعث خطرات و ایجاد لرزش زمین می‌شود که به آن زلزله گفته می‌شود.

اما این انرژی از کجا می آید؟ برخی معتقدند که زمین از ورقه‌هایی تشکیل شده است که این ورقه‌ها با صفحاتی که در کنار هم قرار دارند به یکدیگر فشار وارد کرده و باعث می‌شوند که ورقه‌هایی که دارای وزن کمتری هستند به داخل زمین فرو روند (این پدیده در اصطلاح علمی فرو رانش صفحات گفته می‌شود). همچنین ممکن است که ورقه‌ها در کنار یکدیگر به هم فشرده شوند. در اثر فرو رانش و پایین رفتن صفحه به درون زمین و به دلیل افزایش فشار و دمای طبقات درونی ، ورقه شروع به گرم شدن و ذوب شدن می‌کند و مواد مذاب حاصله سبک شده و مجددا به سمت بالا حرکت کرده و فشاری را به طبقات مجاور وارد می‌کند.

ترکیب این نیروها در درون زمین باعث ایجاد یک حالت عدم تعادل انرژی می‌شود، این وضعیت تا زمانی که طبقات فوقانی و سطحی زمین تحمل مقاومت در برابر آن را داشته باشند حفظ می‌گردد. اما زمانی که سنگها دیگر تحمل این فشارها را نداشته باشند، انرژی به یکباره آزاد می‌گردد و زلزله بوجود می‌آید. البته این بدان مفهوم نیست که تمامی زلزله‌ها بدین طریق ایجاد می‌شوند، بلکه می‌توان گفت بخش اصلی زمین لرزه‌ها ، با این فرضیه قابل توجیه است.

رابطه گسل با زلزله

رابطه گسل - زلزله دو طرفه می‌باشد. یعنی وجود گسلهای فراوان در یک منطقه سبب بروز زلزله می‌گردد. این زلزله به نوبه خود سبب ایجاد گسل جدیدی گردیده و نتیجتا تعداد شکستگیها زیادتر شده و به این ترتیب قابلیت لزره خیزی منطقه افزایش می‌یابد.

نحوه آزاد شدن انرژی زلزله

ممکن است یک زلزله به همراه خود پیش لرزه و پس لرزه‌هایی داشته باشد، که این دو قبل و بعد از زلزله اصلی ممکن است وقوع یابند، به عبارتی دیگر این موضوع به نحوه آزاد شدن انرژی زلزله بستگی دارد. بطوری که انرژی زلزله بصورتهای زیر آزاد می‌گردند:

پیش لرزه

گاهی اوقات از بروز زلزله اصلی ، یکسری زلزله‌هایی با بزرگی کمتر از زلزله اصلی به وقوع می‌پیوندند که معمولا فراوانی آنها با نزدیک شدن به زمان وقوع لرزش اصلی ، افزایش می‌یابد.

لرزش اصلی

همان زلزله اصلی بوده که بواسطه آن اکثر انرژی ذخیره شده در سنگها یکباره آزاد می‌گردد و چنانچه داده‌های مربوط به یک زلزله بزرگ غیر دستگاهی باشد مهلرزه نامیده می‌شود.

 

پس لرزه

زلزله‌های خفیفتری که غالبا پس از لرزش اصلی ، از حوالی کانون زلزله اصلی منشأ می‌گیرند، را پس لرزه می‌گویند. پس لرزه‌ها می‌توانند حتی تا سالها پس از وقوع زلزله‌های اصلی نیز به طول انجامد.

دسته لرزه

مجموعه‌ای از تعداد زیادی زلزله که در یک منطقه محدود در مقطع زمانی در حد هفته تا چند ماه به وقوع می‌پیوندد. دسته لرزه‌ها غالبا در نواحی آتشفشانی دیده می‌شوند.

ریز لرزه

زلزله‌های ضعیفی هستند که بزرگی آنها 3 ریشتر و یا کمتر از 3 بوده و غالبا افزایش ناگهانی و نامنظم آنها نشانه قریب الوقوع بودن مهلرزه یا زلزله اصلی می‌باشند.

 


کلمات کلیدی : بلایا و مخاطرات طبیعی و راه مقابله با آنها,مخاطرات طبیعی,بلایای طبیعی,زلزله,سونامی,سیل,زمین لرزه, رعدو برق,آتشفشانها,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-نانو کامپوزیت ها و ساختار وکاربرد آنها- در 72 اسلاید-powerpoin-ppt

 

-

 

 

 

کامپوزیت ماده ای است که دارای چهار ویژگی زیر باشد:

 

 

 

1- جامد

 

 

 

2- مصنوعی ( در این تعریف کامپوزیت های طبیعی حذف می شوند )

 

 

 

3- متشکل از دو یا چند جز ( یا فاز ) که از نظر شیمیایی یا فیزیکی کاملا” متفاوتند و بصورت پراکنده کنار هم قرار گرفته اند و لایه مشترکی بین آنها وجود دارد .

 

 

 

4- دارای خواص و ویژگی های مطلوبی هستند که هیچ یک از فازهای تشکیل دهنده به تنهایی نمی توانند آنها را داشته باشند .

 

تاریخچه فناوری نانو
فناوری نانو حدود نیم قرن پیش، در دهه های آخر قرن بیستم همراه با توسعه فناوری های نوین  تصویربرداری، دستکاری و شبیه سازی ماده در مقیاس اتمی پدید آمده است.  نانو در گذشته فیزیک اتمی نامیده می شد، پس از کابردی شدن آن، نام آن نانوشد، به همین دلیل نانو یک علم جدید نیست، اما کاربردی شدن آن زندگی انسان  رادگرگون ساخت. ایده نانوتکنولوژی رابرای اولین بارEric Drexler  به دنیا عرضه نمود، او درآزمایشگاه مشهورMIT متعلق به انستیتوForesight مطالعات خود را باسیستم ها بیولوژیکی شروع کرده وسپس متوجه شد که می توان دستگاه های ملکولی تولید کرد بدین ترتیب ایده نانو تکنوژلوی به نام او ثبت شد. اصطلاح "نانو" برگرفته از یونان قدیم است وبه معنی" کوتوله" بوده است.


جایگاه فناوری نانو در علوم مهندسی 
 علم میان رشته ای نانوتقریبا" تمامی علوم  مهندسی وپزشکی رادر برگرفته است. تاکنون بیشترین کاربرد را درصنایع سنگین، بهداشت، نساجی و کشاورزی داشته ودر صنایعی نظیر رنگ، اتومبیل، کامپیوتر، شیمی، تصفیه آب وغیره نیز درحال توسعه است. محصولات  نساجی حاصل از فناوری نانو در کشورهای آلمان  وانگلیس بیشترین رواج رادارند. تولید کفش ها و لباس هایی که با حفظ گرمای بدن وتاثیر درگردش خون، باعث کاهش خستگی وراحتی  می شوند نیز ازدستاوردهای سحرآمیزعلم نانو است. 
ساخت، دستکاری و آنالیز نانو- سیستم ها، توابع مختلفی راکه قبلا" از وجود آن بی خبر بوده ایم آشکارو استفاده مفید وعرضه آنها به بشر باعث پیشرفت‌های ارزنده ای دراستانداردهای زندگی می شود. مهندسی سیستم‌های خلاء پیشرفته وایجاد توانایی های علمی در علوم مهندسی و پزشکی از قبیل; نمایش، تطبیق نیروهای مکانیکی و تعیین مشخصات آنها درسطح نانو، شروع وخاتمه تثبیت وپی گیری انجام کارهای مختلف در نانو ثانیه ها، بررسی پیشرفت تکنیک های آنالیتیکی مانند; آنالیزهای شیمیایی در ابعاد نانو وازطرفی  فرصت دست یابی علوم مهندسی  به نانوسنسورها، عناصرحافظه وتجهیزدستگاه‌های جدید وموثردرعلم پزشکی ازدستاوردهای این فناوری است.

 

فولرین  C60) Fulleren)به دلیل ساختار خاص آن کاربردهای بسیاری؛ ازجمله عناصر حافظه در صنعت کامپیوتر و روان‌کننده‌های جامد در روغن موتوررا دارا می باشد.

تاثیرات فناوری نانو در زندگی انسان
بهره گیری از خواص ماده درمقیاس نانو، نویدبخش فواید و منافعی می باشد که موجب تحولات  اساسی در زندگی انسان می شود. صرفه جوئی در مصرف انرژی، صرفه جویی اقتصادی، صرفه جویی در زمان، تامین محصول بیشتر باهزینه کمتر، افزایش کیفیت محصول ودرنتیجه افزایش کیفیت واستانداردهای زندگی، ایجاد زندگی سالم، کاهش وابستگی های اقتصادی به سایر تکنولوژی های پیشرفته وافزایش درآمدهای ملی از جمله فوایدی است که می توان نام برد.    
بودجه صرف شده در فناوری نانو درسال 2008 مبلغ 8/6 میلیارد دلارواین بودجه برای سال  2015 به میزان یک تریلیون دلاروبرای سال 20200 چهاربرابراین رقم پیش بینی شده است.

 

 


نانو تکنولوژی یعنی فناوری یک میلیاردم متر یا تکنولوژی اتمها . در زبان یونانی نانو بمعنای کوتوله و معادل یک میلیاردم می باشد یعنی 50000 بار نازکتر از ضخامت یک تار مو یعنی اندازه چندین اتم. اگر انسان به این اندازه بزرگ شود 2 میلیون کیلومتر طول قد او می شد یعنی به اندازه 5 برابر فاصله ماه تا زمین. قطعات الکترونیکی هر روز کوچکتر می شوند . ما از لامپهای رادیوهای پدربزرگهامان به اجزای نیمه رسانا در مدارهای الکترونیکی رسیدیم ونهایتا کیتها ساخته شد که شامل میلیونها ترانزیستور می باشند. صنایع میکرو الکترونیک از بزرگ به کوچک رسیده اند روش کل به جزء ولی در نانوتکنولوژی از جزء به کل می رسند و بدین ترتیب می توان ساختارهای جدیدی ساخت این مواد که خواص جدیدی دارند مواد هوشمند نامیده میشوند

بطور مثال اگر یک سطح ساخته شده از مولکولهای آب گریز داشته باشیم این سطح خودش را تمیز می کند چون آب با سطح برخورد نمی کند و آلودگی را از خودش دور می کند . دلیل خشک ماندن سطح برگ نیلوفر آبی نیز همین است.آب روی شیشه معمولی پخش می شود ولی  آب روی سطحی با ساختار نانو نمی ماند با یکنواخت سازی سطوح می توان سطحی کاملا ضد خش را بوجود آورد . امروزه پنجره هایی ساخته می شود که شفافیتشان با جریان الکتریسیته تغییر می کند یا شیشه هایی که در دماهای بالا عایقند .

رسیدن به ماده را از اتمها شروع می کنیم فرض کنید می توانیم آنها را ببینیم و ابزار لازم را در اختیار داریم ( میکروسکوپ قرن 21 بر اساس پدیده کوانتوم ) . رد شدن توپ از دیوار در مکانیک کلاسیک غیر ممکن است ولی در مقیاس اتمی الکترونها می توانند از لایه ها و ساختارها رد شوند ، اساس کار این میکروسکوپ همین است . به کمک این وسیله سطح مواد را در مقیاس اتمی بررسی میکنیم قلب میکروسکوپ موازی سطح ماده حرکت می کند البته ماده باید رسانای جریان الکتریسیته باشد هرگاه نوک میکروسکوپ از روی یک اتم رد شود الکترونها از ماده وارد نوک میکروسکوپ می شوند بدین شکل جریان ضعیفی بوجود می آید هر چه این نوک به ماده نزدیکتر شود جریان قویتر می شود این جریان را بر حسب ارتفاع محاسبه می کنند نقطه به نقطه و خط به خط این کار انجام می شود و به این شکل تصویر توپوگرافی از سطح ماده بدست خواهد آمد. این تصویر کاملا دقیق بوده و می توان بوسیله آن نه تنها ماده را در مقیاس اتمی دید، بلکه می توان در مقیاس اتمی روی آن کار کرد .

در حقیقت میکروسکوپ الکترونی دقیقترین و بهترین ماشین ابزار دنیاست . با دادن بار الکتریکی می توان اتمها را یک به یک حرکت داد به این ترتیب می توان اجسام بزرگتری ساخت مانند آجر برای ساختن خانه ، قفسه ، سیم ، لوله در مقیاس نانوسکوپی . با استفاده از اتم کربن می توانیم ساختارهایی را بسازیم که قبلا وجود نداشتند.

یکی از ساختارهایی که از کربن می شناسیم گرافیت است که در آن اتمهای کربن بصورت شش ضلعی کنار هم قرار گرفته اند و ساختار ورقه ای ایجاد کرده اند . ودیگری الماس که


کلمات کلیدی : نانو کامپوزیت ها و ساختار,نانو,فناوری نانو,نانو تکنولوژی,Nano composites,کامپوزیتها,نانو کامپوزیت,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...