مشخصات فایل
عنوان:تحقیق درباره زلزله
قالب بندی:word
محتویات
زلزله
زمین متغیر و تئوری صفحه زمین ساخت
زمین متغیر
تئوری صفحه زمینساخت
مرز صفحات
گسل و تعاریف مربوط به آن
مقدمه
گسلها
مشخصات گسلها
انواع گسلها
پدیده زلزله
انواع زمین لرزه
مکانیزم خرابی در زلزله
کانون و عمق زلزله
موجهای لرزه ای
اندازه گیری زمین لرزه
شدت زمینلرزه
بزرگای زلزله
علایم و بررسی زمین لرزه
فرضیه پیش بینی درازمدت
فاصله بازگشت
پیگیری تغییر شکل های زمین
فرضیه شکاف لرزه ای
یافتن گسل های جدید
علائم زلزله قریب الوقوع
علائم متصل و منتهى به آغاز زلزله
لرزه نگاری
پیش بینی زمینلرزه
آمادگی فردی
وسایل ضروری
توصیه های ایمنی قبل از زلزله در منزل
برآوردهای ایمنی
اعضای خانواده باید
توصیه های ایمنی قبل از وقوع زلزله در ساختمانهای اداری
همه کارمندان باید
توصیه های ایمنی، حین وقوع زلزله، برای هنگامیکه در خانه هستید
توصیه های ایمنی، حین وقوع زلزله، برای ساختمانهای اداری
توصیه های ایمنی، حین وقوع زلزله، برای مدارس
چگونه با زلزله روبرو شویم
برای مقابله با زلزله چگونه بسازیم
چگونه آنچه را ساختهایم را ایمن سازی کنیم
برای قبل از زلزله به چه نیاز داریم؟
آشنایی با علائم زلزله
آغاز زلزله
آشنایی با جعبه امداد و نجات زلزله
نحوه عملکرد شما
در حین زلزله
پس از پایان زلزله
وضعیت زلزله در شهرهای ایران
تاریخچه زمین لرزه های بزرگ در ایران
نقشه خطر لرزه ای جهان
تاریخچه زمین لرزه های بزرگ در ایران
زلزله
انفجار منحصر به فرد یک آتشفشان، وحشت حاصل از یک زلزله، منظره بی بدیل یک دره کوهستانی، و خسارت ناشی از یک زمین لغزش موارد متناقضی هستند که ما همواره شاهد آن بر روی کره زمین هستیم. کره زمین یک جزء بسیار کوچک از کاینات پهناور است، ولی خانه ماست. کره زمین منابع مورد نیاز برای جامعه پیشرفته و عناصر زندگی ما را تامین میکند. بنابراین آگاهی از این سیاره برای ادامه زندگی ما حیاتی است. پدید آمدن زلزلههای اخیر که حاصل جابجائی در پوسته زمین است، و انفجار مواد مذاب از یک آتشفشان فعال، تنها نمایشگر قسمتهای پایانی از یک پروسه طولانی است که ساختار کنونی کره زمین را بوجود آورده است. پدیدههای زمین شناسی که در داخل زمین اتفاق میافتند تنها در سایه توجه به تاریخچه کره زمین و نحوه تغییرات آن در طول سالیان کهن قابل شناخت است. به همین منظور ابتدا خلاصهای از پیدایش اولیه کره زمین ارائه میگردد.
کره زمین یکی از 9 سیارهای است که به همراه چندین قمر و تعداد زیادی اجسام کوچکتر به گرد خورشید میگردند. طبیعت منظم و مرتبی که بر منظومه شمسی حاکم است، محققان را به این استنتاج هدایت میکند که زمین و سایر کرات هم زمان با خورشید و از عناصر اولیه یکسانی تشکیل شده باشند. بر اساس فرضیه سحابی[1]، اجسام منظوم شمسی از یک توده بزرگ ابر دوار به نام ابر خورشیدی[2] تکوین یافته است که این توده سحابی غالبا از هیدروژن و هلیم و درصد پایینی از عناصر سنگینتر ترکیب یافته بود.
حدود 5 میلیارد سال پیش، این توده بزرگ ابر از گاز و ذرات ریز بر اساس جاذبه شروع به کشیده شدن به سمت همدیگر کردند. با منقبض شده این ابر مارپیچی بر سرعت چرخش آن افزوده میشد. با گذشت زمان این توده پراکنده تبدیل به یک دیسک صاف با تمرکز مواد در مرکز آن گردید.
همراه با انباشته شدن مواد برای تشکیل کره زمین، اصابت ذرات سحابی با سرعت بالا و زوال عناصر رادیواکتیو باعث افزایش تدریجی دمای کره زمین گردید. این افزایش دما به اندازهای بود که گرمای لازم برای ذوب آهن و نیکل را تامین نمود. پدیده ذوب، حبابهای مایعی از فلزات سنگین ایجاد نمود که به سمت مرکز سیاره زمین فررفتند.
علاوه بر این، در دوره ذوب، تودههای شناوری از سنگ مذاب به سطح کره زمین انتقال یافتند که با استحکام یافتن در سطح کره زمین، پوسته اولیه آن را تشکیل دهند. این مواد سنگی غنی از اکسیژن و عناصر Oxygen Seeking بخصوص سیلیکون و آلومینیوم و مقدار کمتری کلسیم، سدیم، پتاسیم، آهن و منگزیم بودند. این دوره اولیه تفکیک شیمیایی، سه لایه اساسی داخلی زمین یعنی هسته غنی از آهن، پوسته ابتدائی باریک و بزرگترین لایه زمین به نام گوشته را که بین هسته و پوسته قرار دارد را بوجود آورد.
زمین متغیر و تئوری صفحه زمین ساخت
زمین متغیر:
زمین یک کره متحرک است! اگر ما بتوانیم صد میلیون سال به عقب برگردیم، چهره زمین را با آنچه که امروز میبینیم کاملا متفاوت خواهیم یافت. هیچ اثری از کوههای آلپ یا خلیج مکزیک نخواهد بود، در عوض قارههایی در ابعاد، اشکال و موقعیتهای متفاوتی خواهیم یافت. بر خلاف زمین در چند میلیارد سال گذشته هیچ تغیر اساسی در سطح کره ماه بوجود نیامده است (فقط چند گودال اضافه شده است).
تئوری صفحه زمینساخت[3]
در طول چند دهه اخر درباره کره متغیرمان مطالب بسیار زیادی آموختهایم. در این مدت تحولی عظیم در فهم ما از زمین بوجود آمده است. این تحول ابتدای قرن بیستم با ارائه پیشنهاد مربوط به جابجائی قارهای[4] - تئوری که بیان میکند قارهها بر روی کره زمین حرکت میکنند – آغاز گردید. این مطلب با فرض ثابت بودن قارهها و کف اقیانوسها که تا آن زمان مورد قبول بود در تضاد اساسی قرار داشت و به همین دلیل نیز 50 سال طول کشید تا داده کافی برای اثبات این نظریه جمع آوری شود.
بر اساس تئوری صفحه زمینساخت، پوسته خارجی صلب زمین (لیتوسفر) به تکههای متعددی شکسته شده است که هرکدام از آنها صفحه[5] نام دارند که در حال حرکت بوده و بصورت بیوقفه تغییر شکل و اندازه میدهند. همانگونه که در شکل 1 و شکل 2 مشاهده میشود، هفت صفحه اصلی در لیتوسفر شناخته شده است. این صفحات عبارتند از: آمریکای شمالی، آمریکای جنوبی، اقیانوسیه، آفریقا، اوروآسیا، استرالیا و قطب جنوب.
صفحات با ابعاد متوسط مانند کارائیب، نازکا، فیلیپین، عربی، کوکوس و صفحه اسکاتیا هستند و علاوه بر آنها صفحات متعددی با ابعاد کوچکتر شناخته شده است. توجه نمایید که یک صفحه بزرگ ممکن است شامل یک قاره کامل و سطح بزرگی از کف دریا باشد ( مانند صفحه آمریکای جنوبی). در حالی که هیچ صفحهای دقیقا بر اساس مرز یک قاره شناخته نشده است.
صفحات سنگ کره با سرعت بسیار پایین ولی بطور مداوم نسبت به هم درحال حرکت هستند که بطور متوسط 5 سانتیمتر در سال است. این حرکت به بدلیل توزیع نامساوی حرارت در داخل کره زمین است. مواد داغ که در عمق گوشته قرار دارند، به آرامی به سوی بالا حرکت میکنند و به عنوان یکی از سیستمهای همرفت درونی سیاره عمل مینمایند. همزمان، قطعت سردتر و چگالتر سنگکره در داخل گوشته فرو میروند. درنهایت حرکت عظیم و کند صفحات سنگ کره منجر به ایجاد زمین لرزهها، آتشفشانها و تغییر شکل تودههای بزرگ سنگی به صورت کوهها میگردد.
پدیده همرفت در داخل کره زمین همانند جریان همرفتی است که وقتی کتری پر از آب بر روی آتش قرار داده میشود در آن اتفاق میافتد. آب قسمت تحتانی آب قبل از قسمتهای دیگر گرم شده و در اثر انبساط چگالی آن کاهش مییابد و این باعث جریان یافتن آب به سمت بالا شده و همزمان آب نسبتا سردتر از سطح آب به سمت کف کتری حرکت کرده و آب سرد و گرم جایگزین یکدیگر میگردد.
شکل 1: صفحات اصلی سازنده سطح کره زمین
شکل 2: صفحات اصلی سازنده سطح کره زمین
مرز[6] صفحات:
صفحات تشکیل دهنده سنگ کره بصورت یک توده بهم چسبیده، نسبت به یکدیگر در حال حرکت هستند. با وجود اینکه قسمتهای داخلی صفحات ممکن است متحمل مقداری تغییر شکل گردند، ولی تمام اندرکنشهای اصلی بین صفحات جداگانه، در طول مرز بین آنها اتفاق میافتد. در حقیقت تلاشهای اولیه برای مشخص کردن مرز بین صفحات بر اساس محل وقوع زمین لرزهها بود. صفحات در مرزها سه رفتار کلی نسبت به هم دارند:
جائی که صفحات در نتیجه بالا آمدن مواد از گوشته از هم دور میشوند و بستر جدیدی در اقیانوسها ساخته میشود. جداشدگی صفحات، غالبا در رشتهکوههای میان اقیانوسی رخ میدهد. شکافهای ایجاد شده در اثر دور شدن صفحات، بلافاصله با سنگهای مذاب که از استنوسفر بالا میآید، پرمیشوند. این مواد گرم، به آرامی سرد شده و بستر جدید اقیانوسی را تشکیل میدهند. این پدیده میلیونها سال بطور مداوم تکرار میشود و بدین ترتیب هزاران کیلومتر مکعب بستر جدید ایجاد میگردد.
این مکانیزم کف اقیانوس آتلانتیک را در 160 میلیون سال گذشته پدید آورده است که به این پدیده گسترش بستر دریا اطلاق میشود. سرعت بستر سازی در قسمتهای مختلف متفاوت است. این سرعت از 5/2 سانتیمتر در سال در آتلانتیک شمالی تا 20 سانتیمتر در سال در قسمت شرقی اقیانوس آرام متغیر است. با اینکه بیشترین نرخ بستر سازی در مقیاس تاریخ بشر بسیار کند است، ولی کمترین نرخ تولید سنگکره به اندازه کافی سریع است که در طول 200 میلیون سال گذشته بستر تمام اقیانوسهای زمین را ایجاد کرده باشد. در حقیقت بستر تمام اقیانوسها که تعیین عمر شدهاند از 180 میلیون سال تجاوز نمیکند.
مشخصات فایل
عنوان:پاورپوینت مبانی مهندسی زلزله
قالب بندی :اورپوینت
تعداد اسلاید :46
محتویات
فهرست
مشخصات فایل
عنوان مقاله: چگونه یک ساختمان ایمن در برابر زلزله بسازیم
قالب بندی: word
تعداد صفحات:11
محتویات
چگونه یک ساختمان ایمن در برابر زلزله بسازیم
بتون و بتون ریزى
سقف
قسمتی از متن
چگونه یک ساختمان ایمن در برابر زلزله بسازیم
اگر قصد ساختن یک سرپناه براى خود دارید کافى است مطابق نقشه رعایت ضوابط فنى و استفاده از مصالح مرغوب، آغاز کنید.
این گزارش، این آگاهى را به شما مى دهد که سریع تر اقدام به جلوگیرى از اشتباهات و خطا هاى فنى مجرى ساختمان کنید و با مطلع کردن مهندس ناظر خود، از بروز دوباره کارى (که بار مالى زیادى به شما تحمیل مى کند) و همچنین پوشاندن خطا هاى غیرقابل جبران که مى تواند در آینده صدمات جبران ناپذیرى به ساختمان شما وارد آورد، جلوگیرى کنید.
براى شروع با انواع اسکلت هاى ساختمان آشنا مى شوید، و در ادامه با جزییات فنى و اجرایى آشنا خواهید شد.
لذا مراقب باشید که تراکم بتون به خوبى انجام گیرد.اگر جهت قالب بندى فونداسیون خود از آجر استفاده کردید، حتماً روى آجر ها را کاملاً با نایلون بپوشانید تا مانع جذب آب بتون توسط آجر ها شوید. اگر از قالب چوبى و یا فلزى استفاده کردید حتماً آن را با روغن مخصوص (و یا حتى المقدور با روغن سوخته) چرب کنید تا موقع جداسازى قالب ها از سطح بتون، بدون آسیب رساندن به بتون کار خود را انجام دهید. البته مراقب باشید که آرماتور ها روغنى و چرب نشود.فاصله بین قالب و آرماتور ها را مطابق نقشه رعایت کنید.
حداقل بین ۵ تا ۷ سانتیمتر بین قالب و میلگرد باید فاصله باشد تا با بتون کاملاً پر شود. اگر تحت هر شرایطى پس از بتون ریزى، آرماتور فونداسیون نمایان بود (البته این میزان نباید خیلى زیاد باشد، در غیر این صورت بتون ریزى شما ایراد داشته و باید با مهندس ناظر مشورت نمایید). یک ملات پرسیمان با دانه بندى ریز درست کنید و آن قسمت را بپوشانید.
در غیر این صورت آن قسمت محل خوبى براى خوردگى آرماتور فونداسیون شما خواهد بود.آب دادن و نگهدارى از بتون را فراموش نکنید. در واقع این شما هستید که مقاومت اصلى بتون را تعیین مى کنید!
مشخصات فایل
عنوان: عملکرد پی ها هنگام زلزله
قالب بندی : پاورپوینت
تعداد اسلاید: 20
محتویات
عملکرد پی ها در هنگام زلزله
عوامل موثر در خرابی پی ها در هنگام زلزله
چگونگی خسارتها در پی های منفرد در هنگام زلزله
توان باربری خاک
عملکرد پی ها در هنگام زلزله
نکات کلی
عملکرد پی ها در هنگام زلزله
غالبا پی ها در ساختگاههایی که پتانسیل جابجایی زمین در اثر گسلش، زمین لغزش یا روانگرایی وجود ندارد، عملکرد خوبی دارند.
گسلها در مواقعی که نیروهای وارد شده بر سنگهای سازنده پوسته زمین بیش از حد تحمل آنها باشد، بوجود می آیند. در صورت وجود گسل در ساختگاه مورد مطالعه، اطلاعات زیر ضروری است:
عوامل موثر در خرابی پی ها در هنگام زلزله
بررسی ها بر اساس شواهد گسیختگی ها در حین زلزله نشان می دهد که عوامل زیر بصورت جداگانه و یا توام می تواند باعث خرابی پی ها گردد:
لینک پرداخت و دانلود پایین مطلب فرمت فایل : word تعداد صفحه : 51 مقدمه
پیشگفتار
مقدمه
چکیده
تعریف بحران
مدیریت بحران چیست؟
کودکان و زلزله
زلزله وآواربرداری
جایگاه مردم دربحران
تهران وبحران وزلزله
استراتژی خطرات ناشی از زلزله
جمع بندی
منابع
مقدمه:
بلایای طبیعی همواره در کمین هستند و خسارت ناشی از آنها کمتر از جنگ نخواهند بود. اما می توان با استفاده از فناوریهای نوین و بکارگیری اصولی بعضا ساده میزان این خسارتها را کاهش داده و در بسیاری از اوقات به صفر رسانید.
کشور ژاپن با توجه به زلزله خیز بودن تمرکز بسیاری در زمینه کاهش خسارتهای آن داشته و نتایج درخشانی نیز بدست آورده است. نمونه هائی از این نوآوریها شرح داده می شود:
زلزله ، بلائی مهلک اما قابل کنترل بر اساس تحقیقات و مطالعاتی که در طول 30 سال گذشته صورت گرفته هر سال حدود یکصد و پنجاه زلزله با بزرگی 5 ریشتر و بیشتر در جهان رخ می دهد. زلزله بزرگ "هانشین" که در هفدهم ژانویه سال 1995 بوقوع پیوست با بزرگی 3/7 ریشتر سبب کشته شدن بیش از 6000 نفر شده و خسارتی بالغ بر یکصد میلیارد دلار به بار آورد. امروزه تحقیقات مختلفی برای مقابله با این بلایای طبیعی در دست اقدام است. در همین راستا صنعت ساختمان سازی در ژاپن به دنبال دستیابی به فناوریهایی است تا امکان ساخت بناهایی را فراهم کند که نه تنها بر اثر زلزله فرو نمی ریزند بلکه میزان ارتعاش و لرزش نیز در آنها کاسته شده و کنترل می گردد. در این راستا تحقیقات و آزمایشات متعددی به منظور درک صحیح نحوه بروز سوانح و خسارتها انجام شده است. بر اساس تحقیقات بعمل آمده حتی در ساختمانهایی که خود تخریب نمی شوند، عدم مدیریت صحیح اشیاء و وسایل داخل فضاهای مختلف سبب وارد آمدن صدمات جرحی و فوتی می گردند.
ضربه گیرها: به منظور کنترل لرزش های وارد آمده به ساختمان، امروزه استفاده از لاستیک های ضربه گیر با ساختار لایه ای در پایه های ساختمان بسیار متداول شده است. این لاستیکها ساده ترین ضربه گیرهایی هستند که می توان در اکثر ساختمانها نصب و تا حد بسیاری مانع از وارد آمدن ضربه، به سازه بالای آن گردد. در کنار ضربه گیرهای لاستیکی، بکار گیری نوعی سیستم هیدرولیکی دیگر که در طبقات فوقانی ساختمان کاربرد دارد نیز استفاده شده است. این سیستم که نوعی ضربه گیر هیدرولیکی است سبب می شود تا جابجائی های افقی طبقات بالای ساختمانها تا 50 درصد مستهلک شود. بکار گیری این دو نوع وسیله به جهت مقابله با زلزله کمک شایانی خواهد نمود. قانون ستون آزاد وسط برج بزرگ توکیو به نام "Tokyo Sky Tree"در حال ساخت بوده و به ارتفاعی حدود 600 متر خواهد رسید. در این برج از روشهای مختلفی برای ممانعت از آسیب دیدن توسط زلزله استفاده شده است.
سیستم مهندسی ضد زلزله ای که در این برج استفاده شده است برپایه روش سنتی بکار رفته در معابد بلند مرتبه ژاپنی استوار شده است. مطابق روشی که در ساخت معبد "Gojyu-no-tou" استفاده شده، معبد در میانه خود دارای ستونی است که تا سقف امتداد یافته و تنها به همان سقف متصل شده است. تحقیقات نشان داده است که وجود این ستون در سازه به هنگام وقوع زمین لرزه سبب اعمال نیروی مخالف جهت حرکت بقیه سازه خواهد شد. در این روش وجود ستون مرکزی سبب می شود که تکانهای افقی تا حدود 40درصد کاهش یابد. در حقیقت در زمان وقوع زمین لرزه جهت حرکت ستون میانی سازه خلاف جهت خود سازه بوده و به این ترتیب ستون میانی جلوی تشدید حرکتهای سازه را خواهد گرفت. در برج توکیو راه پله میانی برج نقش ستون وسط را باز می کند.
اتصالات آلوروی پلاستیکی: نوع دیگری از فناوری که در ساختمان سازی بکار گرفته شده است شامل استفاده از نوعی آلیاژ آلومینیم روی و پلاستیک است. ویژگی اصلی این آلیاژ قدرت تحمل کشش و فشار متناوب بسیار و در نتیجه جذب و خنثی نمودن ضربات می باشد. از این آلیاژ برای ساخت اتصالات سازه استفاده شده است. این اتصالات می توانند تا دو برابر اندازه اولیه خود کشیده یا فشرده شده، بدون آنکه شکسته شوند و به این ترتیب بخشهای سازه در طول زلزله در جای خود باقی مانده و سازه سرپا می ماند.
سطوح لغزنده: نوآوری دیگر استفاده از سطوح فلزی خاصی است که از جابجائی اشیاء و وسایل داخل ساختمان بر اثر نیروی وارد آمده از سطح و ناشی از زلزله ممانعت بعمل می آورد و به این ترتیب از آسیب رسیدن به ساکنین جلوگیری می شود. استفاده از این سطوح ساده فلزی در کف ساختمانهای اداری و مسکونی سبب می شود تا تجهیزات و مبلمان اداری بر اثر زمین لرزه های تا شدت 7 ریشتر کمترین مقدار جابجائی را داشته و تقریبا از واژگون شدن آنها ممانعت بعمل آورد. نوع برآمدگی های شکل داده شده در این سطوح به گونه ای است که قدرت زلزله باید بیش از 5 ریشتر باشد تا سبب وارد آمدن نیرو به اشیاء روی آن باشد. به این ترتیب در حالت عادی نیز اشیاء به سادگی جابجا نمی شوند.
تعلیق ساختمان: نوآوری دیگری که بصورت آزمایشی اجرا شده است سیستم تعلیق تمام خانه بر روی بستری از هوای فشرده است. در این فناوری خانه ای به وزن 80 تن در زمان زلزله بصورت شناور درمی آید. در این روش وجود یک سنسور، بروز زلزله را تشخصی داده و بلافاصله هوای فشرده در زیر ساختمان تزریق می شود و تمام ساختمان را به اندازه 2 تا 3 سانتی متر از زمین بلند می کند و از انتقال هر نوع نیروئی به ساختمان ممانعت بعمل می آورد. با توجه به آنکه حتی فاصله ای به اندازه یک میلیمتر نیز برای مقابله با زلزله کافی است، این سیستم می تواند در کمتر از نیم دقیقه فعال شده و جان ساکنین را نجات دهد.
« بازگشت به لیست مقالات|شنبه 27 دی 1393|نظرات کاربران ( 0 )
تکنولوژی ضد زلزله سنتی ژاپن
ژاپن یکی از زلزله خیز تزین کشور های جهان است. ساختمان پاگودا که یکی از معابد سنتی ژاپن محسوب می شود، بار ها طی زلزله هایی به بزرگی 7 ریشتر لرزیده است و همچنان پابرحا مانده هست. این ساختمان 5 طبقه همراه با آیین بودایی از چین به ژاپن وارد گردید. در چین این ساختمان از سنگ ساخته میشد، اما در ژاپن به دلیل شدت زلزله، تغیراتی در روند ساخت این معابد به وجود آمد.
یکی از دلایل بروز ویرانی در ساختمان ها به هنگام زلزله، ورود آب به اطراف پی و فروریزش سازه در خاک می باشد. از آنجایی که ژاپن کشوری پر باران است، برای جلوگیری از بروز این مشکل، لبه های سقف این سازه را بلند در نظر گرفته اند. همچنین برای جلوگیری از اشتعال سقف ها در هنگام رعد و برق، روی سقف پاگودای چوبی از سفال های سنگین استفاده میکنند. این امر سبب می شود که از اصابت رعد و برق، اشتعلال صورت نگیرد.
از دیگر خواص این سقف های سفالی سنگین این است که باعث می شود در زمان زلزله سازه کمتر تکان بخورد و به عنوان یک میراگر عمل میکند. در زمان زلزله هر طبقه در جهت مخالف طبقه قبل و بعد از خود ، حرکت میکند. به همین دلیل طبقه های مختلف این ساختمان ها از هم جدا هستند و با اتصال های آزاد بر روی یکدیگر قرارگرفته اند و با جدا کردن آنها سازه در هنگام زلزله می تواند نرم تر حرکت کند.
از خاصیت های ویژه این معبد، ستون غیر باربری است که shinbsshira نام دارد که از زیر سقف بالایی تا پایین سازه در مرکز آن قرار می گیرد که گاهی آن را تا زیر زمین ادامه می دهند و باعث می شود که سازه زیاد جابجا نشود و لرزش زلزله را جبران میکند. این ستون با جلوگیری از جابحایی بیش از حد طبقه ها از تخریب آنها جلوگیری میکند.
نکات ساخت ساختمان های ضد زلزله