لینک فایل چگونه یک روبات مسیریاب بسازیم

چگونه یک روبات مسیریاب بسازیم

 

مقدمه : برای ساختن یک ربات باید آشنایی مقدماتی با 3 رشته مکانیک ، برنامه نویسی و الکترونیک آشنایی داشته باشیم البته نیازی نیست در تمامی این رشته ها خود تسلط داشته باشیم چنانچه شما عضو یک تیم هستید هریک از اعضای تیم باید در مهارت خود تسلط داشته باشند تا شما به نتیجه دلخواه و ایده آل خود برسید . در اینجا روش ساخت یک ربات همچنین تجربیاتی را که در این زمینه کسب کرده ام درا ختیار شما قرار خوا هم داد .

 


کلمات کلیدی : چگونه یک روبات مسیریاب بسازیم
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل چگونه پروپوزال بنویسیم Proposal


کلمات کلیدی : چگونه پروپوزال بنویسیم Proposal
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پروژه کارآموزی- چگونه ورق پای ستون ها را طراحی کنیم؟-pdf در45 صفحه

اسکلت فلزی[ویرایش]

اسکلتهایی که در محوطه پروژه‌های ساختمانی تولید می‌شوند بخاطر محدودیت در تامین برق مکفی و بکار گیری دستگاه‌های جوش مدرن با نرخ نفوذ بالا و استاندارد، عدم وجود ابزار صنعتی سنگین، تیم‌های مجرب،رنگ آمیزی و زنگ زدایی صحیح و ... نه تنها فاقد کیفیت هستند بلکه کاملاً دست و پاگیر و دارای پروسه‌ای زمان بر هستند که بلاشک منجر به ایجاد ترافیک در معبر و تزاحم همسایگان می‌شود. روش سنتی ساخت اسکلت در محل از لحاظ اتصال و برپایی نیز علاوه بر موارد ذکر شده هزینه بالایی از بابت جرثقیل دارد. با توجه بهزلزله خیز بودن کشور ما و حوادث ناگواری که در سالهای گذشته خصوصاً دربمصورت گرفت رویکرد و نگرشی جدید به تولید صنعتی و استاندارد سکلتهای ساخ تمانی پدید آمده است، زیرا این نوع ساختمانها با طراحی خاص و اجرا بصورت صنعتی و مدرن، مقاومت شایانی در مقایسه بااسکلتهای سنتی دارند. نکته دیگر اقتصادی و پایین‌تر بودن هزینه تولید و نصب نسبت به روش سنتی معمول در کل است که در مواقع کمبود عرضه و افزایش قیمت تیرآهن درصدی قابل توجه می‌گردد. با توجه به گستره طراحی در تیر ورقها و سازه‌های پیش ساخته، محاسبات،فضا سازی و بارگذاری نیز با آزادی عمل بالایی صورت می‌پذیرد.[۱]

 

پروفیل‌های آهنی مورد استفاده در اسکلت فلزی[ویرایش]

تیر آهن و ناودانی از اصلی ترین اعضای تشکیل دهندهٔ ساختمان فلزی می‌باشد. در ایران این دو را با ارتفاع سطح مقطع می‌خوانند، مثلا ارتفاع سطح مقطع تیر۱۶(فاصله بال تا بال)16cm است. تیر آهن‌ها و ناودانی‌ها به نمرات ۸و۱۰و...۳۰رایج در بازار است. طول آن‌ها معمولا ۱۲ متر است. و تیر آهن H برای ستون سازی به کار می‌رود.تیر آهن‌ها به نام‌های مختلف I,IPE,IPB,H و غیره نام گذاری می‌شود. در اسکلت فلزی نبشی مورد مصرف زیادی دارد از جمله برای اتصال پل به ستون (نبشی زیر سری و بالا سری)-اتصال ستون به صفحه زیر ستون-اتصال تیرچه به پل-برای بادبند و غیره... نبشی با طول بال‌هایش خوانده می‌شود مثلا نبشی۱۰×۱۰ دارای دو بال مساوی به طول 10 cmاست. در سیستم متریک نبشی‌ها با نمرات۲و۵/۲و۵/۳و...۵/۷و۸و...۲۰و25cm در بازار عرضه می‌شوند. نبشی با دو بال غیر مساوی وجود دارد که در ایران کمتر مصرف می‌شود. نبشی مانند کلیه آن‌های ساختمانی (به جزناودانی و تیر آهن و میلگرد) به طول ۶ متر ساخته می‌شود.[۲]

 

نبشی تقویت شده به وسیله لچکی[ویرایش]

در ساختمان فلزی نبشی جزو قطعات اتصال است. بوسیله نبشی ستون به صفحه و پل به ستون متصل می‌شود. در محل اتصال پل به ستون چنا نچه بار پل زیاد باشد و نبشی قادر به تحمل آن نباشد، میتوان قطعات کوچکی از ورق آهن را به شکل مثلث برید و آن را بین دو بال نبشی جوش داد تا مانع خم شدن لبه‌های نبشی شود که به آن لچکی گویند. دو بال لچکی مساوی با اندازهٔ داخلی بال نبشی می‌باشد و ضخامت آن در حدود ۱۰الی 12 mm می‌باشد. از لچکی باری نبشی‌های بالا سری استفاده می‌شود و آن در مواقعی است که بخواهیم تکیه گاهی با صلبیت بیشتر ایجاد کنیم.[۳]

 

شبکه میلگرد پی نقطه‌ای[ویرایش]

اگر به نقشهٔ عمومی یک ساختمان فلزی با پی نقطه‌ای دقت کنیم معمولا ابعاد پی‌های وسط بزرگتر از پی‌های اطراف می‌باشد زیرا این پی‌ها بار بیشتری را تحمل می‌کنند. ابعاد پی‌های نقطه‌ای با توجه به بارهای وارده و قدرت تحمل به زمین به دست می آید ولی حداقل ابعاد ان در پی‌های مربع نباید از 100cm کمتر باشد. ابعاد شناژ نیز به وسیلهٔ محاسبه به دست می آید ولی معمولا برای یک ساختمان ۴یا۵ طبقه ابعاد ان۳۵×۳۵یا۴۰×۳۵ می‌باشد. پهنای شناژاطراف ساختمان به خصوص در زیر زمین باید قدری بیشتر باشد (حدود55cm)حتی اگر طیق محاسبه پهنای کمتری به دست آید باید به ۵۵ برسانیم، زیرا دیوار حایل –ماسه سیمان روی آن،قیرو گونی روی آن و دیوار جلوی آن که شناژ زیر زمین ساخته می‌شود در همین حدود می‌باشد. کلیه پی‌های نقطه‌ای باید حداقل از سه طرف به پی‌های اطراف توسط شناژ متصل شود و فقط در کنج پی‌ها از دو طرف به پی‌های اطراف متصل هستند.[۴]

 

پی سازی نقطه‌ای با قالب آجری[ویرایش]

قالب بندی پی‌های نقطه‌ای معمولا باید با تخته ساخته شود ولی به علت گرانی چوب و هزینهٔ قالب بندی در اغلب ساختمان‌های کوچک این کار به وسیلهٔ تیغه‌های 10cm آجری اجرا می‌شود. اگر بعد از آجر چینی و قبل از بتن ریزی یک ورقه نایلون بین تیغهٔ آجری و بتن فونداسیون گذاشته شود تا مانع مکیدن اب بتن توسط آجر گردد قالب بندی آجری اشکالی نداشته و موجب تسریع کار می‌گردد. بعد از قالب بندی معمولا شبکه فلزی ته فونداسیون گذاشته می‌شود. آنگاه قفسه شناژ در محل خود قرار می‌گیرد و بعد صفحه‌ها ی زیر ستون نصب می‌گردد و بولتهای صفحه زیر ستون باید به آهن‌های شناژ متصل گردد (به وسیلهٔ بستن با سیم ارماتوربندی یا جوش) تا در موقع بتن ریزی از جای خود تکان نخورد.[۵]

 

آهن گذاری پی نقطه‌ای و شناژ[ویرایش]

در ساختمان‌های فلزی و بتنی که اغلب از پی‌های نقطه‌ای استفاده می‌شود، برای آنکه نیروهای وارده مانند باد ، زلزله و نشستهای طبیعی ساختمان به طور یکنواخت بین تمام پی‌ها تقسیم شود آن‌ها را توسط تیرها ی بتنی به یکدیگر وصل می‌کنند که به این تیرها شناژ گویند. هر پی نقطه‌ای حداقل باید از سه طرف به وسیلهٔ شناژ به پی‌های مجاور متصل شود. تعداد و قطر میلگردهای شناژ با محاسبه به دست می آید. ولی هر شناژ باید حداقل به ۴ عدد میلگرد سراسری به قطر حداقل 14 cmمجهز باشد. این میلگردها باید به وسیلهٔ میلگردهای عرضی (خاموت) به یکدیگر متصل شوند. حداقل قطر خاموت ۵ یا 6 mm است. و حداقل تعداد آن باید در هر متر۴ عدد باشد. ابعاد شناژ به وسیلهٔ محاسبه به دست می آید ولی حداقل عرض آن در اطراف گود برداری در حدود 55cm است زیرا در این محل به 10cm دیوار حائل و5cm برای ماسه سیمان و قیر گونی و حداقل 35cm برای دیوار حائل احتیاج داریم. اغلب مهندسین محاسبه ترجیح می‌دهند که قفسه شناژسراسر پی راطی نماید در این صورت شناژهای یک جهت به‌ناچار شناژهای جهت دیکر را قطع می‌کنند که در این حال باید شناژهای قطع شده به وسیلهٔ میلگرد اضافی به یکدیگر متصل گردند.[۶]

اتصال صفحه زیر ستون به بولت[ویرایش]

با توجه به اینکه بار هر ستون در یک ساختمان ۴ یا ۵ طبقه معمولی ممکن است در حدود۱۰۰الی۱۲۰تن باشد اگر ستون را مستقیما روی بتن قرار دهیم مانند میخی ان را سوراخ کرده و در آن فرو می‌برد. برای جلوگیری از این عمل زیر هر ستون صفحه فلزی قرار می‌دهند. ابعاد و قطر این صفحات به وسیلهٔ مانند نبشی‌ها و صفحه‌های لچکی و... در آن جای بگیرد (برای ستون‌های معمولی۵۰×50cm کافی است) برای آن که ممانهای پای ستون تحمل گردد این صفحه به وسیلهٔ ۴ میلگرد که به آن بولت می‌گوییم به فونداسیون وصل می‌گردد. برای ساختمان کوتاه ۲تا۳طبقه اتصال صفحه زیر ستون به بولت با جوش اشکالی ندارد ولی برای ساختمان‌های بلندتر حتما باید یه وسیلهٔ پیچ و مهره باشد. بهتر است در وسط صفحهٔ زیر ستون در محل برخورد قطرها سوراخ ریزی حداکثر به قطر 10mm در آن ایجاد کرده تا در هنگام نصب صفحه و بتن ریزی آنقدر بتن را بکوبیم تا شیرهٔ ان از این سوراخ بالا بیاید زیرا در این صورت صفحه بهتر به بتن می‌چسبد.[۷]

ستون سازی[ویرایش]

ستون‌ها اجزایی از ساختمان فلزی هستند که قسمت اعظم نیروهای وارد به آن‌ها فشاری می‌باشد و اغلب به صورت عمود بر سطح زمین قرار دارد. تیرچه‌های سقف بار خود را به پل‌ها و پل‌ها به ستون‌ها و بالاخره ستونها به زمین منتقل می‌کنند. ستون‌ها را می‌توان با توجه به شدت بار وارده و محدودیت‌های معماری و اقتصادی به صورت ساده از آهن H و یا قوطی مربع و مربع مستطیل انتخاب نموده و یا آنها را به صورت مرکب از ۲و یا چند آهن I یا ۴عدد نبشی و ۲ عدد ناودانی با تسمه یا بدون تسمه ساخت. حداقل آهن I که برای ستون سازی مورد استفاده قرار می‌گیرد آهن نمره ۱۴ می‌باشد.[۸]

ستون سازی با ورق[ویرایش]

رایج ترین شکلی که مهندسین محاسب در ایران برای ساختن ستون از ورق انتخاب می‌نمایند شکل مربع یا مستطیل می‌باشد که در ساختن این گونه ستون‌ها برای سهولت عملیات جوش کاری بهتر است که دو ورق روبه رو قدری توتر قرار بگیرد زیرا در این صورت عملیات جوش کاری با هر بعد و طول هیچ مزاحمت جانبی ایجاد نمی‌کند. با وجود این که عرض ورق‌های موجود در بازار ایران۱۰۰یا۱۲۰و یا150cm است برای جلوگیری از دور ریزی ورق‌ها به هنگام محا سبه باید عرض ورق‌های مورد مصرف در ستون سازی با توجه به عرض ورق موجود در بازار۲۴ یا ۲۵ و یا30 cm باشد. اگر به خاطر بارهای وارده مجبور باشیم برای ستون سازی از ۵ و یا ۷ ورق استفاده کنیم باید حتما قسمت I ستون را ساخته و جوشکاری ان را تکمیل کنیم. آنگاه ورق‌های اضافی را متصل کنیم تا شکل به صورت II و یا I-I تکمیل شود.در غیر این صورت جوشکاری تکمیل نمی‌شود.[۹]

ستون سازی مرکب[ویرایش]

ستونهای مرکب مخصوصا ستون‌های مرکب ساخته شده ازورق به ما این اجازه را می‌دهد که آن را با توجه به شدت بار وارده و جهت تاثیر بار طراحی نموده و نقاط ضعف را با اضافه نمودن یا دور و نزدیک کردن ورق‌ها برطرف نماییم. باید توجه نمود که در ساختن ستون‌های مرکب با دو مشکل اساسی رو به رو هستیم اول آنکه ممکن است در هنگام جوش کاری ستون پیچیده و به کلی غیر قابل استفاده شود. برای جلوگیری از این کار باید هر ستون را در حین ساختن در قالب‌های محکمی قرار داده تا قالب مانع تغیر شکل ان شود. دوم اینکه باید ترتیب اتصال قطعات را طوری داده تا امکان جوش کاری فراهم شود. مثلا برای ساختن یک ستون از ۵ورق و ۴ نبشی باید اول صفحه میانی را به ۲ بدنه بیرونی عمود بر آن جوش بدهیم و جوشکاری را کامل کنیم در این مرحله برای آنکه فاصلهٔ لبه‌های تیر H یا L شکلی که ساخته‌ایم در اثر جوشکاری تغیر نکند باید لبه هایشان را توسط میلگرد به همدیگر جوش دهیم تا فاصله ثابت بماند، آنگاه دو بدنه دیگر ستون را سر جایش گذاشته و قوطی را تکمیل کنیم، همچنین به هنگام اتصال نبشی برای آنکه جوشکاری صفحات مانع چسبیدن نبشی به بدنه ستون نشود باید صفحات را نوک به نوک قرار داده و جوشکاری را در گودی ایجاد شده انجام دهیم. ساختن ستون با سه تیر آهن I به راحتی میسر است ولی اگر بخواهیم قسمتی از ستون را با ورق تقویت کنیم امکام جوشکاری ورق به آهن وسط ممکن نیست مگر آنکه در وسطعرض ورق با فاصله‌های حدود ۵۰س. م بریدگی‌هایی به طول ۱۵ تا۲۰cm و عرض ۲cm ایجاد کرده و بعد ورق را با تنگ دستی به ستون بسته آنگاه از این بریدگی‌ها ورق را به آهن وسط جوشکاری کنیم. باید توجه داشت که ورق یا نبشی متصل شده به ستون مرکب به خوبی به آن بچسبد و جوش کاری قبلی در زیر آن ناهمواری ایجاد نکند. با توجه به اینکه طریقه بالا از لحاظ تئوری درست است و ثابت شده است ولی در کارگاه‌ها اجرای آن مشکل بوده و محتاج به دقت مخصوص می‌باشد.[۱۰]

ستون یا تیر سازی مرکب[ویرایش]

اگر تیر یا ستونی که از سه تیر آهن تشکیل شده باشد به ورق تقویتی نیز احتیاج داشته باشد می‌توانیم تیر آهن وسط را با ایجاد بریدگی‌هایی در صفحه به تسمه وصل کنیم ولی عملا این کار به راحتی میسر نیست زیرا ایجاد این بریدگی‌ها در تسمه به طوری که نقطهٔ ضعفی در آن نباشد با مشکل رو به رو می‌شود لذا برای راحتی اجرا بهتر است به جای یک عدد تسمه پهن از دو عدد تسمه که پهنای هر یک به اندازهٔ ۵/۱ برابر بال تیر یا ستون باشد استفاده می‌کنیم. ممکن است در این طریقه به خاطر کمی پهنا ضعفی در تسمه تقویت ایجاد شود ولی ضعفی که در اثر عدم اتصال صحیح تسمه یک تکه به تیر آهن وسط ایجاد می‌شود به مراتب بیشتر از ضعفی است که در اثر استفاده تسمه ۲تکه ایجاد می‌گردد. از طرفی می‌توان کسر پهنای تسمه را به وسیلهٔ اضافه کردن به ضخامت آن جبران نمود.[۱۱]

ستون سازی در ایران[ویرایش]

جوش ستون‌های ساخته شده از قوطی که در ایران به نام تجاری P.N.S مشهور است با درز جوش انجام می‌شود این ستون‌ها از ورق آهن به ضخامت‌های مختلف به ابعاد مختلف ساخته می‌گردد در موقع انتخاب این نوع ستون به دو نکته باید توجه شود، اول آنکه باید علاوه بر محاسبه توان باربری کل ستون ضخامت ورق در محل تکیه گاه‌ها نیز کنترل شود، زیرا ممکن است در اثر شدت بار وارد شده در محل تکیه گاه‌ها ورق ستون از ریشه کنده شود در این صورت می‌توان با اتصال صفحات اضافی محل گره را تقویت نمود. اگر طول یک ستون با شمارهٔ ثابت از ۱۲ متر بیشتر باشد اجبارأ دو یا چند تکه تیر آهن را به هم وصل می‌کنیم در این حالت باید اول آهن‌ها را در یک محوری قرار دهیم آنگاه آنها را با ۴ وصله(۲عدد روی بال و ۲عدد روی جان) به یکدیگر وصل کنیم. ابعاد صفحات با محاسبه به دست میاید ولی ضخامت آن باید در حدود ضخامت جان تیر باشد. بلندی آن در حدود ۶۰ cm و پهنای آن قدری کوچکتر از بال یا جان تیر آهن است تا جوشکاری بهتر صورت گیرد.[۱۲]

اتصال دو ستون با نمره‌های مختلف[ویرایش]

گاه مجبوریم به علت اقتصادی شماره آهن یک ساختمان را در طبقات بالاتر کمتر کنیم، اگر این کم کردن ضخامت ۲ نمره باشد مثلا از ۲۰ به ۱۸ ایتدا ۲ صفحه به ضخامت 1 cm به طول حدود40cm و عرض پشت تا پشت بال ستون (قدری کمتر برای جوشکاری) به دو طرف ستون باریکتر جوش می‌دهیم تا با ستون ضخیمتر هم رو شود به این قطعات صفحات هم ور کننده می‌گویند. آنگاه به وسیلهٔ یک صفحه دیگر که طبق محاسبه به دست امده و از 10mm کمتر نباشد و طولش در حدود 70cm و عرض آن قدری کمتر از صفحه هم رو کننده است دو ستون را به یکدیگر وصل می‌کنیم. برای اتصال دو ستون با نمرات مختلف اگر نخواهیم از صفحه هم رو کننده استفاده کنیم می‌توانیم دو مثلث به طول قاعده 1cm به [[ارتفاع [[حدود 35cm از جان آهن بزرگتر بریده آنگاه آهن بزرگتر را به وسیلهٔ گیره و چکش جمع کنیم تا بالای آن 2cm جمع تر شده و هم عرض آهن کوچکتر شود آنگاه آهن کوچکتر را به وسیلهٔ صفحه اتصال به آن متصل نماییم. این طریقه از لحاظ مصرف مصالح ارزان تر و از لحاظ کار و دقت آن مشکل تر می‌باشد.[۱۳]

آماده‌سازی صفحه زیر ستون قبل از نصب ستون[ویرایش]

بعد از کار گذاشتن صفحه‌های زیر ستون و بتن ریزی پی و قبل از کار گذاشتن ستون روی صفحه زیر ستون باید محورهای ساختمان را یک بار دیگر کنترل کرده و امتداد آن را روی صفحه‌های زیر ستون رسم نماییم آنگاه با توجه به ابعاد ستون حداقل ۳ عدد از نبشی‌های اطراف ستون رابه صفحه زیر ستون جوش دهیم آنگاه سطح تماس ستون‌ها را با صفحه زیر ستون کنترل کرده تا در موقع نصب روی صفحه زیر ستون و کلیهٔ نقاط آن با صفحه زیر ستون در تماس باشد و کجی یا برجستگی موضعی نداشته باشد زیرا در این صورت نقاط برجسته به یک نقطه صفحه فشار وارد کرده و ممکن است در پای ستون نیروهای ناخواسته ایجاد نماید. برجستگی‌های موضعی را می‌توان با سنگ زدن مسطح نمود.[۱۴]

 

اتصال ستون به صفحه زیر ستون[ویرایش]

در ایران اغلب مهندسین محاسبهٔ اتصال ستون به صفحهٔ زیر ستون را با ۴ عدد نبشی ۱۰یا ۱۲ پیشنهاد می‌نمایند. این اتصال برای ساختمان‌های کوتاه که(۵تا۴) طبقه مناسب است ولی برای ساختمان‌های بلندتر که ممان‌های پای ستون شدیدتر است برای اتصال ستون به صفحه زیر ستون باید طرح‌های دیگری را مورد استفاده قرار داد و باید بیشتر از صفحات لچکی استفاده نمود. ابعاد صفحه زیر ستون با محاسبه به دست می آید ولی با توجه به اینکه ابعاد صفحات موجود در بازار ایران اغلب ۲×۱ و یا۶×۵/۱ متر است برای آنکه دور ریز آهن کمتر شود در ساختمان‌های معمولی تا ۵ یا ۶ طبقه صفحه زیر ستون را ۵۰×50 cm انتخاب می‌کنند. به هر حال طول و عرض این صفحه‌ها باید طوری باشد که ستون و کلیهٔ قطعات اتصال آن در صفحه قرار گیرد. برای زیر ستون صفحه دو تکه و جوشی پیشنهاد نمی‌شود.قطر سوراخ محل عبور بولت در حدود 1 mm بیشتر از قطر بولت و فاصلهٔ محیط سوراخ تا لبه‌های صفحه 5cm است. هر قدری ممان‌های پای ستون بیشتر باشد باید اتصال ستون به صفحه زیر ستون قوی تر طراحی گردد و از صفحات ضخیم‌تر که به صورت لچکی ستون را به صفحه زیر ستون وصل می‌نماییم استفاده شود.[۱۵]

 

زبانه کردن تیر آهن[ویرایش]

برای هم رو کردن پروفیل‌های مورد استفاده در ساختمان‌های فلزی گاهی مجبور به زبانه کردن آن‌ها هستیم مثلا برای زیر سازی سقف‌های شیب دار که در آن‌ها از ورق موجدار استفاده می‌شود و با توجه به این که این زیر سازی باید حتما از بالا در یک تراز باشد باید آن‌های فرعی را زبانه کرده و به پل‌های اصلی متصل نماییم و همچنین برای ساختن طاق‌های تخت برای آنکه کلفتی گچ و خاک و سفید کاری سقف از حد معینی تجاوز نکند باید تیر آهن‌های پوشش را از یک طرف زبانه کرده و در دل پل قرار دهیم تا از پایین هم تراز شوند. اگر پل و تیر |آهن پوشش هم شماره باشند به‌ ناچار باید تیر آهن پوشش از دو طرف زبانه شود. در هنگام اتصال دو تیر آهن به یکدیگر مخصوصا در سقف‌های طاق ضربی در هنگام اتصال تیرچه به پل اگر بخواهیم تیر و تیرچه از زیر کاملا روی هم باشد باید تیرچه را از یک طرف زبانه کنیم و اگر شماره پل و تیرچه مساوی باشند باید تیرچه را از دو طرف زبانه کنیم. این جریان در سقف‌های شیب دار مخصوصا آن‌هایی که با ورق موج دار پوشش می‌شود دارای اهمیت بسیار می‌باشد زیرا ورق‌های موجدار به صورت مستقیم بر روی آهن پوشش قرار می‌گیرد و زیر ان باید کاملا در یک سطح باشد در این صورت آهنهای سقف باید از بالا هم رو باشند.[۱۶]


مزایای ساخت اسکلت پیش ساخته پیچ و مهره‌ای نسبت به سایر اسکلت‌های اجرا شده عبارتند از:

سرعت اجرا اسکلت فلزی[ویرایش]

سرعت اجرای سازه‌های با اتصالات پیچ و مهره‌ای نسبت به اتصالات جوشی بالاتر و کاملا قابل لمس می‌باشد و زمان ساخت سازه‌های پیچ و مهره‌ای کمتر از سازه‌های با اتصالات جوشی است و با توجه به مدت زمان بالای اجرای پروژه‌های کشورمان این نوع از سازه‌ها جهت کاهش زمان ساخت پیشنهاد می‌گردد.

سرعت نصب اسکلت فلزی[ویرایش]

در این گونه از سازه‌ها بدلیل حذف کامل جوشکاری در محل نصب سازه اسکلت فلزی، فقط با جایگذاری قطعات و بستن تعدادی پیچ و مهره محدود می‌شود که این عامل باعث افزایش چشمگیرسرعت نصب می‌شود و خطاهای نصب به حداقل خود می‌رسد.

کیفیت ساخت اسکلت فلزی[ویرایش]

کیفیت ساخت سازه اسکلت فلزی با امکانات موجود در کارخانه و طبق نقشه‌های طراحی شده و تحت نظارت واحد کنترل کیفی قابل مقایسه با سازه‌های جوشی که در محل نصب سازه ساخته می‌شوند نمی‌باشد.

پرت مصالح اسکلت فلزی[ویرایش]

معمولا دست محاسب در انتخاب مقاطع خاص برای اسکلت فلزی مانند IPE بسته می‌باشد و مجبور است با اضافه کردن ورق و جوشکاری اضافی به مقطع مورد نظر خود برسد حال آنکه در ساختمان پیچ و مهره‌ای امکان اجرا و تولید مقاطع سبک تر و با مقاومت بیشتر وجود دارد که استفاده از ورق در ساخت مقاطع، پرت آهن آلات را به حداقل می‌رساند.

ایمنی و پایداری سازه اسکلت فلزی[ویرایش]

چه به لحاظ تئوری و چه به لحاظ عملی ثابت شده است که ساختمان‌های پیچ و مهره‌ای به دلیل کیفیت بهتر پایداری بیشتری در برابر زلزله و نیروهای جانبی دارند.

هزینه کمتر اسکلت فلزی[ویرایش]

اجرای ساختمان پیچ و مهره‌ای به لحاظ اقتصادی می‌تواند هزینه کمتری را به مالک تحمیل کند ولی این بدان معنی نیست که دو سازه که کاملا مقاطع آن یکسان می‌باشد سازه پیچ و مهر ه‌ای کم هزینه تر باشد ولی به دلیل باز بودن دست طراح در بهینه‌سازی و ساخت مقاطع با وزن کمتر، امکان کاهش وزن سازه توسط طراح به راحتی امکان‌پذیر است.

مقاومت در برابر آتش‌سوزی اسکلت فلزی[ویرایش]

در دماهای بالا معمولا اتصالات پیچ و مهره‌ای مقاومت بیشتری در برابر حرارت دارند و احتمال تخریب سازه اسکلت فلزی بسیارکمتراز اتصالات جوشی است.

عدم نیاز به فضای کار اسکلت فلزی[ویرایش]

معمولا در شهرها به دلیل عدم وجود موقعیت و مکان مناسب جهت ساخت اغلب پیمانکاران دچار زحمت فراوان شده که با استفاده از این نوع سازه‌ها، قابلیت اجرا در شلوغ ترین و کم حجم ترین موقعیت‌ها فراهم کرده است.

رواج جهانی اسکلت فلزی[ویرایش]

در کلیه کشورهای آمریکایی و اروپایی تمامی سازه‌ها به صورت پیچ و مهره‌ای اجرا می‌شود مگر در سازه‌های بسیار کم اهمیت که اتصالات آن جوشی اجرا شود که از دلایل مهم استفاده از این نوع سازه‌ها در این کشورها، عملکرد بهترآن و تجربه بیشتر آن کشورها در ساخت سازه‌های فولادی می‌باشد.

خوردگی سازه اسکلت فلزی[ویرایش]

در سازه‌های پیچ و مهره‌ای قبل از رنگ آمیزی قطعات توسط دستگاههای سندبلاست و وایربرس تحت نظر واحد کنترل کیفی زنگ زدایی می‌شوند که در سازه‌های جوشی این عملیات انجام نمی‌گردد و همچنین در سازه‌های جوشی بجای رنگ غنی از روی که در سازه‌های پیچ و مهره‌ای استفاده می‌شوند، ضد زنگ بکار می‌رود که این امر باعث خوردگی سریع سازه می‌شود.

امکان استفاده در مدیریت حوادث سازه اسکلت فلزی[ویرایش]

با توجه به امکان جابجایی این گونه سازه‌ها امکان جابجایی و نصب آن در مناطق بحران زده مانند سیل و زلزله امکان‌پذیر می‌باشد.

انواع اتصالات در ساختمانهای اسکلت فلزی[ویرایش]

جهت وصل کردن یک یا چند قطعه در ساختمانهای فولادی نیاز به یک قطعه رابطی می‌باشد که دو قطعه بتوانند توسط جوش به هم متصل شوند که این قطعه رابط همان انواع اتصالات است.

انواع اتصالات در ساختمانهای اسکلت فلزی به شرح زیر است[ویرایش]

۱-انواع اتصالات تیر به ستون در اسکلت فلزی. ۲-انواع اتصالات پای ستون در اسکلت فلزی . ۳-اتصال دو تیرآهن به هم و تولید ستون یا تیر دوبل در اسکلت فلزی . ۴-اتصالات بادبندها به ستونها وتیرها در اسکلت فلزی.

انواع اتصالات تیربه ستون در اسکلت فلزی[ویرایش]

اتصال تیر به ستون معمولا به دو صورت است یا به صورت صلب و گیردار هستند ویا به صورت مفصلی اند. هر کدام از حالتهای مذکور نیزچند قسمت دارند که شامل موارد زیر می‌باشد. (اتصال صلب با جفت صفحه موازی) (اتصال صلب با جفت سپری) (اتصال صلب با صفحه انتهایی روی ستون)

اتصالات صلب در مواردی به کار می‌روند که از جانب تیر یا ستون در سر گره‌ها ممان جذب شود. اتصال صلبی که امروزه در کشور اجراء می‌گردد و به صورت کامل اجراء نمی‌شود اتصال صلب با جفت صفحه موازی است. در اتصال صلب بایدجوش به صورتی باشد که قطعه کاملا گیردار باشد و جای


کلمات کلیدی : عمران, ستون, ورق پای ستون,لچکی پای ستون, پروژه , اسکلت سازیعمران, اسکلت فلزی, سازه فلزی , اتصال تیر به ستون
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل کتاب- چگونه یک پروپوزال بنویسیم؟- در 40صفحه-docx

 

 

 

از مهم ترین و اصلی ترین ارکان یک کار تحقیقی و پژوهشی، طرح تحقیق یا همان پروپوزال است. پروپوزال در لغت به معنی پیشنهاد است. یک پروپوزال همانند نقشه و ماکت یک ساختمان است که پیش از آغاز آن ساختمان طراحی شده تا بهترین زوایای ممکن از اجرای عملیات ساخت را در اختیار مهندسین قرار دهد. به این ترتیب یک مهندس ساختمان با نگاه به این ماکت می تواند نقشه ساختمان را در ذهن خود مجسم کند. این همان تعریف درست و دقیق از یک پروپوزال است، نقشه انجام تحقیق برای عملیاتی کردن یک پروژه تحقیقاتی. حال این پروژه می تواند یک طرح تحقیقاتی وسیع در سطح یک منطقه یا کشور باشد و یا یک پایان نامه ی کارشناسی ارشد. هم چنین به خاطر داشته باشید که یک پژوهشگر برای تامین اعتبارات مالی لازم برای عملیاتی کردن طرح خود لازم است هدف از پروژه تحقیقاتی خود را در قالب یک پروپوزال به افرادی که اعتبار مالی طرح را تامین می کنند، تحویل دهد. 
اگر چه که معمولا روند انتخاب موضوع و نگارش پروپوزال با سرعت طی می شود ولی توجه به این نکته ضروری است که یک پروپوزال دقیق، درست و منطقی می تواند محقق را از چالش ها و مشکلات بعدی در مسیر انجام پایان نامه نجات دهد، پس بهتر است برای نگارش پروپوزال وقت صرف کنید. پروپوزالی که به طور دقیق ، روشن و کامل نگارش شده می تواند تا 50 درصد از انجام یک پایان نامه باشد چرا که ابهامات و سردرگمی های دانشجو در حین انجام پایان نامه به دلیل نگارش دقیق تمامی مراحل طرح تحقیق از قبل پیش بینی شده است. توجه داشته باشید که پروپوزال صرفا یک پیش نویس از پایان نامه یا پروژه تحقیقاتی است و بر اساس فرضیات علمی و استنتاجات تحقیقاتی است و در آن با بررسی سوابق فعالیت ها و مطالعات پیشین نتایج احتمالی حاصله از انجام پایان نامه یا پروژه تحقیقاتی مطرح می شود. بهتر است تا میزان مطلوب بودن یک پروپوزال بعد از تکمیل آن و قبل از ارائه به سازمان مرور و بررسی شود. شرایطی لازم است تا شما بتوانید این مراحل را بدون نقص طی کنید ولی باید به یاد داشته باشید که مراحل توضیح داده شده در زیر برای تمامی پروپوزال ها صدق نمی کند و به صورت کلی می باشد. 

 

 

 

پروپوزال

 

 

 

به عنوان مثال در برخی از پژوهش ها مانند پژوهش توصیفی نیاز به نگارش فرضیه نمی باشد پس در نتیجه شرایط مربوط به فرضیه ذکر شده نیازی به اعمال ندارد. برای انجام پروپوزال و پایان نامه ای حرفه ای نکات زیر را در نظر بگیرید. به طور کلی از دید اصول های علمی پروپوزالی مطلوب می باشد که دارای شرایط زیر باشد:

 

 

 

شرایط لازم یک پروپوزال مطلوب

 

 

 

1-    موضوع پروپوزال :

 

 

 

  •     تحصیلات و تخصص پژوهش گر با موضوع پروپوزال تطبیق داشته باشد.
  •     مشکلات مطرح شده در پروپوزال، موضوعاتی باشد که از الویت بالایی برخوردار باشند.
  •     موضوع به هیچ عنوان تکراری نباشد.
  •     هم خوانی موضوع پروپوزال با سطح تحصیلی پژوهش گر.
  •     منابع لازم مانند بودجه و تجهیزات برای پژوهش آماده شده باشد.
  •     زمان مطرح شده برای پژوهش دقیق باشد.
  •     نتایج به دست آمده از انجام پژوهش محسوس باشد.
  •     از نظر فرهنگی و اجتماعی مورد قبول باشد.

 

 

 

2-    عنوان پروپوزال :

 

 

 

  •     پروپوزال از نظر نگارشی باید بدون هیچ ایرادی باشد.
  •     عنوان باید معرف مفهوم کلی و نهایی پژوهش باشد.
  •     وضوح عنوان
  •     مختصر بودن عنوان
  •     عدم استاده از کلمات اختصاری انگلیسی در عنوان فارسی
  •     مشخص کردن زمان و مکان انجام پژوهش
  •     عنوان پروپوزال به سوالاتی از قبیل چه کسی و چه چیز و... پاسخ داده باشد.
  •     در عنوان پروپوزال از پیش داوری خودداری شود.
  •     عنوان باید به دو زبان انگلیسی و فرسی به صورت همزمان نوشته شود.

 

 

 

3-    بیان مسئله :

 

 

 

  •     مساله به وضوح تعریف شده باشد.
  •     اثرات ناشی از مشکل توضیح داده شده باشد.
  •     توضیح اینکه پژوهش چگونه به حل مسئله کمک می کند.
  •     توضیح اینکه انجام پژوهش چه میزان ضروری است.
  •     حد و حدود مسئله توضیح داده شود.
  •     اطلاعات باید از عمومی به اختصاصی و از کل به جزء تدوین شود.
  •     مسئله بیان شده باید جدید و مستند باشد.
  •     دلایل انجام پژوهش به اختصار شرح داده شود.
  •     پیوستگی مطالب در بیان مسئله رعایت شود.
  •     سازمان ها و اشخاص ذینفع ذکر شوند.
  •     پژوهش های انجام شده مرتبط ذکر شوند.
  •     دلیل متمایز بودن پژوهش با سایر پژوهش ها نام برده شود.
  •     هدف پژوهش به صورت کامل مطرح شده باشد.

 

 

 

4-    اهداف، فرضیه و سوالات پژوهش

 

 

 

  •     اهداف کلی و آرمانی مشخص شده باشد.
  •     اهداف کلی منطبق با عنوان پژوهش باشد.
  •     نتایج نهایی باید حاصل هدف کلی پژوهش باشد.
  •     اهداف پروپوزال باید واقع بینانه باشد.
  •     هدف های ویژه پروپوزال باید قابل اندازه گیری باشند.
  •     فرضیه ها باید به شکل گزاره های جهت دار مطرح شوند.
  •     فرضیه ها به شکل جمله خبری و بدون ابهام مطرح شوند.
  •     سوالات پژوهش با اهداف اختصاصی تطابق داشته باشند.
  •     رابطه بین چند متغیر توسط سوالات بیان شود.
  •     در ازای هر اهداف اختصاصی یک سوال پژوهشی تعریف شده باشد.

 

 

 

5-    اندازه گیری متغیر ها و اندازه گیری آنها :

 

 

 

  •     متغیرها از دید عملیاتی و نظری بیان شده باشند.
  •     در تعریف متغیر نظری اشاره به مستندات علمی الزامی است.
  •     منظور پژوهشگر توسط معرفی عملیاتی واژه ها بیان شود.
  •     متغیر ها به صورت علمی و قابل سنجش مشخص شده باشند.
  •     تناسب انواع متغیر ها مد نظر باشد.
  •     مقیاس سنجش تمام متغیر ها مشخص باشد.
  •     نقش متغیر ها در پژوهش تعریف شده باشد.

 

 

 

6-    نوع پژوهش :

 

 

 

  •     نوع پژوهش طبق اهداف پژوهش تعریف شود.
  •     فرایند اجرای پژوهش پایه و مبنای نوع پژوهش باشد.
  •     نوع پژوهش بر پایه زمان اجرای آن مشخص شود.
  •     نوع پژوهش طبق نتیجه های حاصل از پژوهش تعیین شود.

 

 

 

7-    روش پژوهش :

 

 

 

  •     روش پژوهش باید مرحله به مرحله توضیح داده شود.
  •     افعال مربوط به فعالیت ها باید به زمان آینده شرح داده شود.
  •     انطباق روش پژوهش و نوع پژوهش باید رعایت شود.

 

 

 

8-    جامعه پژوهش :

 

 

 

  •     دقت در تعریف جامعه پژوهش
  •     دقت در ملاک انتخاب نمونه
  •     جامعه باید برخوزدار از ملاک های انتخاب باشد.

 

 

 

9-    نمونه پژوهش :

 

 

 

  •     روش های نمونه گیری معین باشند.
  •     روش های محاسبه حجم نمونه معین باشند.
  •     توضیح دقیق روش انتخاب نمونه
  •     نمونه تعیین شده باید معرف جامعه باشد.

 

 

 

10-    محیط پژوهش :

 

 

 

  •     محیط پژوهش کاملا مشخص باشد.
  •     مشخص بودن حدود محیط پژوهش

 

 

 

11-    ابزار گردآوری و روشهای تحلیل داده

 

 

 

  •     ابزار های گردآوری داده باید مشخص باشد.
  •     ابزار مورد اسفاده باید متناسب با نوع پژوهش باشد.
  •     ابزار مورد استفاده باید متناسب با روش پژوهش باشد.
  •     نحوه بررسی ابزار مشخص باشد.
  •     جزئیات و مراحل گردآوری داده مشخص باشد.
  •     مشخص کردن روش تحلیل داده ها در پژوهش

 

 

 

12-    مرور پیشینه پژوهش :

 

 

 

  •     ژورنال ها باید شامل رتبه علمی باشند.
  •     ترتیب مطالب بر اساس تاریخ انتشار
  •     بررسی کامل مقالات مرتبط با موضوع پژوهش
  •     اطلاعات به اندازه کافی از مقالات فراهم شوند.

 

 

 

13-    محدودیت های موجود در پژوهش :

 

 

 

  •     از محدودیت های احتمالی نام برده شود.
  •     در صورت امکان محدودیت نیز امکان پژوهش وجود داشته باشد.

 

 

 

14-    پیش بینی زمان :

 

 

 

  •     مرحله بندی صحیح پژوهش
  •     تناسب زمان پیش بینی با نوع پژوهش
  •     ترسیم گانت چارت برای مراحل پژوهش

 

 

 

15-    محاسبه هزینه ها

 

 

 

  •     تفکیک هزینه های پژوهش بر اساس مراحل
  •     تناسب بین نوع پژوهش و هزینه ها
  •     درج هزینه ها در بالای ستون مربوطه

 

 

 

16-    منبع گزارش پایانی :

 

 

 

  •     تعداد منابع باید نسبت به هر پژوهش کافی باشد.
  •     درج منابع در انتهای گزارش
  •     تنوع کافی منابع
  •     استفاده از منابف انگلیسی و فارسی

 

 

 


کلمات کلیدی : چگونه پروپوزال بنویسیم,پروپوزال,پروپوزال نویسی, پژوهش و تحقیق,proposal, پیشنهاد, طرح‌, طرح‌ پیشنهادی‌, اظهار,
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل کتاب- کناف چیست و نحوه ساخت و طراحی و اجرای آن چگونه است- در 60صفحه-docx

 

 

کاذب کناف نیاز به تخصص خاصی دارد و در صورت اجرای نامطلوب سیستم های کنافدر صورت عدم رعایت آنچه گفته شد نمی توان کناف را مورد سرزنش و نقد قرار داد ، زیرا کنافهمانند سایر سیستم های برتر ساختمانی سالهاست در جهان به عنوان سیستم اصلی اجرای دیوار و سقف کاذب مورد استفاده قرار می گیرد.

 

 

 

منبع : www.saghfeknauf.blogfa.com

 

 

 

کناف در اصل پنل های گچی است که در ابعاد 120*240 و با ضخامت های مختلف 9.5 میلی متر و یا 12 میلیمتر ساخته میشود.در حین ساخت این پنل ها سعی میشود مخلوط گچ به همراه هوا به صورت فشرده بین دو سطح مقوایی وارد شود که به سبکی و استحکام پنل کمک کند.مشتریان گرامی توجه داشته باشید که کناف نام تجاری این پنل های گچی است.در اصل این پنل های گچی توسط کارخانه های مختلفی مثل کارخانه صدف و یا ایران پنل و یا کارخانه کناف ساخته میشود.در حال حاضر بهترین کیفیت از نظر استحکام و سبکی در پنل های شرکت کناف اعمال میشود.مشتریان گرامی باید هنگام استفاده کناف کاران از این پنل ها به مارک و نشان knauf روی پنل ها و همینطور سازه های فلزی توجه کنند.همانطور که عرض شد پنل های شرکت کناف دارای کیفیت بسیار بالایی نسبت به دیگر پنل ها هستند.به همین دلیل از کناف کاران خود بخواهید با توجه به قیمت کناف که به شما میدهند حتما نوع متریال مصرفی را نیز برای شما مشخص کنند.زیرا پنل های متفرقه غیره از پنل های کناف قیمتی ارزان تر دارند که حدود 5 هزار تومان در هر متر مربع ارزان تر از پنل های کناف تمام میشود.

 

 

 

از کناف میتوان در ساخت انواع دکور و دکوراسیون داخلی انواع نور مخفی ها برای سالن پزیرایی و یا کناف اتاق خواب و یا اماکن تجاری و اداری استفاده نمود.اجرای دکور های زیبای توسط کناف به خاطر ظرافت این پنل ها ممکن است.مشتریان گرامی میتوانند قبل از شروع انجام دکوراسیون انواع طرح های کناف را مشاهده نمایند و طرح کناف مورد نظر خود را انتخاب و اجرا نمایند.از کناف میتوان جهت ساخت ارک اشپزخانه سالن و کناف تالار ها و انواع دیوار های جداکنند کاذب و ... استفاده نمود.

 

 

 


 کناف در واقع نام خوانوادگی دو برادر به نام و موسسه ای با فعالیتهای بین المللی با ویژه گی های ممتاز می باشد و بیش از ۶۰ سال است که در صنایع ساختمانی به عنوان یکی از پیشرو ترین شرکتهای بین المللی است و همیشه در برخورد با موانع و مشکلات و گذر موفقیت آمیز از آنها قابلیت خود را نشان داده است.این شرکت توسط برادران کناف،کارل و آنفوس کناف در سال ۱۹۳۲ بنیان گزاری شد.در حال حاضر شرکت کناف با در اختیار داشتن بیش از ۱۵۰ واحد تولیدی و ۱۸۰۰۰ فعال در ۳۷ کشور جهان یکی از بزرگترین شرکتهای بین المللی در صنایع ساختمان می باشد.

 زلزله های بزرگ و ویرانگر هر از چند گاهی بخشی ار کره زمین را به لرزه در آورده و موجب تلفات وخسارات جانی و مالی فراوان میگردد. تنها طی یک قرن اخیر حدود ۱۰۰۰ بار زلزله به صورت مخرب در جهان روی داده و بیش از یک میلیون نفر را به کام مرگ کشانده است آنچه در این میان نگران کننده است  اینکه حدود ۲۰% زمین لرزه ها یی که طی این مدت در دنیا رخ داده است مربوط به کشور ایران میشود.

ایران بر روی کمربند جهانی زلزله آلپ و هیمالیا واقع شده است.برسیها نشان می دهد که بیش از ۹۰% خاک ایران زلزله خیز است آمارها نشان میدهند که بطور متوسط در هر دهه زلزله ای با قدرت بالای ۷ ریشتر در ایران رخ میدهد و در سه دهه اخیر افزون بر ۱۳۰ هزار نفر از هموطنان مان بر اثر زلزله جان خود را از دست داده اند.

وقوع این حوادث باعث شد که باز نگریهایی در صنعت ساختمان کشور صورت پذیرد و استفاده از مصالح و ساختارهای سبک و انعطاف پذیر در اجزای غیر سازه ای به عنوان راهکاری موثر در ساخت بناهای ایمن در برابر زلزله در دستور کار قرار گیرد.استفاده از اجزای غیر سازهای صلب باعث افزایش نیروهای وارده از زلزله گردیده وتاثیر منفی بر رفتار لرزه ای سازه ها دارد.

یکی از ساختارهای مناسب جهت اجرای اجزای غیر سازهای مانند دیوارهای داخلی و خارجی،نماها  و سقفهای کاذب،سیستمهای ساخت و ساز خشک (Drywall Systems  ) می باشد.

ساختار کلی ساخت و سیستم ساز خشک شامل صفحات روکش دار گچی و مقا طع فولادی سبک می باشد این صفحات به عنوان پوشش ومقاطع فولادی به عنوان زیر سازی عمل می نمایند.

در حال حاظر بیش از ۹۰% ساختمان سازیها در کشورهای پیشرفته جهان با استفاده از این ساختارها انجام می شود.خوشبختانه این فن آوری توسط شرکت کناف ایران وارد کشور شده و تا کنون پروژه های بسیار مهمی در سطح کشور با موفقیت اجرا شده است.

خواص و مزایای کناف

شما در مورد مزایای کناف چه میدانید!؟

۱- مقرون به صرفه و مدرن

۲- جایگزین روشهای منسوخ و سنتی.

۳- سهولت /سرعت و دقت بالا

۴- انعطاف پذیری بسیار بالا

۵- سبک بودن و عدم افزایش وزن ساختمان

۶- اجرا بصورت خشک و سریع

۷- خواص عایق بندی حرارتی /صوتی/رطوبتی و مقاوم در برابر زلزله

۸- انتخاب طرحهای بی شمار و شیک

۹- قابلیت اجرای انواع روکش ( رنگ / پوشش سلو لزی / کاغذ دیواری /نما سنگ وغیره

۱۰- تمیزبودن این حرفه در حین اجرا نسبت به مشاغل ساختمانی دیگر

تنها بخشی از هزاران مزایای کناف میباشد

 

 

 

 

 

 

 

روش اجرای کناف

 

 

 

اجرای قاب فولادی سبک

 

 

 

 

 

 

 

روش اجرای کناف

 

 

 

نصب لایه اول پنل گچی

 

 

 

 

 

 

 

نصب لایه اول پنل گچی

 

 

 

قراردادن عایق حرارتی و صوتی

 

 

 

 

 

 

 

قراردادن عایق حرارتی و صوتی

 

 

 

نصب پنل گچی بر سمت دیگر دیوار

 

 

 

 

 

 

 

نصب پنل گچی بر سمت دیگر دیوار

 

 

 

دیوار خارجی ساختمان در این ساختار (کناف) ، از صفحات مسلح سیمانی Aquapanel به عنوان لایه خارجی دیوار استفاده می شود. در ایران معمولا از قطعات سنگ و آجر پلاک در نما استفاده می شود. که به صورت دوغابی بر بدنه دیوارهای خارجی اجرا می شوند. عدم وجود اتصال مناسب میان این قطعات و بدنه دیوارها موجب می شود که در هنگام وقوع زلزله، جابجایی و لرزشها تحمل نگشته و نما فرو بریزد. سیستم دیوار خارجی آکواپنل، به عنوان ساختاری کاملا ایمن در برابر زلزله، راه حل این مشکلات است. از دیگر مزایای این ساختار، استفاده از عایق پشم معدنی می باشد که به طور همزمان موجب بهسازی حرارتی و صوتی ساختمان می شود.

 

 

 

دیوار تاسیساتی با اجرای دو لایه قاب فلزی با فاصله از یکدیگر، می توان از فضای به وجود آمده جهت عبور تاسیسات الکتریکی و مکانیکی استفاده نمود. قرارگیری تاسیسات در فضای خالی دیوار و دفت تشدن آن در داخل دیوار، علاوه بر رفع مسئله خوردگی و کاهش هزینه تعمیرات، دسترسی به تاسیسات و تعمیرات و نگهداری را در مرحله بهره برداری آسان می کند.

 

 

 

روش اجرای کناف pdf, روش اجرا کناف, روش اجرای کناف, روش اجرای دیوار کناف, روش اجرای سقف کاذب کناف, روش های اجرای کناف, روش اجرای سقف دکوراتیو کناف, روش اجرای کناف سقف, روش اجرای کناف pdf, روش اجرای کناف سقف, روش اجرای کناف, روش اجرای کناف, روش اجرا کناف, روش اجرای دیوار کناف, روش اجرای سقف کاذب کناف, روش های اجرای کناف, روش اجرای سقف دکوراتیو کناف, روش اجرای کناف سقف

 

 

 


کلمات کلیدی : کناف,اجرای کناف,سقف کاذب, Dry Wall,kanuf, دیوار پیش ساخته, دیوارگچی,عمران و معماری,طراحی کناف,ساخت کناف, اجرای کناف
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل کتاب- برقگیر چیست و چگونه طراحی و اجرا می شود؟-Lightning arrester- در 120 صفحه-docx

 

برقگیر از وسایل ایمنی می‏باشد که برای هدایت موجهای ولتاژ ضربه‏ای به زمین و جلوگیری از ورود آنها به ایستگاههای انتقال و توزیع نیرو بکار می‏رود و معمولاً در انتهای خط انتقال و در ورودی ترانسها نصب می‏شود. ولتاژ شکست الکتریکی یک برقگیر بایستی کمتر از ولتاژ شکست الکتریکی ایزولاسیون لایه تجهیزات نصب شده در پست باشد.
صاعقه گیر چگونه عمل می کند؟ و انواع آن کدامند؟

 

 میله های ساده فرانکلینی : اولین واحد جذب که توسط فرانکلین بیشنهاد گردید، میله های ساده بودند که ضربه مستقیم صاعقه به اندازه طول میله ها، دور از ساختمان اتفاق می افتاد و شعاع حفاظتی این صاعقه گیرهای ساده در کلاسهای حفاظتی براساس تئوری زاویه محاسبه می گردید.
قفس فارادی : با گسترش ابعاد ساختمانها و با توجه به محدودیت های میله ساده ، قفس فارادی (Faraday Cage) جایگزین میله های ساده فرانکلینی شد، امروزه نیز اکثر استانداردهای جهانی استفاده از قفس فارادی را بهترین روش میدانند. در این روش سعی می شود ساختمان را در قفسی از هادیهای مسی یا فولادی محصور نمود.
صاعقه گیرهای یونیزه کننده هوا : طراحی و نصب این صاعقه گیر های براساس استاندارد NFC 17-102 انجام می گیرد ریشه این استاندارد نیز همان تئوری گوی غلطان است که در تمامی استاندارد ها از آن استفاده شده است. NFC 17-102 با وارد کردن پارامتر ΔL‌ در فرمول محاسبات، شعاع پوشش افزایش یافته صاعقه گیر را محاسبه می کند.
صاعقه گیر پس از نصب روی ساختمان، می بایست بوسیله هادیهای میانی Down Conductor از طریق سیم مسی بدون روکش به سیستم زمین متصل گردد.
مقاومت الکترود زمین صاعقه گیر می بایست زیر 10 اهم باشد و پس از اجرا به شبکه هم بتانسیل کل سایت متصل شود.
در اجرای الکترود زمین هر صاعقه گیر می بایست از اقلامی چون صفحه های مسی، مواد کاهنده مقاومت (LOM) ، اتصالات جوش انفجاری استفاده نمود.

 

صاعقه گیر الکترونیکی :

 

درست قبل از حدوث صاعقه بطور طبیعی محتوی الکتریکی اتمسفر بطور ناگهانی افزایش می یابد. این تغییر وضعیت توسط واحد جرقه زن حس و کنترل می شود صاعقه گیرهای الکترونیکی انرژی موجود در هوای متلاطم پیش از طوفان را (که حدود چندین هزار ولت بر هر متر است) جذب و در واحدهای جرقه زن ذخیره می نماید و در نهایت واحد جرقه زن با تخلیه بار الکتریکی خازنها بین الکترودهای فوقانی و الکترود مرکزی اش هوای اطراف را یونیزه می نماید

 

اصول عملکرد صاعقه گیر الکترونیکی :

 

آزاد سازی کنترل شده یونها  : واحد جرقه زن (TRIGGERING) صاعقه گیرهای الکترونیکی شرایطی را ایجاد می کند تا چشمه جوشانی از یون (کرونا) در اطراف میله نوک تیز فراهم شود. دقت عمل این واحد باید به گونه ای کنترل شده باش که آزاد سازی یونها را درست چند میکرو ثانیه قبل از حدوث و تخلیه صاعقه صورت دهد.
اثر کرونا و واحد جرقه زنحضور حجم وسیع بارهای الکتریکی در اطراف میله نوک تیز صاعقه گیر پس از یونیزاسیون توسط واحد جرقه زن سبب می شود تا پدیده طبیعی تجمع بارهای الکترونیکی اطراف میله (Corona effect) تقویت و تشدید شود.
تسریع در بروز علمدار حمله زمینیصاعقه گیرهای  الکترونیکی  طوری طراحی شده اند که ارسال علمدار حمله زمینی را خیلی زودتر از نقاط هم ارتفاع مشابه همان محدوده به انجام برسانند و این به معنی تشکیل نقطه ترجیهی دریافت صاعقه در منطقه تحت حفاظت با صاعقه گیرهای  الکترونیکی

 

سیستم هم پتانسیل :

 

 وجود اختلاف پتانسیل بالا بین دو هادی الکتریکی نزدیک به هم باعث بوجود آمدن قوس الکتریکی می شود که خطر و خسارت ناشی از آن کمتر از صاعقه نیست ، به همین دلیل در ایجاد یک سیستم حفاظتی هم پتانسیل سازی از ارکان کار بوده و بدین مفهوم است که در یک مکان حفاظت شده بایستی تمامی هادی های الکتریکی از قبیل بدنه دستگاه ها، سازه های فلزی، لوله های آب و ... هم پتانسیل باشند زیرا در غیر این صورت این اختلاف پتانسیل باعث تخلیه شدن رعد و برق از مسیرهای نامناسب خواهد شد که احتمالاً خسارت آن کمتر از اصابت مستقیم صاعقه نیست . برای ایجاد سیستم هم پتانسیل بایستی تمامی اجزاء هادی در ساختمان به گونه ای به سیستم زمین مشترک متصل گردند . برای طراحی سیستم حفاظت از سایت های ارتباطی در مقابل رعد وبرق مؤلفه های فراوانی وجود دارد که مواردی در ذیل آمده است :

 

1-      موقعیت جغرافیای سایت ارتباطی ( که به وسیله آن احتمال وقوع رعد و برق در آن ناحیه و ضرورت نصب سیستم ارتینگ محاسبه می گردد ) .

 

2-      فاکتور تأثیر سطوح خارجی ساختمان : شکل و ارتفاع یک ساختمان با کاهش یا افزایش احتمال اصابت صاعقه به آن ساختمان مستقیماً در ارتباط است .

 

3-      نوع ساختمان : آجری یا بتونی بودن ساختمان و این که دارای اسکلت فلزی است یا نه ؟

 

4-      ارزش تجهیزات ارتباطی داخل ساختمان : بسته به قیمت تجهیزات می توان مقدار هزینه مطلوب برای ایمنی آن را برآورد نمود .

 

در حالت کلی برای حفاظت از یک سایت ارتباطی در نظر گرفتن دو نوع حفاظت خارجی و حفاظت داخلی الزامی می باشد .

 

حفاظت خارجی : حفاظت خارجی سایت ارتباطی را در مقابل اصابت مستقیم رعد و برق محافظت می نماید و از سه قسمت ذیل تشکیل گردیده است .

 

1-      برقگیر

 

2-      هادی میانی

 

3-      سیستم زمین

 

که هر کدام از موارد فوق دارای انواع محاسبات عدیده ای می باشد که به اختصار شرح داده می شود .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

برقگیر :

 

برقگیر وسیله ای است که در بالاترین نقطه ساختمان نصب گشته و اولین نقطه اصابت رعد و برق می باشد به دلیل این که رعد و برق از کوتاه ترین فاصله بین ابر و زمین تخلیه می گردد . البته از نوک برقگیر نصب شده به زاویه 45 درجه تا سطح افق را مخروط ایمنی می گویند و هر جسمی که در درون مخروط ایمنی قرار گیرد دیگر در معرض اصابت مستقیم صاعقه نخواهد بود و به همین دلیل است که دربعضی موارد برای پوشش کل ساختمان سایت از چندین برقگیر به صورت قفس فاراده استفاده می گردد و حتی در استاندارد NFC 17-100 فرانسه برای حفاظت از کارخانجات پتروشیمی و نفت و ... پیشنهاد گردیده که در اطراف ساختمان چهار دکل نصب و هر کدام از آن ها به وسیله سیم از سر به هم وصل شوند تا بدین صورت مخروط ایمنی با ضریب اطمینان بالا حاصل گردد. در حالت کلی می توان نصب برقگیرها را با توپولوژی ساده یا مش (Mesh) نمود .

 

 

 

برقگیر بر دو نوع است :

 

1-      برقگیر غیرفعال ( پسیو )

 

2-      برقگیر فعال ( اکتیو )

 

برقگیر غیرفعال شامل یک میله ساده نوک تیز است که دقیقاً مخروط ایمنی از نوک آن به فاصله 45 درجه می باشد و در محاسبات عملی برای بالا رفتن اطمینان این زاویه را 35 یا حتی پایین تر در نظر می گیرند . برقگیر فعال با فناوری مختلف ( خازنی ، اتمی و ... ) هوای اطراف خویش را یونیزه می نماید و بدینوسیله ایمنی بیشتری را ایجاد می نماید . این نوع برقگیرها با توجه به توان ایمنی ایجادی به کلاس های 1 ، 2 و 3 تقسیم می گردند.

 

در برقگیرهای فعال معمولاً سه مؤلفه کلاس حفاظتی ، شعاع حفاظت و ارتفاع برقگیر نسبت به سطح بایستی مورد توجه قرار گیرد. از نظر قیمت نیز برقگیرهای فعال گران تر هستند و می بایست در انتخاب برقگیر دقت نماییم تا مجهز به سیستم هادی میانی مناسب باشد تا برقگیر درست عمل کرده و موجب خسارت نشود.

 

 

 

هادی میانی :

 

ارتباط بین برقگیر و سیستم زمین توسط هادی میانی انجام می گیرد. با توجه به استاندارد NFCاگر ارتفاع ساختمان از 28 متر بالاتر باشد یا این که طول ساختمان از 2 برابر ارتفاع بزرگ تر باشد بایستی برای اتصال برقگیر به سیستم زمین از هادی میانی استفاده نمود. در مورد قطر هادی نیز استاندارد مصارف خانگی برای هادی میانی سیم 50 مسی و برای مصارف صنعتی سیم های 75 ، 90 ، 120 و ... بسته به مؤلفه محتویات ساختمان می توان استفاده نمود.

 

یک نکته ضروری در مورد هادی میانی تخلیه جانبی است اگر هنگام نصب اتصالات هادی میانی به اندازه کافی دقت نگردد، امکان ایجاد اتصال کوتاه و تخلیه انرژی از مسیرهای نامناسب وجود دارد که خطر این مسئله می تواند بیشتر از خطر اصابت صاعقه باشد.

 

برای نصب هادی میانی از بست های مخصوصی استفاده می گردد که معمولاً از جنس مس یا استیل هستند و همچنین منطبق بر استاندارد اروپا فاصله هادی میانی از دیوار بایستی کمتر از یک دهم متر باشد.

 

سیستم زمین :

 

یکی از مهم ترین قسمت های سیستم ارتینگ سیستم زمین می باشد آن می باشد به طوری که بعضی سیستم ارت را در این قسمت خلاصه می کنند.

 

با اصابت رعد و برق به برقگیر انرژی آن به برقگیر منتقل می گردد و سیستم هادی میانی وظیفه دارد بدون تخلیه از مسیرهای نادرست از یک مسیر مناسب که در طراحی مدنظر بوده آن را به سیستم زمین منتقل گرداند و کار سیستم ارت به تزریق انرژی رعد و برق به زمین منتهی می شود.

 

با توجه به توضیح بالا معلوم می گردد که قسمت زمین سیستم ارت بایستی به نحوی تخلیه انرژی به زمین را در اسرع وقت انجام نماید و می دانید زمین مبداء توان است و دارای مقاومت صفر ، ولی به علت وجود لایه های پوسته زمین، در سطح زمین مقاومت آن دقیقاً صفر نیست و ما با ایجاد سیستم زمین مقاومت زمین را به صفر نزدیک می نماییم تا قابلیت جذب انرژی رعد و برق را داشته باشد. پس مهمترین مؤلفه یک سیستم زمین مقدار مقاومت آن است که هر چه پایین تر باشد بهتر است. برای سیستم های قدرت، مقاومت ارت زیر 10 اهم قابل قبول می باشد ولی برای سیستم های حساس از قبیل سیستم های مخابراتی معمولاً مقاومت زیر 3 اهم مدنظر است که در موارد خاص با توجه به پیشنهاد سازنده دستگاه این مقدار تغییر می یابد.

 

سیستم زمین به انواع مختلفی از قبیل سیستم چاه، سیستم حلقه و سیستم میله ای ارت تقسیم بندی می شود و با توجه به نوع خاکی که می خواهیم سیستم زمین ایجاد نماییم انتخاب می گردد. مثلاً در جاده های سنگلاخی، میله های ارت که به صورت شبکه ای در زمین فرو می روند برای ایجاد و گسترش سیستم زمین بهترین گزینه است.

 

سیستم حفاظت داخلی :

 

حفاظت داخلی سایت ارتباطی را در مقابل عوامل مختلفی از قبیل نوسانات ولتاژ(Over Voltage) و القائات ناشی از اصابت غیرمستقیم رعد و برق(که به شعاع یک کیلومتر از محل اصابت این القائات وجود دارند) محافظت می نماید.

 

ارسترها تجهیزاتی هستند که کار حفاظت از سیستم های مخابرات و الکترونیک، در برابر نوسانات ناشی از رعد و برق را بر عهده دارند البته نقش ضربه گیرهای ولتاژ را نباید از قلم انداخت.

 

سیستم حفاظت خارجی مخصوصاً در قسمت انتهای آن قدرت آنی تخلیه انرژی زیاد ایجاد شده از اصابت مستقیم را ندارد و گفته می شود در لحظه اول تنها 50 درصد انرژی تخلیه می گردد و با توجه به هم پتانسیل بودن ساختمان امکان برگشت انرژی به داخل سایت و مورد حمله قرار دادن آن موجود می باشد، با نصب ضربه گیرها این امکان از بین خواهد رفت.

 

ضربه گیرها در کلاس های حفاظتی مختلف یک، دو، سه و به صورت یک پل، دو پل تا چهار پل موجود است که در محاسبه نصب آن ها جریان گذرنده در محل نصب و مکان نصب مهم می باشد به طور مثال اگر می خواهیم ضربه گیر را در ورودی اصلی برق ساختمان قرار دهیم بهتر است از ضربه گیرهای کلاس یک استفاده نمود.

 

ارسترهای مختلفی برای محافظت از خطوط تلفن، خطوط آنتن، شبکه های رایانه ای و شبکه های رادیویی فرکانس بالا موجود است که می توان بسته به پورت های ورودی و خروجی و تعیین اهمیت حفاظت نسبت به تهیه آن ها در رنج ها و کلاس های مختلف اقدام نمود. البته بحث در مورد ساختار داخلی ارسترها بسیار مفصل است که در قالب این مقاله نمی گنجد.

 

 

 

 

 

هادی میانی (Down Conductor): یکی از سه جزء اساسی سیستم حفاظت در برابر صاعقه بوده و نحوه نصب، مسیر دهی و انتخاب جنس و ابعاد آن در عملکرد صحیح و ایمن سیستم حائز اهمیت است. جنس و ابعاد هادی میانی در صورتی که سیستم حفاظتی پسیو بوده و بر اساس استاندارد IEC 62305 طراحی می شود، از جدول 3 قابل استخراج است(رجوع شود به مبحث صاعقه گیر پسیو). 
هر چند می توان در طراحی هر دو نوع سیستم پسیو و اکتیو جنس و ابعاد مجاز هادی میانی را از جدول 3 استخراج نمود، اما به دلیل وجود اندکی تفاوت بهتر است در مورد صاعقه گیر اکتیو از جدول 5 استفاده نمود.

 

در مورد محل نصب و انتخاب مسیر هادی میانی نکات مهمی وجود دارند که به بطور خلاصه به آنها اشاره می شود:
1- هادی میانی باید به گونه ای نصب شود که کوتاهترین و مستقیم ترین اتصال به سیستم زمین را داشته باشد.
2- شعاع خمیدگیها و انحناها مطابق با شکل 8 بایستی بیشتر از 1/20  طول خمیدگی باشد یا به عبارتی: و در هر شرایطی نباید کمتر از 20 سانتیمتر باشد.

 


جدول 5 جنس و ابعاد هادی میانی مطابق با NFC 17-102

 

3- عبور هادی میانی از روی دیواره های کوتاه، حداکثر افزایش ارتفاع 40 سانتیمتری با شیب 45 درجه یا کمتر مجاز می باشد (شکل 8).
4- برای مهار کردن هادی میانی باید در هر یک متر از سه بست استفاده نمود(در فواصل 50 سانتیمتری).
5- برای هر صاعقه گیر اکتیو حداقل دو مسیر هادی میانی مورد نیاز است. در صورتی که ارتفاع سازه محل نصب ESE بیش از 60 متر باشد بایستی از چهار مسیر هادی میانی استفاده نمود. بایستی سعی شود مسیرهای هادی میانی تا حد امکان با یکدیگر فاصله داشته باشند. حداقل فاصله افقی نباید کمتر از 2 متر باشد. 
6- برای هر صاعقه گیر پسیو میله ای که بر روی پایه های جداگانه نصب شده باشند، حداقل یک رشته هادی میانی لازم است.

 

 

 

شکل 8 خمیدگی های مجاز هادی میانی

7- در صورتیکه صاعقه گیر پسیو از نوع هادی های سیمی معلق باشد برای هر پایه مهار کننده حداقل یک رشته هادی میانی لازم است.
8- در


کلمات کلیدی : برقگیر,رعدگیر,ارت,ارتینگ,میله برقگیر,برقگیر فرانکلین,قفس فاراده,Lightning arrester,eart, برقگیر ساختمان,برقگیر غیرفعال,برقگیر فعال,صاعقه و برق گیر,صا
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-دیوار برشی فولادی چیست و چگونه اجرا میشود.- در35 اسلاید-powerpoin-ppt

همه چیز درباره دیوار برشی

 


دیوار برشی 
با نیروهای جانبی مؤثر بر یک سازه ( در اثر باد یا زلزله ) به طرق مختلف مقابله می شود که اثر زلزله بر ساختمانها از سایر اثرات وارد بر آنها کاملا متفاوت می باشد . ویژگی اثر زلزله در این است که نیروهای ناشی از آن به مراتب شدیدتر و پیچیده تر از سایر نیروهای مؤثر می باشند . عناصر مقاوم در مقابل نیروهای فوق شامل قاب خمشی ، دیوار برشی و یا ترکیبی از آن دو می باشند . استفاده از قاب خمشی به عنوان عنصر مقاوم در مقابل نیروهای جانبی بخصوص اگر نیروهای جانبی در اثر زلزله باشند احتیاج به جزئیات خاصی دارد که شکل پذیری کافی قاب را تأمین نماید .این جزئیات از لحاظ اجرایی غالبا دست و پاگیر بوده و در صورتی می توان از اجرای دقیق آنها مطمئن شد که کیفیت اجرا و نظارت در کارگاه خیلی بالا باشد از لحاظ برتری می توان گفت که دیوار برشی اقتصادی تر از قاب می باشد و تغییر مکانها را کنترل می کند در حالی که برای سازه های بلند قاب به تنهایی نمی تواند در این زمینه جوابگو باشد . حال به ذکر چند نمونه از دیوارهای برشی می پردازیم : 

1-دیوار های برشی فولادی : بعضی مواقع ورقهای فولادی به عنوان دیوارهای برشی بکار می روند . برای جلوگیری از کمانش موضعی چنین دیوارهای برشی فولادی لازم است از تقویت کننده های قائم و افقی استفاده شود. 

2-دیوارهای برشی مرکب : دیوارهای برشی مرکب شامل : ورقها ی تقویت شده فولادی مدفون در بتن مسلح ، خرپاهای ورق فولادی مدفون در داخل دیوار بتن مسلح و دیوارهای مرکب ممکن دیگر ، که تماما با یک قاب فولادی و یا با یک قاب مرکب تؤام هستند می شود . 

3- دیوارهای برشی مصالح بنایی : از دیر زمان در ساختمانهای مصالح بنایی از دیوارهای مصالح بنایی توپر غیر مسلح استفاده می شده است ولی روشن شده است که این دیوارها از نقطه نظر مقاومت در مقابل زلزله ضعف دارند و لذا اکنون به جای آنها از دیوارهای برشی مسلح نظیر دیوارهای با آجر تو خالی و پر شده با دوغاب استفاده می شود . 4-دیوارهای برشی بتن مسلح : نوع دیگری از دیواهای برشی ، دیوارهای برشی بتن مسلح است که در این مقاله به آن می پردازیم. یکی از مطمئن ترین روشها برای مقابله با نیروهای جانبی استفاده از دیوار برشی بتن مسلح است . دیوار برشی به عنوان یک ستون طره بزرگ و مقاوم در برابر نیروهای لرزه ای عمل می کند و یک عضو ضروری برای سازه های بتن مسلح بلند و یک عضو مناسب برای سازه های متوسط و کوتاه می باشد .

 

انواع دیوار برشی بتن مسلح :

 

 دو نوع دیوار برشی بتن مسلح وجود دارد : 
1-دیوار برشی در جا  :در دیوار برشی در جا به منظور حفظ یکنواختی و پیوستگی میلگرد های دیوار ، به قاب محیطی قلاب می شوند . 
2-دیوار برشی پیش ساخته : در دیوار های برشی پیش ساخته یکنواختی و پیوستگی با تهیه کلیه های ذوزنقه شکل در طول لبه های پانل و یا از طریق اتصال پانلها به قاب توسط میخهای فولادی صورت می گیرد . تأثیر شکل دیوار : تعبیه بال در دیوارها برای پایداری و شکل پذیری سازه بسیار مفید می باشد  . 

 

نیروهایی که به دیوارهای برشی وارد می شوند :

 

به طور کلی دیوار های برشی تحت نیروهای زیر قرار می گیرند : 
1-نیروی برشی متغیر که مقدار آن در پایه حداکثر می باشد . 
2-لنگر خمشی متغیر که مقدار آن مجددا در پای دیوار حداکثر است و ایجاد کشش در یک لبه ( لبه نزدیک به نیروها و فشار در لبه متقابل می نماید ) با توجه به امکان عوض شدن جهت نیروی باد یا زلزله در ساختمان ، کشش باید در هر دو لبه دیوار در نظر گرفته شود. 
3-نیروی محوری فشاری ناشی از وزن طبقات که روی دیوار برشی تکیه دارد .

 


توجه : در صورتی که ارتفاع دیوار برشی کم باشد ، غالبا نیروی برشی حاکم بر طراحی آن خواهد بود لیکن اگر ارتفاع دیوار برشی زیاد باشد لنگر خمشی حاکم بر طراحی آن خواهد بود . به هر حال دیوار باید برای هر دو نیروی فوق کنترل و در مقابل آنها مسلح گردد.

 


طراحی دیوار برشی در مقابل برش : 
اگر Vu تلاش برشی نهایی در مقطع مورد طراحی باشد بر طبق آیین نامه ایران باید Vu=5υchd=φchd(fc)^0.5  تعیین نیروی برشی مقاوم نهایی بتن : 
الف- حالتی که دیوار تحت اثر برش یا تحت اثر تؤام برش و فشار قرار دارد Vc=υcbwd: 
ب- حالتی که دیوار تحت اثر برش و کشش فرار دارد : Vc=υc(1+Nu/(3Ag))bwd (A) در این رابطه کمیت Nu/Ag بر حسب ( N/mm^2 ) می باشد و Nuدر این رابطه منفی می باشد حال اگر محاسبه نیروی برشی مقاوم نهایی بتن ( Vc) با جزئیات بیشتر مورد نظر باشد آنرا برابر با کمترین مقدار به دست آمده از دو رابطه زیر در نظر گرفته می گیریم و Vc=1.65υchd + (Nud)/(5Lw) وVc=(0.3υc+(Lw(0.6υc+0.15Nu/(Lwh)))/(Mu/Vu-Lw/2))hd Nu 
نیروی محوری برای فشار مثبت و برای کشش منفی است چنانچه Mu/Vu-Lw/2 منفی باشد رابطه A بکاربرده نمی شود . نیروی برشی مقاوم نهایی Vc برای کلیه مقاطعی که در فاصله ای کمتر از کوچکترین دو مقدار Lw/2 و hw/2 از پایه دیوار قرار دارند برابر با مقاومت برشی مقطع در کوچکترین این دو مقدار در نظر گرفته می شود . 
نیروی برشی مقاوم نهایی آرماتور ها (Vs) از رابطه زیر محاسبه می شود Vs = φsAvfy d/S2 Av  سطح مقطع آرماتور برشی در امتداد برش و در طول فاصله S2 می باشد چنانچه مقدار Av را در اختیار نداشتیم می توان Vs را از رابطه زیر به دست آورد  Vs=Vu-Vc سپس به کمک رابطه فوق Av را به دست می آوریم . برای تأمین برش مقاوم Vsعلاوه بر آرماتور های برش افقی Av آرماتور های برشی قائم نیز باید در دیوار پیش بینی شود آرماتور گذاری در دیوار مطابق زیر انجام می شود : چنانچه Vu=0.0025 فاصله میلگرد های (S2 ) از هم نباید از مقادیر زیر بیشتر باشد : ρn= 3h Lw/5 350سطح مقطع کل بتن در امتداد برش / سطح مقطع آرماتور برشی در امتداد عمود بر برش نباید کمتر از 0.0025 و یا کمتر از مقدار زیر در نظر گرفته شود : ρn=0.0025+0.5(2.5-hw/Lw)( ρh-0.0025) لزومی ندارد  ρn>ρh در نظر گرفته شود . طراحی دیوار برشی در مقابل خمش : چنانچه ارتفاع دیوار برشی بلندتر از دو برابر عمق آن باشد مقاومت خمشی آن مشابه تیری که آرماتور گذاری آن در لبه های آن متمرکز است محاسبه می شود . 
مقاومت خمشی Mu یک دیوار برشی مستطیلی نظیر دیوار برشی این چنین محاسبه می شود : Mr=0.5AsφsFyLw(1+Nu/(AsφsFy))(1-C/Lw) در رابطه فوق : Mr مقاومت خمشی نهایی دیوار :Nu  نیروی محوری موجود در مقطع دیوار: As   سطح مقطع کل آرماتور های قائم دیوار Fy  : تنش تسلیم فولاد :  Qs  ضریب تقلیل ظریب فولاد Lw  : طول افقی دیوار مقدار C/Lw از رابطه زیر به دست می آید  C/Lw=(w+α)/(2w+0.85β1) مقدار β 1 از روابط زیر به دست می آید : Fc=55 N/mm^2 → β1=0.65، w=As/(Lwh)*(φsFy)/( φcfc) φs=0.85 φc=0.6 a=Nu/(Lw*h*φcfc) h  عرض دیوار : Fc  مقاومت فشاری بتن ابتدا با توجه به آرماتور های قائم حداقل که به علت نیازهای برشی در دیوار تعبیر شده اند ظرفیت خمشی مقطع را به دست می آوریم . همواره باید ظرفیت خمشی بزرگتر یا مساوی نیروی خمشی نهایی دیوار باشد. 
( Mr>=Mu) چنانچه ظرفیت خمشی کمتر از نیروی خمشی دیوار به دست آید باید یا با کاهش فواصل یا افزایش قطر آرماتور های قائم مقدار As آنقدر افزایش یابد تا خمش بزرگتر از لنگر خمشی مقطع گردد . شکست برشی لغزشی : در شکست برشی لغزشی ، دیوار برشی به طور افقی حرکت می کند برای جلوگیری از این نوع شکست آرماتورهای تسلیح قائم که به طور یکنواختی در دیوار قرار گرفته اند مؤثر خواهد بود و تسلیح قطری نیز می تواند مؤثر باشد . در قسمت زیر انواع مودهای شکست یک دیوار برشی طره ای گفته شده است : الف ـ گسیختگی خمشی ب ـ شکست لغزشی ج ـ شکست برشی د ـ دوران پی دیوارهای برشی با بازشو ها: شکست برشی یک دیوار برشی با بازشو ها ، اگرچه می توان با به کار بردن مقدار زیادی خاموت باعث اتلاف انرژی شد اما نمی توان انتظار شکل پذیری زیادی از آن داشت بنابراین بهتر است در چنین شرایطی از تسلیح قطری استفاده کرد .

 


دیوار برشی راه‌حل مقابله با زلزله 
علم مهندسی زلزله ساختمان‌ها در سال 1950 میلادی هم زمان با فعالیت‌های گسترده بازسازی پس از پایان جنگ جهانی دوم شروع گردید. 
تلاش‌های اولیه به منظور مقاوم‌سازی ساختمان‌ها، براساس فرضیاتی نه چندان دقیق بر روی واکنش سازه در اثر ارتعاش زمین صورت گرفت که بدلیل کمبود ابزار تحلیل مناسب و سوابق اطلاعاتی کافی در مورد زلزله، روش‌های ناقصی بودند. مشاهده عملکرد سازه‌ها در هنگام وقوع زلزله و همچنین مطالعات تحلیلی و کارهای آزمایشگاهی و جمع‌آوری اطلاعات مربوط به زمین‌لرزه‌های چهار دهه اخیر، امکان ارایه روشی مدرن برای طراحی سازه‌های مقاومت در برابر زلزله را فراهم آورده است. 
در طی دهه 1950، سیستم ”قاب خمشی شکل‌پذیر“ از سیستم ”قاب خمشی“ که در آن زمان تنها سیستم مقاوم در ساختمان‌های چندین طبقه‌ بتنی و فولادی بود ، منشا گرفت و به دلیل رفتار مناسب این سیستم در برابر زلزله، کاربرد آن تا اواخر دهه 1970 ادامه یافت. در طی این مدت سیستم‌های جدیدتر و کارآمدتری نظیر دیوارهای برشی و یا خرپاها برای تحمل فشار جانبی باد در ساختمان‌های بلند رایج شدند و تقریباً روش ساخت به صورت قاب تنها در این ساختمان‌ها، کنار گذاشته شد. 
تحقیقات تجربی و تئوری انجام شده در سراسر جهان طی دهه‌های 60 و 70 و 80 میلادی منجر به جمع‌آوری اطلاعات مفصلی در رابطه با واکنش سیستم‌های ساختمانی دارای دیوار برشی در هنگام زلزله شد که این مطالعات بر اهیمت قاب خمشی شکل‌پذیر در کاهش بار زلزله تأکید داشتند. با توجه به اینکه سازه‌های دارای صلبیت بیشتر (یعنی شکل‌پذیری کمتر) در هنگام زلزله، تحت نیروهای به مراتب قوی‌تری قرار می‌گیرند و از آنجا که وجود دیوار برشی در ساختمان‌ها باعث افزایش صلبیت آنها می‌شود، کاربرد دیوارهای برشی، نامناسب تشخیص داده شد و بیشتر ساختمان‌ها به روش قاب خمشی ساخته شدند. برای نمونه در برخی از کشورها خصوصاً کشورهای توسعه نیافته بدون رعایت حداقل ضوابط شکل‌پذیری، قاب‌های ساختمانی از انواع شکننده و فاقد قابلیت تحمل زلزله‌های قوی بدون وارد آمدن آسیب شدید به ساختمان، اجرا شدند و همانگونه که در زمین لرزه‌های چهار دهه اخیر مشاهده شد، بسیاری از ساکنین خود را در ”تله‌های مرگ“ گرفتار کردند. آنچه در زیر می‌آید، بیان خلاصه‌ای از رفتار سازه‌های دیوار برشی است که در حوادث زمین لرزه‌های 30 سال اخیر قرار داشته‌اند.

 


زلزله ماه مه سال 1960 شیلی: 
اولین گزارش در ارتباط با رفتار ساختمان‌های دارای دیوار برشی، مربوط به این زلزله می‌باشد تجربیات در زلزله شیلی، کاربرد دیوارهای برشی در زلزله‌های شدید را درکاهش خسارات سازه‌ای و غیرسازه‌ای، تأیید می‌کند. در چند مورد، دیوارهای برشی ترک خورده‌اند اما رفتار کلی ساختمان تغییر نکرده است.

 


زلزله ماه ژوئیه سال 1963 یوگسلاوی: 
در این زمین‌لرزه، دیوارهای بتنی غیرمسلح بکار رفته (مثلاً در هسته ساختمان و یا در طول آن) توانستند با مهار کردن پیچش بین طبقات از خسارات عمده جلوگیری کنند و تنها در چند مورد استثنائی قسمت‌های تحتانی تیرهای محیطی، در اثر لرزش‌های شدید، جدا شده بود.

 


زلزله ماه فوریه سال 1971 سن فرناندو (کالیفرنیا): 
پس از وقوع این زلزله، ساختمان 6 طبقه مرکز پزشکی IN-DIAN HILL با سیستم مرکب قاب و دیوار برشی، تنها نیاز به ترمیم داشت در حالیکه ساختمان 8 طبقه بیمارستان HOLLY CROSS در کنار آن بدلیل اینکه سیستم قاب تنها در آن بکار رفته بود. به شدت آسیب دید و نهایتاً تخریب شد.

 


زلزله ماه مارس سال 1977 بخارست (رومانی): 
در این زلزله که 35 ساختمان چندین طبقه به طور کامل ویران شد، صدها ساختمان بلند و برج‌های آپارتمانی که در آنها از دیوارهای بتنی در امتداد کریدورها و یا سرتاسر ساختمان استفاده شده بود، بدون خسارات عمده، سالم و قابل استفاده باقی ماندند.

 


زلزله ماه اکتبر سال 1985 مکزیکوسیتی (مکزیک): 
ویرانی‌های این زلزله در مکزیک، به خوبی عواقب عدم استفاده از دیوارهای برشی تقویت کننده را نشان داد. در این زمین‌لرزه حدود 280 ساختمان چند طبقه با سیستم قاب تنها، به دلیل نداشتن دیوار برشی به طور کامل تخریب شده و از بین رفتند.

 


زلزله ماه دسامبر سال 1988 ارمنستان: 
زلزله ارمنستان در سال 1988 دلیل دیگری بر نتایج منفی حذف دیوارهای برشی در ساختمان‌های چندین طبقه است. در این زمین‌لرزه 72 ساختمان به دلیل نداشتن دیوار برشی، به کلی ویران شده و 149 ساختمان در چهار شهر Leninakam و Spitak و Kirovakan و Stepomavan دچار آسیب‌های شدید شدند. با این وجود کلیه 21 ساختمان با پانل‌های بزرگ موجود در این چهار شهر هیچگونه آسیبی ندیده و در میان ویرانه‌های ساختمان‌های دیگر، پابرجا ماندند.

 


در دهه‌های اخیر روش‌های شکل‌پذیر ساختن سیستم‌های سازه‌ای که گاهی قابلیت افزایش مقاومت در برابر زلزله را نداشتند مورد توجه قرار گرفت که ضمن ایجاد احساس امنیت کاذب، هیچگونه بازدهی کافی نداشتند. در ابتدای پیدایش علم مهندسی زلزله، بسیاری از متخصصین مفهوم شکلی‌پذیری (ductility) را با انعطاف‌پذیری (flexibility) اشتباه کردند و در نتیجه سازه‌های انعطاف‌پذیر زیادی در مناطق زلزله‌خیز جهان ساخته شد. با اینکه تعدادی از آنها شکل‌پذیر بودند اما هنگام وقوع زلزله، در اثر پیچش زیاد بین طبقات، خسارات غیر قابل جبرانی به این ساختمان‌ها وارد شد. در ساختمان‌سازی امروزی که تنها 20 درصد کل مخارج مربوط به هزینه در سیستم سازه‌ای و مابقی صرف مخارج کارهای معماری و تأسیسات برقی و مکانیکی می‌شود. انتخاب یک سیستم سازه‌ای مناسب که امنیت جانی و مالی افراد را در برداشته باشد از اهمیت ویژه‌ای برخوردار بوده و یکی از راه‌های رسیدن به چنین امنیتی استفاده از دیوارهای برشی در سازه‌های بتنی می‌باشد. 
جزئیات شکل‌پذیری دیوارهای برشی که بعد از مطالعات اخیر، در برخی آئین‌نامه‌ها ذکر شده‌اند هنوز در زلزله‌های واقعی مورد آزمایش قرار نگرفته‌اند. بدون شک استفاده از این جزئیات، باعث شکل‌پذیرتر شدن دیوارها می‌شود ولی میزان دقیق بهره‌وری از شکل‌پذیری باید در زلزله‌های واقعی و یا مطالعات پیچیده پاسخ‌های دینامیکی دیوار در اثر زلزله مشخص شود. طراحی دیوار به صورت شکل‌پذیر هنگامی صحیح است که مقاومت آن از طریق خمش صورت بگیرد نه از طریق برش و همچنین ظرفیت برشی دیوار در هر مقطع از برش آن مقطع که بر مبنای مقاومت خمشی دیوار به دست می‌آید، بیشتر باشد. علاوه بر این نه تنها ظرفیت برشی نهائی بلکه رفتار عضو بین حالت شروع ترک‌خوردگی و حالت گسیختگی برشی نیز مشخص باشد.

 


نتیجه 
با اینکه سازه‌های دیوار برشی در 30 سال اخیر، از فولاد کمتر از مقدار توصیه شده توسط آئین‌نامه‌های فعلی آمریکا برخوردار بوده‌اند اما با این وجود در برابر زلزله‌های این سه دهه به خوبی مقاومت کرده‌اند. بررسی‌های انجام شده از سال 1963 به بعد روی عملکرد این سازه‌ها، هنگام وقوع زلزله، نشان داده‌اند که با وجود مشاهده ترک‌های مختلف، حتی یک مورد ویرانی یا تلفات جانی در سازه‌های با دیوار برشی گزارش نشده است. اغلب خسارات ساختمان‌های با سیستم قاب، در اثرپیچش طبقات (و در نتیجه گسیختگی برشی ستون‌ها) بوده است. البته این دلیل بر عدم مقاومت سازه‌های قابی طرح شده به روش‌های جدید، در برابر زلزله نمی‌باشد بلکه هدف نمایش قابلیت بالای دیوارهای برشی حتی در صورت آرماتورگذاری با شیوه‌های قدیمی و غیر علمی است. با مشاهده ویرانی ساختمان‌ها تحت زلزله‌های اخیر (1972 نیکاراگوئه و 1985 مکزیک و 1988 ارمنستان)، تأکید بر استفاده از دیوارهای برشی (مخصوصاً در ساختمان‌های مسکونی) امری معقول به نظر می‌رسد و نشان می‌دهد که ساخت سازه‌های بدون دیوار برشی در مناطق با زلزله‌حیزی شدید یک نوع ریسک محسوب شده که با توجه به عواقب ناگوار آن قابل توصیه نمی‌باشد.

 


ترمیم و تقویت سازه های بتنی توسط دیوار برشی 
چکیده 
دیوار برشی فولادی برای مقاوم سازی ساختمان های فولادی در حدود 15 سال اخیر مورد توجه خاص مهندسان سازه قرار گرفته است. ویژگی های منحصر به فرد آن باعث جلب توجه بیشتر همگان شده است ، از ویژگی های آن اقتصادی بودن ، اجرای آسان ، وزن کم نسبت به سیستم های مشابه ، شکل پذیری زیاد ، نصب سریع ، جذب انرژی بالا و کاهش قابل ملاحظه تنش پسماند در سازه را می توان نام برد. تمام دلایل ما را به این فکر آن وا داشت که استفاده از آن را درترمیم ساختمان های بتنی مورد مطالعه قراردهیم. چون این سیستم دارای وزن کم بوده ، به سازه بار اضافی وارد نکرده و حتی با اتصالاتش باعث تقویت تیر وستونهای اطراف خود می شود. همچنین این سیستم نیازی به تجهیزات خاص ندارد و می توان بدون تخلیه ساختمان و تخریب اعضا سازه ای به بقیه اجزای سازه ای وصل شود. البته طراحی این سیستم در ساختمان های بتنی بغیر از حالت ترمیمی اقتصادی به نظر نمی آید. در این مقاله توضیحات اولیه ای از دیوار برشی فولادی جهت آشنایی بیشتر ارائه شده ، و در قسمت های بعدی بررسی رفتار پانلهای برشی فولادی LYP1 در تقویت وترمیم سازه های بتنی مورد مطالعه قرار خواهد گرفت و تفاوت آن با سیستم بادبندی مشابه مورد توجه قرار خواهد گرفت ، و در آخر نتایج آزمایشات بررسی خواهند شد.

 


1- مقدمه
دیوارهای برشی فولادی SSW2 برای گرفتن نیروهای جانبی زلزله و باد در ساختمان های بلند در سالهای اخیر مطرح و مورد توجه قرار گرفته است . این پدیده نوین که در جهان به سرعت رو به گسترش می باشد در ساخت ساختمان های جدید و همچنین تقویت ساختمان های موجود به خصوص در کشورهای زلزله خیزی همچون آمریکا و ژاپن بکار گرفته شده است . استفاده از آنها در مقایسه با قابهای ممان گیر تا حدود 50% صرفه جویی در مصرف فولاد را در ساختمان ها به همراه دارد.
دیوار های برشی فولادی از نظر اجرائی ، سیستمی بسیار ساده بوده و هیچگونه پیچیدگی خاصی در آن وجود ندارد . لذا مهندسان ، تکنسین ها و کارگران فنی با دانش فنی موجود و بدون نیاز به کسب مهارت جدید می توانند آنرا اجرا نمایند . دقت انجام کار در حد دقت های متعارف در اجرای سازه های فولادی بوده و با رعایت آن ضریب اطمینان اجرائی به مراتب بالاتر از انواع سیستم های دیگر می باشد . با توجه به سادگی و امکان ساخت آن در کارخانه و نصب آن در محل ، سرعت اجرای سیستم بالا بوده واز هزینه های اجرائی تا حد بالایی زیادی کاسته می شود .
سیستم از نظر سختی برشی از سخت ترین سیستم های مهاربندی که X شکل می باشد ، سخت تر بوده و باتوجه به امکان ایجاد باز شو در هر نقطه از آن ، کارائی همه سیستم های مهاربندی را از این نظر دارا می باشد .
همچین رفتار سیستم در محیط پلاستیک و میزان جذب انرژی آن نسبت به سیستم های مهار بندی بهتر است . در سیستم دیوار های برشی فولادی به علت گستردگی مصالح و اتصالات ، تعدیل تنش ها به مراتب بهتر از سیستمهای مقاوم دیگر در برابر بارهای جانبی مانند قاب ها وانواع مهاربندی که معمولأ در آنها مصالح به صورت دسته شده و اتصالات متمرکز می باشند ، صورت گرفته و رفتار سیستم بخصوص در محیط پلاستیک مناسب تر می باشد .
گزارش اولیه تحقیقات انجام شده در تابستان سال 2000 میلادی در آزمایشگاه سازه دیویس هال دانشگاه برکلی کالیفرنیا نشان می دهد ، ظرفیت دیوار های برشی فولادی برای مقابله با خطراتی مانند زلزله ، طوفان و انفجار در مقایسه با دیگر سیستم ها مثل قابهای ممان گیر ویژه حداقل 25% بیشتر می باشد . در آزمایشگاههای تحقیقاتی استفاده گردیده است که ظرفیت آن حدودأ 6670KN می باشد . آزمایش های مذکور نشان می دهد ، دیوارهای برشی فولادی دارای شکل پذیری بسیار بالائی هستند . به لحاظ اهمیت موضوع بودوجه این تحقیقات که به منظور دستیابی به یک سیستم مطمئن جهت ساخت ساختمان های فدرال آمریکا برای آنکه بتوانند در مقابل خطراتی مانند زلزله ، طوفان و بمب مقاومت نمایند ، توسط بنیاد ملی علوم آمریکا و اداره خدمات عمومی آمریکا تأمین گردیده است . 
1: شکلی از دیوار برشی فولادی در سازه های فولادی (با سخت کننده و بدون سخت) 
2- ساختمان های ساخته شده با استفاده از دیوار برشی فولادی

 


اولین ساختمان ساخته شده با استفاده از این روش بیمارستانی در لس آنجلس به نام بیمارستان Sylmar بود. یکی از بزرگترین سازه های ساخته شده با سیستم دیوار برشی فولادی ساختمان شینجوکونومورا 3 در توکیو است که این ساختمان دارای 51 طبقه بوده و ارتفاع آن از سطح زمین 211 متر است . 5 طبقه آن درزیر زمین واقع بوده و 27.5 مترآن پایین تر از سطح زمین قرار دارد و ، برای اجتناب از بکارگیری دیوار برشی بتنی ، از سیستم دیوار برشی فولادی در هسته های مرکزی ساختمان که اطراف آسانسور ها ، پله ها و رایزرهای تاسیساتی می باشد ، استفاده گردید.
یکی از کاربردهای این پانلها در تقویت سازه های بتنی در ساختمان مرکز درمانی در چارلستون می باشد این سازه در اثر زلزله 1963 آسیب دیده بود این ساختمان متشکل از ساختمان های متعددی از یک تا پنج طبقه می باشد که زیر بنای آنها نزدیک به 32500 متر مربع است . برای تقویت این سازه از بهترین تیم طراحی وتحقیقاتی استفاده گردید . بعد از بررسی های فراوان این سیستم را با توجه به دلایل زیر مناسب دانستند : 
• جلوگیری از اخلال در کار روزانه و کاهش مشکلات برای بیماران ، بعلت سرعت نصب آن
• جلوگیری از کاهش زیر بنای مفید و اتلاف فضاها
• پیش بینی امکان تغییرات در آینده ، زیرا در دیوار برشی فولادی به سادگی می توان تغییرات مورد نظر را اعم از
• جابجائی معماری و یا ایجاد بازشو به خاطر عبور تاسیسات داد
• جلو گیری از ازدیاد وزن سازه 
به جز ساختمان های بالا سازه های فراوانی از جمله
ساختمان مرکزی 54 طبقه بانک وان ملون در پیتسبورگ پنسیلوانیای آمریکا
ساختمان مسکونی 51 طبقه واقع در سان فرانسیسکو
ساختمان 25 طبقه در ادمونتون کانادا
ساختمان 32 طبقه بایرهویچ هوس در لورکوزن آلمان (Byer-Hochhaus)
ساختمان 20 طبقه دادگاه فدرال در سیاتل آمریکا
برای تقویت ساختمان بتنی کتابخانه ایالتی اورگ (Oregon state library) را می توان نام برد که در آن برای تقویت از دیوار برشی فولادی برشی فولادی استفاده شده است . 
3- معرفی سیستم دیوار برشی فولادی برای تقویت سازه های بتنی ساخته شده [3] 
سال 1995 زلزله در Hugoken-Nanbu4 که زلزله مهیبی بود ، باعث کشته و مجروح شدن انسانهای زیادی شد . ساختمان های بسیاری آسیب جدی دیدند و ساختمان هایی که قبل از سال 1981 و مخصوصأ قبل از 1971 ساخته شده بودند ، خسارت شدیدی را متحمل گردیدند و حتی برخی از آنها فرو ریختند .
این امر نشانگراین است که آیین نامه و مقررات قدیمی برای طراحی ساختمان به نحو مناسبی نیروهای زلزله و شکل پذیری سازه ای را در نظر نگرفته اند .
در سال 1999 زلزله در chi -chi تایوان نیز باعث زیان فراوان و تخریب بسیاری از سازه ها شد . دوباره این ساختمان هایی که قبل از سال 1983 طراحی و ساخته شده بودند ، تخریب شدند و بعد از زمین لرزه 1999 تمام مقررات و آیین نامه های زلزله مورد باز بینی قرار گرفته و همه مقررات قبلی لغو شدند . ضرایب لرزه ای منطقه ای در هرناحیه تایوان تولید و ایجاد گردید . برای مثال شتاب زمین لرزه در منطقه Taichung از 0.23g به 0.33g افزایش یافت .
در نتیجه تقریبا همه ساختمانها در Taichung مطابق با مقررات طراحی جدید احتیاج به مقاوم سازی پیدا کردند. هدف این پروژه افزایش و بهبود بخشیدن مقاومت لرزه ای ساختمان های بتن مسلح می باشد . این پروژه شامل سه زیر مجموعه است که شامل :
• پیدا کردن و پی بردن به میزان کمبود مقاومت لرزه ای ساختمان های بتن آرمه موجود بر اساس آیین نامه جدید
• مساله نیروهای وارد بر سازه کناری و همجوار بعلت تغییر مکانهای بیش از اندازه جانبی آنها
• تحقیق در مورد دو روش برای جذب انرژی توسط پانلهای برشی فولادی و بادبند فولادی برای بهبود مقاومت لرزه ای سازه های موجود . 
4- مشخصات لرزه ای پانلهای برشی فولادی با نقطه تسلیم پایین (LYP) 
استفاده از دیوار برشی فولادی باعث بهبود مقاومت لرزه ای سیستم در طراحی ساختمان های جدید و مقاوم کردن ساختمان های ساخته شده می شود . صفحات فولادی نازک تمایل به کمانش دارند و از این رو ظرفیت جذب انرژی در این رو صفحات محدود است .
اخیرا روشهای جدید و تکنولوژی های بدست آمده در زمینه فلزات ، صفحات فولادی جدید را در دسترس ما گذاشته است . این نوع فولاد دارای تنش تسلیم کمتر افزایش طول بالا می باشند و توانایی تغییر شکل دادن و جذب انرژی بیشتری را قبل از شکستن از خود نشان می دهند . یکی دیگر از ویژگی های آن پایین بودن نقطه تسلیم است که این باعث افزایش ناحیه پلاستیک آن می شود و باعث جذب بیشتر تنش می شود .
پانلهای برشی فولادی ساخته شده از LYP توانایی جذب و اتلاف انرژی زیادی را دارند ، و می توانند در ساختمان های جدید مورد استفاده قرار گیرد . این نوع پانلها همانند دیوار برشی فولادی نسبت به نیروهای زلزله طراحی و ساخته می شوند . چون این پانلها دارای ویژگی جذب و اتلاف انرژی بالایی هستند ، می توان از آنها بعنوان میراگر برای میرا کردن انرژی لرزه ای استفاده کرد . این نوع میراگر فلزی در هنگام جذب انرژی استحکام کافی را دارند و همچنین نسبت به میراگرهای که در حال حاضر مورد استفاده قرار می گیرند ، نیاز به نگهداری و تعمیر ندارد . 
نقطه تسلیم و نقطه نهایی صفحات LYP هردو تحت تاثیر میزان کرنش وارده است . در این تحقیق تاثیر میزان کرنش و نحوه بارگذاری بر روی مشخصات مقاومت لرزه ای پانل صفحه ای مورد آزمایش قرار گرفته است .
مجموعه آزمایشات انجام شده ، مطالعه روی رفتار پانلهای برشی ساخته شده از فولاد LYP تحت سرعت های بارگذاری متفاوت و جابجایی های نموی ، است . 
4-1- مطالعات آزمایشگاهی بروی پانل برشی فولاد LYP 
پانل فولادی برشی ، ساخته شده از فولاد با نقطه تسلیم پایین ، عامل موثری برای جذب انرژی زیادی است . با طراحی و ساخت مناسب پانلهای برشی فولادی می توان در جذب و تلف کردن مقدار زیادی از انرژی لرزه ای بهره برد . اما رفتار سازه ای این نوع پانل برشی متاثر از شدت کرنشی است .
در 9 نمونه تست شده در آزمایش ، می خواهیم رفتار آنها را در هر یک از نحوه بارگذاری متفاوت مورد ارزیابی قرار دهیم. شکل 2 نحوه طراحی نمونه ها را نشان می دهد . شکل 3 چگونگی آزمایش ها را نشان می دهد . در این نمونه ها نسبت عرض به ضخامت پانل 50 گرفته شده است . لبه های بیرونی اعضأ به خاطر جلوگیری از ترک خوردن اتصالات بین لبه و پانل و صفحه پای ستون تراشیده شده است . این کار بخاطر اجتناب تمرکز تنش و سوق دادن صفحه به ناحیه پلاستیک که قبلا بحث آن را کردیم . در این تحقیق تاریخچه بارگذاری پانل برشی فولادی آزمایش و بررسی شده است . سه سرعت بارگذاری 2.5 ، 5 و 10 mm/sec انتخاب شده است.
برای دستیابی به سرعت کرنشی این نمونه ها بارگذاری تدریجی به جای بار لرزه ای اعمال می شود . برای هر سه حالت متفاوت جابه جایی δy ، 2δy و 3δy را در هر دوره بارگذاری آزمایش را می پذیریم . آزمایش روی سازه تا زمانی که مقاومت به زیر % 80 مقاومت نهایی رسید متوقف می شود. 
4-2- بررسی در نتایج آزمایشات : 
مطالعات نشان می دهد که چرخش نسبی ۵ آن ها بیشتر از 5% است که بیشتر از زاویه تغییر مکان جانبی مورد نیاز سازه می باشد که معمولا چرخش نسبی سازه ها را 2.5% که بیشتر از آن موجب تخریب در سازه می شود ، در نظر می گیرند . با تغییر شکل اطراف المان و تغییر شکل مورد انتظار و زاویه تغییر شکل جانبی 5% به نظر می رسد که برای پانل برشی کافی می باشد . بدیهی است که تمام نمونه های آزمایش شده زا ویه تغییر مکان جانبی آنها بیشتر از 5% خواهد بود که در جدول 1 نشان داده شده است . در آنها می توان دید که بارگذاری سریع و کند حدودا 16% تفاوت ایجاد کرده است. 
تفاوت روی مقاومت نهایی پانل فولادی برشی LYP با با افزایش بارگذاری یکنواخت ، تأثیر نسبت بارگذاری بر روی مجموع ظرفیت استهلاک انرژی قابل صرف نظر کردن است . از شکل 4 می توان دریافت که پانل فولادی آزمایش شده دارای استحکام و جذب انرژی قابل توجهی است و نسبت به دامنه تغییر مکان در شرایط بارگذاری یا تغییر در دامنه حرکت بی تفاوت است .
مقدار انرژی تلف شده پانلهای برشی در هر شرایط بارگذاری لرزه ای ثابت می ماند . مشخصات نمودار بار - جابه جایی پانل برشی شدیدا تحت تأثیر کمانش برشی صفحات نازک فولادی است . معمولا مقاومت نهایی به تدریج بعد از اینکه کمانش برشی اتفاق افتاد ، کاهش می یابد .
ظرفیت تغییر شکل نهایی پانل برشی متأثر از نسبت عرض به ضخامت پانل است . در این مطالعه نسبت عرض به ضخامت نمونه آزمایش شده را 50 می گیریم وشروع کمانش برشی وقتی اتفاق می افتد که زاویه تغییر شکل جانبی آن به 4% برسد . تأخیر در کمانش برشی به تنهایی نشان دهنده افزایش ظرفیت شکل پذیری پانل برشی نیست اما کم شدن آسیب المان های غیر
سازه ای وابسته و مربوط به پانل برشی است 
مجموع انرژی تلف شده بستگی به بارگذاری و افزایش جابه جایی ندارد . چون که پریود لرزشی طبیعت تصادفی دارد این مطالعات نشان می دهد انرژی به نسبت تاریخچه بارگذاری بی تفاوت است و این یکی از مزایای پانل برشی همانند میراگرهای لرزه ای است . در پانلهای برشی استهلاک انرژی موثر تحت چرخه بار گذاری تصادفی ثابت می ماند . پانل فولادی می تواند برای تقویت ساختمان های موجود موثر باشد . مطالعات آزمایشی برای تقویت قابهای بتنی توسط میراگرهای برشی فولادی در قسمت بعدی توضیح داده می شود . 
5- مقاومت لرزه ای سازه ها با استفاده از مقاومت نهایی پایین در قابهای مهار بندی و پانلهای برشی 
کمانش قاب مهاربندی شده (بادبند) 
تجربیات قبلی نشان می دهد که ساختمان هایی که مطابق مقررات امروزی طراحی وساخته نشده اند ، نمی توانند در مقابل نیروی زلزله مقاومت کرده و متحمل خسارتهایی می شوند . در تایوان این ساختمانها اکثرا سازه های بتن آرمه هستند و نیاز به ترمیم برای بهبود مقاومت لرزه ای دارند . قابهای ممان گیر (BIB) و پانلهای برشی فولادی ثابت شده که دارای مقاومت بالا و شکل پذیری بالا و حلقه های هیستریسس ثابتی وپایداری دارد . قاب مهار شده با بادبند شامل المانهای باربر و المانهای مهاربندی برای بارهای جانبی هستند .
بارهای محوری توسط المانهای حمال (تیر) مهار می شوند و که تکیه گاههای جانبی المان کار جلوگیری از کمانش عضو را به عهده دارند . دیوار برشی فولادی ساخته شده از LYP مانند یک المان باربر برشی زمانی که به خوبی ، طراحی شود ، می تواند رفتار خوبی در برابر نیروهای لرزه ای داشته باشد . در این تحقیق قابهای قابهای ممان گیر ودیوار برشی فولادی برای مقاوم سازی قابهای بتنی مورد استفاده شده اند و کارایی هر یک از آنها مورد آزمایش قرار می گیرد .

 


روش آزمایش:
قاب بتنی با مقیاس 0.8 ساخته شده است . شکل 6 نشان دهنده جزئیات قاب بتنی را نشان می دهد . یکی از قابهای بتنی بدون تقویت تست می شود که طبق MRF طراحی شده است . دومین نمونه توسط بادبند ، ساخته شده از فولاد LYP100 مهار شده که طبق BIBLYP طراحی شده است . سومین نمونه بادبند از فولاد A36 و طبق BIBA36 طراحی شده است . چهارمین نمونه توسط دیوار برشی فولادی ساخته شده از فولاد LYP100 مهار شده است . 
هر عضو تقویت کننده همانند بادبند و دیوار برشی فولادی متصل به قالب فولادی شکل که به بتن بسته است واز چهار تا H200*200*8*12 شکل ساخته شده در شکل 8 نشان داده شده است . که محور کوچکتر H در قاب بتنی فرو رفته است . گل میخ های برشی به صفحات جان H شکل جوش داده می شوند . بادبند ها و دیوار برشی فولادی به این صورت در طول قاب فولادی به قاب بتنی متصل می شود ، که درون قاب فولادی وبتنی قرار می گیرد .
مشخصات مکانیکی فولاد استفاده شده در لیستی در جدول 2 آمده است . ومقاومت فشاری بتن در هنگام آزمایش 21.8 و 20.7 و 25 و 23.7 Mpa به ترتیب برای MRF و BIB-LYP و BIB-A36 و SSW-LYP بدست آمده است . بارگذاری چرخه ای بطور رفت وبرگشت از طریق جک که کاملا به تیر محکم گشده وارد می شود ،.

 


نتیجه آزمایش و تحقیق 
جمع شدگی قطری بادبند از نوع LYP و A36 که هر دو تحت فشار و کشش قرار می گیرند در نتیجه ترکهای گسترده ای در ستون ایجاد می شود . دیوار برشی فولادی از نوع LYP تغییر شکل غیر متقارنی از خود نشان داده است . زمانی که بار از طرف راست اعمال می شود در اثر لنگر خمشی قاب فولادی از قاب بتنی جدا می شود . 
نتایج آزمایشات نشان می دهد که ممانعت از کمانش بادبند و دیوار برشی فولادی درتقویت قابها موثر است . سختی و مقاومت و شکل پذیری قاب ها بعد از تقویت کردن آنها بصورت جزئیات اتصال بین قاب بتنی و قاب فولادی بادبند عامل موثر موثراست . و ساخت آسانی دارد .
بادبند ها باعث بهبود مقاومت و شکل پذیری می شود . بهرحال جزئیات تقویت کننده های قابها برای دیوار برشی فولادی نیاز به مطالعات زیادی دارد.

 


نتیجه گیری کلی 
1-    مقاومت تسلیم و مقاومت نهایی فولاد LYP متاثر ار نسبت کرنشی است . مقاومت نهایی پانلهای برشی ساخته شده از فولاد LYP به سرعت بارگذاری آن بستگی دارد . در این مطالعه اختلاف مقاومت نهایی با سرعت بالا و کم حدودا 16% است. یعنی اگر سرعت بارگذاری به طور سریع باشد % 16 بیشتر از حالتی است که بطور کند بارگذاری شود .
2- ساخت و طراحی صحیح پانلهای برشی ساخته شده از فولاد LYP فولاد به چرخش نسبی % 5 رسیده است که لازمه اتلاف انرژی بالایی است . 
3- تحت بارپانل برشی ابتدا تسلیم موضعی رخ می دهد و با افزایش بار کمانشپانل رخ می دهد ودر نتیجه پانل به بیرون قوس ورداشته وباعث کشش مقطع می شود . بعد از تسلیم شدن کامل پانل نوارهای بیرونی صفحه از همه آخر باعث جذب انرژی می شود . یعنی ابتدا وسط صفحه باعث جذب انرژی شده و کم کم که به نقطه تسلیم می رسند این جذب انرژی به طرف پانل منتقل می شود که در آخر تمام صفحه به نقطه تسلیم می رسند . که باعث اتلاف و جذب انرژی بسیار زیادی می شوند.

 


مراجع
1- کتاب مقدمه ای بر دیوار برشی فولادی نوشته دکتر سعید صبوری
2- Astaneh-Asl, A. (2000). “Steel plate shear walls,” U. S.-Japan Workshop onSeismic Fracture Issues in Steel Structure, San Francisco.
3- Seismic Assessment and Strengthening Method of Existing RC Buildings in Response to Code Revision Shun-Tyan Chen -Van Jeng- Sheng-Jin Chen-Cheng-Cheng Chen

 

 

 

طراحی دیوار برشی 
یکی از مهمترین مزایای برنامه ETABS ، طراحی دیوار برشی می باشد . این برنامه قادر است دیوارها را بر اساس شرایط دو بعدی و سه بعدی طراحی کند . 
برنامه ETABS دیوارها را با سه روش طراحی می کند که انتخاب روش توسط کاربر می باشد. 
سه روش طراحی برنامه ETABS عبارتند از : 
* روش المان مرزی – تحت عنوان Simppified T and C
* روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing
* روش عمومی و کامل بر اساس میلگردگذاری دلخواه – تحت عنوان General Reinforceing 
یکی از مهمترین مزایای برنامه ETABS ، طراحی دیوار برشی می باشد . این برنامه قادر است دیوارها را بر اساس شرایط دو بعدی و سه بعدی طراحی کند . 
برنامه ETABS دیوارها را با سه روش طراحی می کند که انتخاب روش توسط کاربر می باشد. 
سه روش طراحی برنامه ETABS عبارتند از : 
· روش المان مرزی – تحت عنوان Simppified T and C 
· روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing 
· روش عمومی و کامل بر اساس میلگردگذاری دلخواه – تحت عنوان General Reinforceing 
روش المان مرزی روشی ساده وسریع است و معمولا در محاسبات دستی از آن استفاده می شود . 
دو روش بعدی بر اساس منحنی اندرکنش سه بعدی هستند و دقت بسیار بالائی دارند . در روش دوم مقطع دیوار با میلگردهایی که دارای شماره و فاصله یکسان هستند طراحی می شود . اما در روش سوم فاصله و شماره میلگردها دلخواه است . 
پارامترهای طراحی این سه روش و در کل روند طراحی آنها متفاوت می باشد . 
در اینجا برای اختصار روش دوم را توضیح میدهم ( فرض میکنم در مدل کردن دیوار هیچ اشکالی ندارید و فقط روند طراحی را توضیح می دهم . ) و انشاالله در آپهای آتی ، روند مدل کردن و طراحی دیوار برشی و همینطور نکاتی که در طراحی دیوار برشی باید به آنها توجه داشت را بطور کامل توضیح خواهم داد. 
روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing 
در این روش میلگردهایی با فواصل یکسان و با شماره یکسان مسلح می شود . سپس مقطع بدست آمده بر اساس منحنی اندرکنش سه بعدی P-M-M طراحی خواهد شد . 
این روش کاملا دقیق می باشد و برای هر نوع مقطعی قابل استفاده است و تنها محدودیت آن فاصله و شماره یکنواخت میلگردها می باشد . 
در ادامه به توضیح پارامترهای طراحی و همینطور روند طراحی می پردازم :
برای دسترسی به پارامترهای طراحی دیوار ، یک دیوار را انتخاب کرده و سپس فرمان Design > Shear Wall Design > View/Revise Overwrites را کلیک کنید . 
توصیه های تحلیل و طراحی 
امروزه تحلیل و طراحی سازه‌ها عمدتاً با استفاده از فناوری رایانه‌ای صورت می‌‌گیرد. 
اگر چه سرعت و سهولت در تعریف مدل‌های تحلیلی و اخذ جواب می‌‌تواند فرصت کنترل و بررسی جواب‌ها را محدود نماید، معهذا با توجه نمودن به نکات ذکر شده در این مقاله در جهت کسب اطمینان از درستی و مناسب و بجا بودن اطلاعات ورودی سازنده مدل و روش تحلیلی بکار گرفته شده، می‌‌توان از بروز خطاهایی که به‌راحتی پیش می‌‌آید اجتناب نمود. 
البته خطاهای بنیادی ناشی از قضاوت نامناسب مهندسی و تعبیر نامناسب واقعیت‌های فیزیکی سازه‌ای (واقعی) خارج از شمول بحث این مقاله است 
1- نرم‌افزارهای مورد استفاده 
برای یک سازه‌ی "معمولی" استفاده از نرم‌افزارهایی مثل برنامه‌های ETABS ، STAAD Pro و SAP مناسب و کافی می‌‌باشد. بعضی از نرم‌افزارها مثل ANSYS امکانات بیشتری داشته و در عین حال سنگین‌تر می‌‌باشد. 
به‌لحاظ کاربری، نرم‌افزار ETABS برای یک ساختمان مسکونی (یا اداری، تجاری) قابل استفاده‌تر است. در صورتی که نرم‌افزاری مثل SAP برای تحلیل سازه‌های متنوع‌تری می‌‌تواند مفید باشد. به هر حال چون اصول و مبانی مورد استفاده در این نرم‌افزارها یکسان می‌‌باشد، علیرغم ظاهر متفاوت، در صورتی که کاربرد خاصی را پوشش دهند، با هم فرقی نخواهند داشت. 
قبل از کاربری یک نرم‌افزار، باید با ویژگی‌های آن آشنا شد. در این مورد هدف اصلی از آشنایی، این نیست که به سرعت مدل ساخت و تحلیل نمود (گرچه چنین تسلطی نیز مفید است) بلکه منظور از آشنایی با یک نرم‌افزار عبارت است از آشنایی با اصول و مبانی بکار رفته در هر دستوری از نرم‌افزار. 
لازم است روش‌های تحلیلی مورد نظر ابتدا در مورد چند مثال ساده امتحان شده و پس از کسب آشنایی با روش، شرایط تکیه‌گاهی ...، نوع بارگذاری، حالات بارگذاری... در مورد سازه‌های (پیچیده) بکار رود. برای مثال‌های حل شده می‌‌توان از مراجع مختلف تحلیل سازه‌ها کمک گرفت. 
در ضمن دستور کمک و راهنما (Help) که در آن کلیه‌ی دستورات برنامه شرح داده شده است، به‌طور معمول دارای پرونده‌ها و پوشه‌های زیر است: 
مثال‌هایی (Examples) از نحوه‌ی شروع کار با نرم‌افزار (برای مبتدیان) امکانات مختلف نرم‌افزار مثل انواع تحلیل‌های استاتیکی، دینامیکی، بارهای فزاینده و... مثال‌های تأیید نرم‌افزار (Verification Examples) که جواب‌های مثال‌های خاصی از مراجع مختلف برگرفته و با جواب‌های مدل نظیر نرم‌افزار مقایسه شده است. مراجع نظری و یا استانداردهای مورد استناد نرم‌افزارها (گاهی بعضی از این مراجع نیز پیوست نرم‌افزار است)

 

 

 

2- پیش فرض‌های نرم‌افزارها 
هر نرم‌افزاری در موارد متعددی برمبنای پیش فرض‌هایی کار می‌‌کند که این پیش فرض‌ها (یا موارد قرارداری اولیه) بیشتر برمبنای عرف و عادت رایج مهندسان کشور تهیه‌کننده‌ی نرم‌افزار، انتخاب شده است. برای نمونه نرم‌افزار SAP در مصالح فولادی مبنای فولاد قراردادی و یا پیش فرض را A36 که تا حدودی قوی‌تر از فولاد (S235JR (ST37-2 می‌‌باشد منظور نموده است و کاربر باید از این فرض آگاه باشد. 
در مثالی دیگر، در طراحی اعضاء یک سازه‌ی اسکلتی، نرم‌افزار، پارامترهای طراحی را به‌صورت ترکیبی از پیش فرض‌ها و داده‌های مدل در نظر گرفته و به نسبت تنش می‌‌رسد، در طراحی یک عضو، متغیرهای متعددی دخیل می‌‌باشد، همچون طول عضو (ضریب طول موثر...) طول آزاد بال فشاری و... طراح باید از تک‌تک متغیرها آگاه باشد. 
مثلاً ممکن است در شرایطی برای تیر داخل یک کف، در جایی که بال فشاری آن مقید است نرم‌افزار هیچ‌گونه قید جانبی منظور ننماید و یا مثلاً در شبیه‌سازی یک تیر لانه زنبوری، متغیرهای طراحی مناسب فرض شده است یا خیر؟ 
3- تغییر شکل‌ها و تعادل نیروها 
تعادل نیروهای وارد به سازه در شرایط مختلف، با استفاده از واکنش‌های تکیه‌گاهی، همیشه باید مورد بررسی و ارزیابی قرار گیرد. چنین تعادلی به سادگی می‌‌تواند بهم بخورد (در واقع در روش تحلیل، تعادل همواره برقرار است ولی شرایطی غیر از شرایط مورد نظر می‌‌تواند ایجاد شود) و این حالت می‌‌تواند اثرات سویی داشته باشد. 
در بررسی تعادل نیروها باید دقت داشت که بسیاری از نرم‌افزارها، واکنش‌های مربوط به انواع متفاوت تکیه‌گاه‌ها (مثلاً بدون نشست و تکیه‌گاه‌های فنری) را در یک صفحه (پنجره‌ی) واحد نشان نمی‌دهد و باید به این نکته توجه نموده و جداگانه مقدار هر یک و یا جمع آنها را دید. 
در عین حال به تغییر شکل‌های سازه نیز باید توجه کافی داشت. از طرف دیگر حدود تغییر شکل و حدود نیرو، هر دو، مهم است. 
4- کف‌های صلب و نیمه صلب 
با امکانات نرم‌افزاری و سخت‌افزاری امروز به تعریف کف‌های صلب طبق تعریف آیین‌نامه‌ی 2800 و یا بررسی نیمه صلب بودن آن نیازی نیست. به‌راحتی می‌‌توان کف‌ها را با بریدگی&zwn

کلمات کلیدی : دیوار برشی فولادی,دیوار بزشی,دیوار فولادی,اسکلت فلزی, عمران,دیوارهای برشی,سازه های فولادی ,پاورپوینت دیوار برشی
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل جزوه-پوزولان چیست و چگونه تولید میشود؟-37 صفحه -docx

 

پوزولان (به انگلیسیPozzolan) گونه‌ای خاکستر آتشفشانی ریزدانه‌است که در ساخت بتن کاربرد دارد.

 

پوزولان‌ها عبارتند از مواد سیلیسی، یا سیلیسی-آلومینی که خود به تنهایی فاقد ارزش چسبانندگی بوده و یا دارای ارزش چسبانندگی کم هستند، اما به شکل بسیار ریز در مجاورت رطوبت طیواکنش شیمیایی با کلسیم هیدروکسید در دمای معمولی ترکیب‌هایی با خاصیت سیمانی به وجود می‌آورند.

 

واژه پوزولان از پوزولی (به ایتالیاییPozzuoli) منطقه‌ای در ایتالیا[۱] گرفته شده که حدود ۲۰۰۰ سال پیش برای اولین بار پوزولان در آنجا پیدا شده‌است.

 

اگر چه بتن دارای پوزولان، نسبت به بتن با سیمان پرتلند آهسته تر به مقاومت اولیه می‌رسد، اما مقاومت نهایی (به انگلیسیultimate strength) آن، برابر یا بیشتر از مقاومت بتن با سیمان پرتلندمی‌باشد. شایان ذکر است با اختلاط بین سیمان و پوزولان نوعی سیمان آمیخته با عنوان سیمان پوزولانی تهیه می‌شود.

 

سوپر پوزولان

 

میکروسیلیس یک سوپر پوزولان است که در صورت کاربرد درست از آن تاثیر بسیار قابل توجهی در افزایش مقاومت و دوام سازهای بتنی دارد. میکروسیلیس در حرارت زایی بتن تا حد زیادی ناشی از همان مکانیزم‌هایی است که باعث افزایش دوام و مقاومت بتن می‌شود، در حقیقت خواص پرکنندگی و واکنش پوزولانی میکروسیلیس می‌تواند باعث کاهش میزان حرارت زایی بتن شود. حرارت زایی یک گرم میکروسیلیس بیشتر از یک گرم سیمان پرتلند معمولی است و در مواردی بیشتر از ۲ برابر آن خواهد بود. اما مقاومت زایی بالاتر میکروسیلیس (۲ تا حدود ۴ برابر سیمان)، امکان کاهش مقدار کل مواد سیمانی بتن جهت دستیابی به یک مقاومت مشخص را فراهم نموده و بدین شکل استفاده از میکروسیلیس می‌تواند باعث کاهش حرارت زایی بتن شود.

 

سیمان پوزولان

 

سیمان پوزولان یا طبیعی مادهٔ اصلی این سیمان خاکسترها و پوکه‌های آتش فشانی است که سیلیس آن‌ها به علت زود سرد شدن به صورت پوک وغیر بلوری در آمده است. سیمان طبیعی از مخلوط کردن سیمان پرتلند با آهک شکفته با پوکه‌های معدنی به دست می‌آید. این سیمان‌ها در شهر رم و مناطق ایتالیابه نام (پوزولان) و در شمال اروپا به نام (تراس) نامیده می‌شود.

 

با مخلوط کردن نسبت وزنی ۱ به ۴ این سیمان باموادمناسب بهترین مقاومت به دست می‌آید. این سیمان هنگام هیدراته شدن حرارت کمتری آزادمی کند؛ از این رو در بتن ریزی‌های حجیم و جاهایی که بتن مورد هجوم سولفات هاست مصرف می‌شود. طبق استاندارد ملی ایران سیمانهای پوزولانی به دسته سیمان پرتلند پوزولانی و سیمان پرتلند پوزولانی ویژه طبقه بندی می‌شوند. در سیمان پرتلند پوزولانی، ماده پوزولانی حداقل ۵٪ و حداکثر ۱۵٪ وزنی سیمان را تشکیل می‌دهد و این سیمان با نشانه پ. پ. عرضه می‌گردد. در سیمان پرتلند پوزولانی ویژه، ماده پوزولانی حداقل ۱۵٪ و حداکثر ۴۰٪ سیمان را تشکیل داده و این سیمان با نشانه پ. پ. و. عرضه می‌گردد.

 

مزایا

 

مصرف مواد پوزولانی در بتن می‌تواند یک یا چند خاصیت مشروح زیر باشد:

 

 

انواع

 

پوزولان‌ها بر دو نوعند:

 

۱-پوزولان‌های طبیعی خام و یا تکلیس شدهخاکسترهای آتشفشانی

 

۲-پوزولان‌های صنعتیخاکستر بادی (به انگلیسیfly ash)[۲]، دوده سیلیس، سربازه کوره‌های آهن گذاری، خاکستر پوسته برنج، رس کلسینه

 

منابع

 

 

 

 

چکیده:

 

پوزولان ها مواد سیلیسی و آلومینی هستند که در مجاورت آب در حرارت معمولی با آهک ترکیب شده و تشکیل مواد پایدار و نامحلول (ژل) داده و خاصیت سیمانی شدن دارند. اقدام جهت شناسایی خاصیت پوزولان ها در بتن و ملات سال هاست که به طور وسیعی در کشورهای مختلف آمریکایی، اروپایی و ایران صورت گرفته است به نحوی که به کارگیری این مواد به عنوان ماده جایگزین سیمن در بتن در آیین نامه ها آورده شده است. در این نوشتار به معرفی پوزولان ها از دیدگاه ASTM، حدود ترکیبات شیمیایی و طبقه بندی آن ها پرداخته شده است. همچنین معرفی مواد اصلی، چگونگی پیدایش و نیز بررسی مزایای استفاده از پوزولان ها صورت گرفته است. از جمله مزایای استفاده از پوزولانها، داشتن خصوصیات سیمانی و در نتیجه صرفه ی اقتصادی، بالابردن مقاومت در برابر حمله اسیدها و قلیایی سنگدانه ها و جلوگیری از ترک خوردن سطحی گسترده بتن، کاهش بتن ذیری، خاصیتی که در ارتباط با آب بند بودن سازه های نگهدارنده آب و همچنین در ارتباط با حملات شیمیایی مورد توجه می باشد. بررسی مکانیزم حمله سولفات ها و تاثیر پوزولان ها بر افزایش مقاومت بتن در برابر حمله سولفات ها، از طریق کاهش میزان C3A در سیمان که منجر به بالا بردن دوام بتن مورد تهاجم آب دریا می شود، صورت می گیرد.

 

مواد مکمل سیمان سازی

 

مقدمه

 

خاکستر پرندگان، تفاله های خرد شده کوره های بلند روی زمین، دود سیلیکا و پوزولان های طبیعی مانند متاکالین، سنگ رسی و خاک رسی سوزانده موادی هستند که – زمانی که با سیمان پُرتلند یا سیمان مخلوط استفاده می شدند – از طریق این مواد به عنوان مواد مکمل سیمان سازی (SCM'S) یا مواد مکمل سیمان سازی برای بهبود ویژگی های خاص مانند سیمان مانند کاهش فعل و انفعال زیان آور تراکم قلیایی استفاده می شوند.

 

از قدیم، خاکستر پرندگان، تفاله، دود سیلیکا و پوزولان  های طبیعی مانند خاک رس و سنگ رسی سوزانده در بتون استفاده می شدند. امروزه، به خاطر دسترسی ساده به این مواد، تولیدکنندگان بتون می توانند دو یا چند تا از این مواد را برای بهینه سازی ویژگی های بتون به کار برند. ترکیبات با استفاده از این سه مواد سیمان سازی – که ترکیبات سه تایی نامیده می شوند متداول تر می شوند.

 

زغالسنگ، روباره کوره بلند، خاکستر سبوس برنج یا دوده سیلیس. به همین منظور کارهای کمی در خصوص تولید، بهینه سازی و مهندسی کردن مصالح پوزولانی که به طور خاص در طرح های اختلاط سیمان های پرتلند استفاده می شوند، انجام شده است. متاکائولین یک پیشرو در میان نسل جدید چنین مصالحی می باشد.

 

استفاده از دوده سیلیس و دیگر افزودنی های شیمیایی برای بتن هایی با مقاومت های طراحی بیش از MP50 و یا مواردی که شرایط بهره برداری، شرایط جوی و یا ملاحظات هزینه های طول عمر سازه، استفاده از بتن های توانمند (HPC) را دیکته می کند، متداول می باشد.

 

 

 

تولید HRM به عنوان جایگزینی برای دوده سیلیس می باشد. معادل بودن در افزایش مقاومت و خصوصیات مربوط به دوام به اضافه چند ویژگی و مشخصه دیگر HRM شامل رنگ و کارپذیری، به طور مؤثرتری مرزبندی های طراحی مصالح HPC را توسعه داده و وسیع کرده است. مزایایی که از نظر خواص مهندسی در صورت استفاده از HRM حاصل می شود با عوارض جانبی اندکی همراه است. در صورتی که متاکائولین به طور مناسب تنظیم شود، بافت مخلوط بتن تازه، کارپذیری و قابلیت پرداخت در صورت جایگزینی HRM با 15- 5 % سیمان بهبود می یابد. ضمناً متاکائولین سفید رنگ است و محصولات سیمانی و بتنی سفید یا خاکستری را تیره نخواهد کرد.

 

متاکائولین یک سیلیکات آلومینیم آمورف سفید رنگ می باشد که دارای خواص پوزولانی می باشد و براساس استاندارد ASTM C 618 در رده پوزولان های کلاس (N پوزولان  های طبیعی خام یا کلسینه شده) قرار می گیرد. پیشوند متا (meta) در ادبیات برای نشان دادن "تغییر" به کار می رود. از لحاظ علمی این پیشوند به این منظور استفاده شده است تا عبارت "کمترین میزان هیدراته شده از یک گونه یا سری" را نشان دهد.

 

متاکالئولین به طور کامل قابل جایگزینی با پوزولان  توانمند (نظیر دوده سیلیس/ میکروسیلیس) است. درباره مقاومت فشاری، کاهش درصد افزودن متاکائولین برای ایجاد کارایی معادل با پوزولان  های قبلی ممکن خواهد بود. در ضمن امکان کاهش درصد فوق روانساز مورد نیاز برای طرح اختلاط حاوی متاکائولین در مقایسه با طرح اختلاط حاوی دوده سیلیس وجود دارد.

 

متاکائولن نیز همانند پوزولان  های دیگر با هیدروکسید کلیسم ایجاد شده بر اثر هیدراته شدن سیمان واکنش داده و سیلیکات کلسیم هیدراته (C-S-H) تولید می کند SiO2 و Al2O3 بیشترین مواد شیمیایی تشکیل دهنده متاکائولن هستند. همان طور که در نمودار 2 مشخص شده در هرم پوزولان ها متاکائولن در ناحیه میانی هرم قرار می گیرند.

 

 

 

سیمان های آمیخته پوزولانی بنا به ضرورت هایی از جمله مصرف انرژی کمتر، حفظ محیط زیست و کاهش قیمت سیمان در دنیا تولید شدند سیمان های آمیخته ای سرباره ای نیز به همین دلیل سال هاست که به بازار عرضه شده اند. کاهش در مصرف انرژی برای تولید کلینگر سیمان و کاهش تولید گازهای آلاینده ای که از سوختن مواد سوختنی حاصل می شود را از دلایل تولید و مصرف سیمان های آمیخته است و می توان با مصرف پوزولان های طبیعی یا مصنوعی از مصرف سوخت زیاد و تولید مواد آلاینده و گازهای نامطلوب جلوگیری کرد.

 

سیمان پورتلند پوزولانی

 

سیمان پرتلند پوزولانی حاوی حداکثر 15% پوزولان  طبیعی مرغوب از دامنه کوه سبلان می باشند که از خواص ویژه کاربردی به شرح ذیل برخوردار است:

 

  • مقاومت در مقابل مواد شیمیایی و فاضلاب
  • مقاومت نهایی بالاتر
  • قابلیت نفوذ و کارپذیری بهتر برای ویبره شدن
  • حفاظت مصالح و آرماتور درون بتون در مقابل نفوذ مواد خورنده
  • خارج کردن املاح قلیایی از بتن
  • انبساط کمتر و قابل استفاده در بتن ریزی های حجیم
  • حرارت هیدراتاسیون کمتر در بتن ریزی های حجیم
  • بتن تشکیل شده از سیمان پوزولانی به علت نفوذ پذیری بهتر پوزولان و روانی آن دچار ترک خوردگی نمی شود.
  • جلوگیری از واکنش قلیائی – سیلیکا در سنگدانه های بتن مخصوصاً در سد سازی (سرطان بتن)
  • حفظ منابع طبیعی به علت کاهش مصرف در سوخت و مواد اولیه سیمان
  • کاهش آلودگی هوا به علت جایگزین شدن به جای کلینگر و کاهش مصرف سوخت های فسیلی
  • کاهش میزان سایش تجهیزات در آسیاب های سیمان
  • کاهش مصرف انرژی الکتریکی به علت کم سایش بودن در آسیاب های سیمان
  • کاهش قیمت تمام شده در تولید سیمان

 

مصرف این سیمان در هوای گرم مخصوصاً معتدل و مرطوب بسیار مطلوب می باشد. در آب و هوای سرد به علت ویژگی هیدراسیون کمتر باید بتن تازه در مقابل یخ زدن محافظت می شود. این سیمان به دلیل ویژگی فوق و همچنین ماهیت پوزولان می بایست مدت زمان بیشتری بعد از بتن ریزی نگهدای شود تا آماده بارگزاری گردد. با رعایت این موارد می توان نتیجه ایده آل تری از مصرف سیمان پرتلند پوزولانی به دست می آورد.

 


کلمات کلیدی : پوزولان,سیمان ,عمران,Pozzolan,پوزولان, سیمان,پوزولان چیست
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-آجر چیست و چگونه فراوری میشود؟- در 90 اسلاید-powerpoin-ppt

   آجرها گروهی از مصالح هستند که به صورت صنعتی تولید و جایگزین سنگ شده اند و درحقیقت سنگی ساخته دست بشر هستند، سنگی دگرگون که از تغییر وضعیت خشت پدید میآید. این گروه از مصالح که اولین تولید صنعتی و انبوه مصالح ساختمانی به دست بشر به شمار میآیند براساس نوع مواداولیه، روند تولید و محل مصرف به انواع متنوعی تقسیم می شوند. آجرهای رسی که اولین و فراوان ترین آنها هستند قدمت چندهزار ساله دارند. با پیشرفت تکنولوژی و علم شیمی انواع بی شماری از آجرها با کیفیت های مختلف، ابعاد و شکل ظاهری متنوع راهی بازار مصرف شده اند.
تاریخچه
   آجر از قدیمی ترین مصالح ساختمانی است که قدمت آن بنا به عقیده برخی از باستان شناسان به ده هزار سال پیش می رسد.در ایران بقایای کوره های سفال پزی و آجر پزی در شوش و سیلک کاشان که تاریخ آنها به هزاره چهارم پیش از میلاد می رسد پیدا شده است. همچنین نشانه هایی از تولید و مصرف آجر در هندوستان به دست آمده که حاکی از سابقه شش هزار ساله آجر در آن کشور است وازه آجر بابلی و نام خشت هایی بوده که بر روی آنها منشورها قوانین و نظایر آنها را می نوشتند گمان می رود نخستین بار از پخته شدن خاک دیواره ها و کف اجاق ها به پختن آجر پی برده اند .
به اعتقاد باستان شناسان، اولین بار آجر در سرزمین بین النهرین تهیه شده است. به هر صورت باید آجر پس پیدایش آتش و در نواحی که معادن سنگ وجود نداشته اند اختراع شده باشد. نمونه های زیبا و باعظمت کاربرد آجر در معماری ایران باستان نماینده پیشرفت درخشان ایرانیان در تولید و مهندسی کاربرد این مصالح است. در این میان می توان از زیگورات چغازنبیل، ایوان مدائن، کاخ های فیروزآباد و لرستان در قبل از اسلا م و همین طور مساجد جامع اصفهان و یزد، گنبد کاووس و ارگ تبریز مربوط به دوران بعد از اسلا م نام برد.
رمز توانایی آجر در خلق شگفت انگیزترین ساختمان های تاریخ در تناسبات آن نهفته است. این ابعاد در طی زمان متحول شده و در حال حاضر با ساختار و توانایی بدن انسان هماهنگ شده است. ابعاد آجر به طریقی است که به راحتی در یکدیگر قفل و بست می گردند. این خاصیت، کیفیت های مهندسی بی شماری از جمله در محل اتصال دو دیوار به یکدیگر به وجود میآورد. آجرها به کمک ملا ت به یکدیگر متصل می شوند و سطح یکنواختی را به وجود میآورند. این ابعاد متناسب باعث شده است که این مصالح به منظور اجرای دهانه های وسیع به صورت قوس و طاق و گنبد که از زمان قبل از ساسانیان در ایران رواج داشته است، کارآیی منحصر به فردی داشته باشد.
خواص آجر باعث شده است که به عنوان مصالح پرکننده دیوار و سقف از جمله پرمصرف ترین مصالح باشد. زیبایی آجر و الگوی حاصل از آجر چینی باعث شده است که به صورت نما در داخل و خارج بنا مورد استفاده قرار گیرد و هویت خاصی به ساختمان ببخشد. استفاده از آجر به عنوان فرش کف و پلکان، فارغ از مقاومت مطلوب آن ویژگی های اقلیمی این مصالح کویری را بیشتر به نمایش می گذارد.
کوره های آجر پزی ابتدایی بی گمان از مکان هایی تشکیل می شده که در آن لایه های هیزم و خشت متناوبا روی هم چیده می شده است.
فن استفاده از آجر ازآسیای غربی به سوی غرب مصر و سپس به روم و به سمت شرق هندوستان و چین رفته است در سده چهارم اروپایی ها شروع به استفاده از آجر کردند ولی پس از مدتی از رونق افتاده و رواج مجدد از سده 12 میلادی بوده که ابتدا از ایتالیا شروع شد.
در ایران باستان ساختمان های بزرگ و زیبایی بنا شده اند که پاره ای از آنها هنوز پا بر جا هستند. نظیر طاق کسری در غرب ایران قدیم ، آرامگاه شاه اسماعیل سامانی در گنبد کاووس و مسجد اصفهان را که با آجر ساخته اند همچنینی پلها و سد های قدیمی مانند پل دختر سد کبار در قم از جمله بناهای قدیمی می باشند.
انواع آجر در ایران قدیم
 
در ایران هر جا سنگ کم بوده و خاک خوب هم در دسترس بوده است آجر پزی و مصرف آجر معمول شده است اندازه آجر ایلامی حدود 10×38×38 سانیتی متر بوده پختن و مصرف آجر در زمان ساسانیان گسترش یافته و در ساختمان های بزرگ مانند آتشکده ها به کار رفته است اندازه آجر این دوره جدود 44×44×7تا 8 بوده است و بعد های آن 20×20×3 تا4 سانتی متر کاهش یافت .
در فرش کردن کف ساختمان از آجر بزرگتری به نام ختائی به ابعاد 5×25×25 سانتی متر و یا بزرگتر از آن به نام نظامی در ابعاد 40×4×5 سانتی متر استفاده می شده است از انواع دیگر آجر در گذشته آجر قزاقی می باشد که پیش از جنگ جهانی اول روسها آن را تولید می کردند که ابعاد آن 5×10×20 بوده است آشنایی با آجر و مواد اولیه آن آجر نوعی سنگ مصنوعی است که از پختن خشت خام و دگرگونی آن بر اثر گرما به دست می آید خاک آجر مخلوطی است از خاک رس ماسه فلدسپات سنگ آهک سولفات ها سولفورها فسفات ها کانی های آهن منگنز منیزیم سدیم پتاسیم مواد آلی و...

 


کلمات کلیدی : آجر,فرآوری آجر,پاورپوینت, سفال,بلوک,سیمان و ماسه,آجرپزی,کوره آجرپزی,انواع آجر,آجر رسی,آجر نسوز,آجر سیلیسی,خشت,کوره تونلی,پختن آجر
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...

لینک فایل پاورپوینت-آجر چیست و چگونه فراوری میشود؟- در 90 اسلاید-powerpoin-ppt

   آجرها گروهی از مصالح هستند که به صورت صنعتی تولید و جایگزین سنگ شده اند و درحقیقت سنگی ساخته دست بشر هستند، سنگی دگرگون که از تغییر وضعیت خشت پدید میآید. این گروه از مصالح که اولین تولید صنعتی و انبوه مصالح ساختمانی به دست بشر به شمار میآیند براساس نوع مواداولیه، روند تولید و محل مصرف به انواع متنوعی تقسیم می شوند. آجرهای رسی که اولین و فراوان ترین آنها هستند قدمت چندهزار ساله دارند. با پیشرفت تکنولوژی و علم شیمی انواع بی شماری از آجرها با کیفیت های مختلف، ابعاد و شکل ظاهری متنوع راهی بازار مصرف شده اند.
تاریخچه
   آجر از قدیمی ترین مصالح ساختمانی است که قدمت آن بنا به عقیده برخی از باستان شناسان به ده هزار سال پیش می رسد.در ایران بقایای کوره های سفال پزی و آجر پزی در شوش و سیلک کاشان که تاریخ آنها به هزاره چهارم پیش از میلاد می رسد پیدا شده است. همچنین نشانه هایی از تولید و مصرف آجر در هندوستان به دست آمده که حاکی از سابقه شش هزار ساله آجر در آن کشور است وازه آجر بابلی و نام خشت هایی بوده که بر روی آنها منشورها قوانین و نظایر آنها را می نوشتند گمان می رود نخستین بار از پخته شدن خاک دیواره ها و کف اجاق ها به پختن آجر پی برده اند .
به اعتقاد باستان شناسان، اولین بار آجر در سرزمین بین النهرین تهیه شده است. به هر صورت باید آجر پس پیدایش آتش و در نواحی که معادن سنگ وجود نداشته اند اختراع شده باشد. نمونه های زیبا و باعظمت کاربرد آجر در معماری ایران باستان نماینده پیشرفت درخشان ایرانیان در تولید و مهندسی کاربرد این مصالح است. در این میان می توان از زیگورات چغازنبیل، ایوان مدائن، کاخ های فیروزآباد و لرستان در قبل از اسلا م و همین طور مساجد جامع اصفهان و یزد، گنبد کاووس و ارگ تبریز مربوط به دوران بعد از اسلا م نام برد.
رمز توانایی آجر در خلق شگفت انگیزترین ساختمان های تاریخ در تناسبات آن نهفته است. این ابعاد در طی زمان متحول شده و در حال حاضر با ساختار و توانایی بدن انسان هماهنگ شده است. ابعاد آجر به طریقی است که به راحتی در یکدیگر قفل و بست می گردند. این خاصیت، کیفیت های مهندسی بی شماری از جمله در محل اتصال دو دیوار به یکدیگر به وجود میآورد. آجرها به کمک ملا ت به یکدیگر متصل می شوند و سطح یکنواختی را به وجود میآورند. این ابعاد متناسب باعث شده است که این مصالح به منظور اجرای دهانه های وسیع به صورت قوس و طاق و گنبد که از زمان قبل از ساسانیان در ایران رواج داشته است، کارآیی منحصر به فردی داشته باشد.
خواص آجر باعث شده است که به عنوان مصالح پرکننده دیوار و سقف از جمله پرمصرف ترین مصالح باشد. زیبایی آجر و الگوی حاصل از آجر چینی باعث شده است که به صورت نما در داخل و خارج بنا مورد استفاده قرار گیرد و هویت خاصی به ساختمان ببخشد. استفاده از آجر به عنوان فرش کف و پلکان، فارغ از مقاومت مطلوب آن ویژگی های اقلیمی این مصالح کویری را بیشتر به نمایش می گذارد.
کوره های آجر پزی ابتدایی بی گمان از مکان هایی تشکیل می شده که در آن لایه های هیزم و خشت متناوبا روی هم چیده می شده است.
فن استفاده از آجر ازآسیای غربی به سوی غرب مصر و سپس به روم و به سمت شرق هندوستان و چین رفته است در سده چهارم اروپایی ها شروع به استفاده از آجر کردند ولی پس از مدتی از رونق افتاده و رواج مجدد از سده 12 میلادی بوده که ابتدا از ایتالیا شروع شد.
در ایران باستان ساختمان های بزرگ و زیبایی بنا شده اند که پاره ای از آنها هنوز پا بر جا هستند. نظیر طاق کسری در غرب ایران قدیم ، آرامگاه شاه اسماعیل سامانی در گنبد کاووس و مسجد اصفهان را که با آجر ساخته اند همچنینی پلها و سد های قدیمی مانند پل دختر سد کبار در قم از جمله بناهای قدیمی می باشند.
انواع آجر در ایران قدیم
 
در ایران هر جا سنگ کم بوده و خاک خوب هم در دسترس بوده است آجر پزی و مصرف آجر معمول شده است اندازه آجر ایلامی حدود 10×38×38 سانیتی متر بوده پختن و مصرف آجر در زمان ساسانیان گسترش یافته و در ساختمان های بزرگ مانند آتشکده ها به کار رفته است اندازه آجر این دوره جدود 44×44×7تا 8 بوده است و بعد های آن 20×20×3 تا4 سانتی متر کاهش یافت .
در فرش کردن کف ساختمان از آجر بزرگتری به نام ختائی به ابعاد 5×25×25 سانتی متر و یا بزرگتر از آن به نام نظامی در ابعاد 40×4×5 سانتی متر استفاده می شده است از انواع دیگر آجر در گذشته آجر قزاقی می باشد که پیش از جنگ جهانی اول روسها آن را تولید می کردند که ابعاد آن 5×10×20 بوده است آشنایی با آجر و مواد اولیه آن آجر نوعی سنگ مصنوعی است که از پختن خشت خام و دگرگونی آن بر اثر گرما به دست می آید خاک آجر مخلوطی است از خاک رس ماسه فلدسپات سنگ آهک سولفات ها سولفورها فسفات ها کانی های آهن منگنز منیزیم سدیم پتاسیم مواد آلی و...

 


کلمات کلیدی : آجر,فرآوری آجر,پاورپوینت, سفال,بلوک,سیمان و ماسه,آجرپزی,کوره آجرپزی,انواع آجر,آجر رسی,آجر نسوز,آجر سیلیسی,خشت,کوره تونلی,پختن آجر
در این سایت هیچ فایلی برای فروش قرار نمی گیرد. برای پشتیبانی و خرید فایل به سایت اصلی فروشنده مراجعه بفرمائید:

لینک دریافت فایل از سایت اصلی


ادامه مطلب ...