انتقال قدرت
یک ماشین شامل یک منبع نیرو و یک سامانه انتقال قدرت است که کاربرد خاصی از توان را فراهم میآورند. لغتنامهٔ میرام-وبستر انتقال را به این صورت تعریف مینماید: مجموعهای از قطعاتی که شامل دندههای تغییر سرعت و میلگاردانهایی است که توسط آنها توان را از موتور به یک محور تحت بار منتقل میشود. انتقال اغلب به گیربکسی (جعبهدنده) که از دندهها و سلسلهای از دندهها برای فراهمآوری تبدیل سرعت و دور موتور از یک منبع چرخان به دستگاهی دیگر استفاده میکند اشاره دارد
گیربکس یا جعبه دنده اتومبیل دارای چندین دنده برای حرکت رو به جلو و معمولاً یک دنده برای حرکت به عقب میباشد، امروزه از گیربکسهای شش و هفت سرعته اتوماتیک و دستی در خودروهای نسل جدید استفاده میشود.
چرخدنده سیاره ای
قبل از اینکه به سراغ چرخدنده سیارهای برویم لازم است تعریفی از سیستم انتقال قدرت داشته باشیم.
در اینجا به تعریفی از سیستم انتقال نیرو در سیستم اتوماتیک اتومبیل می پردازیم :
سیستم انتقال نیرو چیست؟
سیستم انتقال نیرو مجموعه ای است که به انتهای موتور متصل است و قدرت موتور را به چرخ های محرک می رساند. هر اتومبیل در محدوده ی خاصی از دور موتور RPM (Reudution PER Minute) به حداکثر کارکرد خود می رسد. یک سیستم انتقال نیروی مناسب ضمن نگهداشتن دور موتور در این محدوده قدرت موتور را به چرخ های محرک انتقال می دهد تا اتومبیل به بهترین وجه رانده شود. این کار به وسیله ی ترکیب دنده ها و محورهای متعدد صورت می گیرد. زمانی که اتومبیل روی دنده ی یک است، دور موتور بسیار بالا تر از دور چرخ های محرک است. در حالی که در دنده های بالا موتور حتی در سرعت های بالا تر از 70 MPH (110km/h ) آزاد کار می کند. به غیر از دنده های جلو هر گیر بکس اتوماتیک دارای یک وضعیت خلاص است که سیستم انتقال نیرو را از چرخ های محرک جدا می کند. دنده ی عقب باعث می شود که چرخ های محرک در جهت معکوس گردش کنند که اجازه ی عقب رفتن به اتومبیل می دهد. در نهایت در این گیربکس ها یک وضعیت پارک (park position) نیز وجود دارد. در این وضعیت یک مکانیزم قفل کننده درون شفت اصلی وارد می شود و چرخ های محرک را قفل می کند تا آن ها را از چرخش باز دارد.
دو نوع سیستم انتقال نیرو وجود دارد:
1) دفرنسیال عقب (rear wheel drive)
2) دفرنسیال جلو(front wheel drive)
در اتومبیل های دیفرانسیل عقب سیستم انتقال نیرو معمولا پشت موتور ، زیر برآمدگی وسط کف اتومبیل در امتداد پدال گاز سوار می شود. برای اتصال محور محرک که عقب اتومبیل قرار دارد به سیستم انتقال قدرت از یک میل گردان (drive shaft) استفاده می شود تا قدرت را به محور انتقال دهد. شار قدرت در این سیستم ها ساده است؛ به صورتی که قدرت به صورت مستقیم از اتومبیل به مبدل گشتاور (torque converter) و سپس سیستم انتقال قدرت و میل گردان(drive shaft)منتقل می شود تا جایی که به محور محرک (final drive) برسد و در آن جا تقسیم شده و به دو چرخ فرستاده می شود.
در یک اتومبیل دیفرانسیل جلو ، سیستم انتقال قدرت و محور جلو با هم ترکیب شده و قطعه ای به نام ترانس اکسل (transaxle) ساخته می شود. در اتومبیل های دیرانسیل جلو موتور اصولا به صورت عرضی سوار می شود و اکسل در پایین، جلوی موتور قرار دارد. محور های جلو مستقیما به اکسل متصلند و نیروی رانشی چرخ ها را فراهم می کند. در چنین ساختاری شار قدرت از موتور به سمت مبدل گشتاور جاری می شود و سپس توسط سلسله شاره گر هایی پس از تغییر جهت °180 به سمت سیستم انتقال نیرو که در کنار موتور است می رود. در این قسمت قدرت از طریق سیستم انتقال قدرت مستقیما به محور محرک فرستاده می شود و پس از تقسیم به چرخ ها منتقل می شود.
چینش های دیگری در اتومبیل های دیفرانسیل جلو که موتور آن ها به صورت طولی قرار می گیرد، وجود دارد. همچنین خودرو هایی موجود است که هر دو محور عقب و جلو در آن ها محور محرک است؛ اما دو سیستم فوق الذکر معمول ترین چینش های انتقال قدرت هستند. از جمله ی دیگر چینش ها می توان به مدلی اشاره کرد که موتور، سیستم انتقال و تبدیل نیرو و محور محرک همگی در قسمت عقب ماشین قرار دارند. این چینش یشتر در ماشین های پورشه(Porsche) معمول است.
اجزای سیستم انتقال نیرو:
سیستم های انتقال نیروی اتوماتیک مدرن از قطعات بی شماری تشکیل شده اند که همه به صورت یک سیستم مکانیکی، هیدرولیکی، الکترونیکی هوشمند کار می کنند. این تکنولوژی در طول سال های گذشته توسط افراد مستعد رشد و نمو داشته است. در این جا با توضیحات ساده و به دور از پیچیدگی های خاص به شرح کار می پردازیم. برای تصور کردن نحوه ی کار قطعات باید در تصور خود آن ها را مجسم کنید.
قطعات اصلی تشکیل دهنده ی یک سیستم انتقال نیروی اتوماتیک عبارت اند از:
a) گروه دنده های سیارکی ( (set planetary gearسیستم هایی مکانیکی اند که نسبت دور موتور و چرخ ها را تنظیم می کنند.
b) سیستم هیدرولیکی (hydraulic system) که با فشار روغن را توسط پمپ روغن از طریق محفظه ی سوپاپ به گیربکس می فرستد تا کلاچ ها و رشته ها عمل کنند و در نتیجه گروه دنده های سیارکی کنترل می شوند.
c) آب بند ها و واشرها (seals & gaskets) که برای جلوگیری از نشت روغن پر فشار استفاده می شوند.
d) مبدل گشتاور پیچشی (torque Converter) که شبیه به یک کلاچ عمل می کند و به اتومبیل در حالی که در دنده است و موتور در حال گردش با دور بالاست ، اجازه ی ایست یا کم کردن سرعت می دهد.
e) گاورنور ((governor و تعدیل کننده (modulator) که سرعت اتوموبیل ، وضعیت پدال گاز را کنترل می کند تا زمان تعویض دنده را محاسبه کند. در ماشین های جدید تر تعویض دنده توسط کامپیوتر کنترل می شود. کامپیوتر از بوبین های کوچک برای ارسال روغن در زمان مناسب به جزء مناسب برای تعویض دنده استفاده می کند.
دستگاه دنده خورشیدی:
تعریف اولیه: یکی از جالب ترین چرخ دنده هایی که اختراع شده است، چرخ دنده خورشیدی است. فرض کنید میخواهید دو چرخ دنده داشته باشید که سرعت یکی n برابر دیگری باشد، اما جهت چرخش آنها با هم یکی باشد. برای این کار از چرخ دنده خورشیدی استفاده می شود.
مجموعه چرخدنده سیاره ای
یک مجموعه خورشیدی و یا سیاره ای مطابق شکل شامل یک دنده خورشیدی یا دنده مرکزی (زرد) که با دنده های هرز گرد سیاره ای یا پنیونها که روی محور نگهدارنده ان به طور یکپارچه روی قفسه یا حامل سیاره ای(سبز) قرار گرفته و قفسه هم در داخل دنده داخلی یا رینگی(ابی) احاطه شده است. محور چرخ دنده خورشیدی ثابت و محور چرخ دنده های سیاره ای متحرک است . مجموعه چرخ دنده های اپی سیکلیک (سیاره ای)اغلب زمانی مفید هستند که نسبت سرعت به گشتاور زیادی در یک مجموعه فشرده از چرخ دنده ها مورد نیاز باشد.
تنش های محرک روی دندانه های زیادی وارد میشود و بنابراین بار متعادل میگردد درنتیجه این طرح دوام زیادتری پیدا میکند . دنده های خورشیدی نسبت به دنده های استاندارد میتوانند مقاومتر باشند وگشتاورهای زیاد را انتقال دهند.
عضوهای مجموعه خورشیدی (رینگی ،خورشیدی ،قفسه )در گیربکسهای اتوماتیک به وسیله ی کلاچ ها و باندهایی ثابت و یا محرک میشوند. در حالت کلی میتوان پنج حالت مختلف را در مجموعه مورد بررسی قرار داد.البته باید دانست که مجموعه نمیتواند پنج حالت را در گیربکس داشته باشد.در گیربکس ها برای ایجاد نسبت دنده ی مناسب از دو و یا سه مجموعه استفاده میکنند.
برای بررسی حالت ها باید به چند نکته توجه کرد
تعداد دنده های خورشیدی < تعداد دنده های رینگی < تعداد دنده های قفسه
منظور از محرک ،عضوی است که گشتاور ورودی به ان وارد میشود و نیرو را به عضو متحرک منتقل میکند.
نسبت دنده برابر است با تعداد دنده های متحرک تقسیم بر تعداد دنده های محرک
حالت های مختلف موجود در دستگاه :
1)قانون خلاص : هیچ عضوی درگیر نمی باشد.
2)قانون مستقیم که کافی است دو عضو با هم یکپارچه شوند.
3) دنده عقب : در این حالت قفسه ثابت می شود و دو حالت خواهیم داشت که حالت مطلوب ان این است که خورشیدی محرک باشد و رینگی متحرک باشد. چون در این حالت افزایش گشتاور خواهیم داشت .حالت دوم افزایش نسبت دنده خواهیم داشت که برای دنده عقب مناسب نیست.
4) قانون دنده سنگین : که دو حالت دارد
(قفسه متحرک – رینگی محرک – خورشیدی ثابت)
( قفسه متحرک– رینگی ثابت – خورشیدی محرک )بیشترین افزایش گشتاور
5)قانون اور درایو:
(قفسه محرک – رینگی ثابت – خورشیدی متحرک )بیشترین افزایش نسبت دنده
(قفسه محرک – رینگی متحرک – خورشیدی ثابت)
بررسی انتقال قدرت در مجموعه خورشیدی
برای بررسی حالت ها باید ادراک خوبی داشت تا جهت دور اجزا را مجسم کرد. اگر ماکت این مجموعه را داشته باشید درک آن آسان تر خواهد بود .
برای هر دنده باید جهت دور خورشندی ،رینگی ، قفسه و پنیون ها را باید درنظر گرفت.
جهت چرخش رینگی و پنیون همواره موافق یکدیگرند به علت دنده داخلی بودن رینگی و جهت چرخش خورشیدی و پنیون مخالف یکدیگرند همانند دو چرخ دنده ی خارجی
بررسی یکی از حالت ها (قانون دنده سنگین )خورشیدی محرک - قفسه متحرک - رینگی ثابت
همانطور که مشاهده میکنید قدرت (دور) از خورشیدی که موافق عقربه های ساعت میچرخد به قفسه منتقل میشود ،چون رینگی ثابت است در نتیجه پنیون ها مخالف میچرخند. جهت چرخش قفسه (خروجی ) در جهت موافق خواهد بود چون راه گریزی ندارد.
در جدول زیر حا لت های کلی انتقال نیرو در مجموعه ی چرخدنده به نمایش در آمده است :
حالات مختلف
دنده رینگی
قفسه
خورشیدی
1
خروجی
ورودی
قفل
2
ورودی
خروجی
قفل
3
خروجی
قفل
ورودی
4
ورودی
قفل
خروجی
5
قفل
خروجی
ورودی
6
قفل
ورودی
خروجی
7
دو جزء قفل است=>حالت 1:1
8
هیچ جزئی قفل نیست=>حالت خلاص
کاربرد چرخدنده سیاره ای:
یک مورد کاربرد چرخدنده سیاره ای در سیستم تعویض دنده طراحی شده برای گیربکسهای اتوماتیک موسوم به سیستم تعویض دنده آنتونو میباشد. در گیربکسهای اتوماتیک مرسوم، تعویض دنده از یک دنده به دنده دیگر به صورت پلهای اتفاق میافتد و این باعث تغییر لحظهای سرعت میگردد. در سیستم آنتونو، در حالت گذر از یک دنده به دنده دیگر، سیستم کلاچ وظیفه انتقال قدرت را بعهده میگیرد، لذا هیچ وقت انتقال نیرو از موتور به چرخ منقطع نمیشود. همین امر موجب میشود که احساس رانندگی بهتری بوجود آید. سیستم تعویض دنده خودکار آنتونو (AAD) از یک ایده کاملاً واضح و ساده استفاده میکند. تغییر دندهها بوسیله دو نیرویی که بطور طبیعی در حین انتقال قدرت بوجود میآیند صورت میگیرد. دو نیرویی که جایگزین المانهای مصرف کننده انرژی در گیربکسهای اتوماتیک موجود میشوند. یکی از این دو نیرو، نیروی محوری ایجاد شده در اثر درگیری چرخدندههای مارپیچ است که تمایل دارد چرخ دندههای درگیر را در امتداد شفتهایشان از یکدیگر دور کند. دیگری نیروی گریز از مرکز ایجاد شده بوسیله اجسام دوار میباشد. اگر تعادل بین این دو نیرو یعنی نیروی گریز از مرکز و نیروی محوری در یک نمونه کلاچ بررسی شود، عملکرد این سیستم بهتر درک میشود. کاملاً باز میشود. بدین ترتیب نسبت تبدیل کاهنده (دنده یک) بطور یکنواخت ایجاد میگردد.در حین شتاب، گشتاور از طریق شفت ورودی اعمال میشود. نیروی محوری ایجاد شده از درگیری چرخ دندههای مارپیچ، چرخدنده حلقهای را به سمت باز شدن کلاچ رانده و آن را در وضعیت باز نگه میدارد و در نتیجه انتقال قدرت از طریق مجموعه چرخ دنده سیارهای اتفاق افتاده و یک نسبت تبدیل کاهنده دور که اولین نسبت تبدیل است شکل میگیرد. در این حالت چرخ دنده خورشیدی مجموعه سیارهای با کمک یک سیسم جانبی قفل است. در وضعیت انتقالی (حالت گذر از دنده یک به دو) نیروی محوری با نیروی گریز از مرکز برابر میشود و کلاچ شروع به لغزش میکند به محض اینکه این لغزش افزایش مییابد نیروی محوری کاهش خواهد یافت. بخشی از توان از طریق کلاچ انتقال مییابد که باعث میشود نیروی محوری بطور تصاعدی حذف شده و کلاچ بطور کامل بسته شود. در این حین، نسبت تبدیل بصورت پیوسته تا لحظه یکی شدن دور شفت ورودی و خروجی که نسبت تبدیل دوم است، کاهش مییابد. در حین حرکت در دنده دو که هیچ نسبت تبدیلی از طریق چرخدندهها صورت نمیگیرد، نیروی گریز از مرکز از نیروی محوری که در این حالت مقدار آن صفر است بزرگتر بوده و کلاچ را همواره بسته نگه میدارد. در این حال به منظور کاهش استهلاک چرخدندههای مجموعه سیارهای میتوان قفل چرخدنده خورشیدی مجموعه را برداشت.
در فرایند دنده معکوس، در اثر افزایش بار روی شفت خروجی یا کاهش گشتاور روی شفت ورودی دور پایین میآید. با پایین آمدن دور، نیروی گریز از مرکز کاهش یافته و دیگر برای بسته نگه داشتن کلاچ کافی نبوده و بنابراین لغزش کلاچ شروع خواهد شد. به محض شروغ لغزش مجموعه، چرخدنده خورشیدی مجدداً فعال شده و در اثر نیروی محوری درگیری چرخدندههای مارپیچ، کلاچ کاملاً باز میشود. بدین ترتیب نسبت تبدیل کاهنده (دنده یک) بطور یکنواخت ایجاد میگردد.
منابع :
http://njavan.ir
http://www.sames.ir
http://www.irsme.ir
http://tuningsystem.blogfa.com
http://arshiv.blogfa.com
آشنایی با سیستم انتقال قدرت پیوسته (CVT)
سیستم انتقال قدرت یا جعبه دنده، وظیفه انتقال قدرت از موتور به چرخها را برعهده دارد. از آنجا که دور موتور بهینه محدودهای مشخص دارد، با تغییر سرعت خودرو و گیربکس، نسبت سرعت دورانی موتور تغییر میکند و از شرایط بهینه دور میشود. برای بازگرداندن دور موتور به دور بهینه، از تعویض دنده در گیربکس استفاده میشود. جعبه دنده، از تعدادی چرخدنده استفاده میکند تا با تغییر شرایط رانندگی، استفاده مناسبی از گشتاور موتور صورت گیرد، دندهها میتوانند بهطور دستی و یا اتوماتیک تغییر کنند.
برخلاف سیستم انتقال قدرت اتوماتیک، در سیستم انتقال قدرت با قابلیت تغییر پیوسته، جعبه دندهای با تعداد مشخص چرخدنده وجود ندارد. یعنی در CVTچرخدندههای دندانهدار درگیر با هم وجود ندارند. رایجترین نوع CVT بر اساس سیستم «پولی» کار میکند که بدون گسستگی اجازه بینهایت تغییر بین بالاترین و پایینترین نسبت دور را به کاربر میدهد.
در جعبه دندههای اتوماتیک قدیمی، چرخدندهها وظیفه انتقال و تغییر گشتاور و حرکت دایرهای را برعهده دارند، ترکیبی از چرخدندههای سیارهای، تمام نسبتهای دندهای لازم را بهوجود میآورند. معمولاً 4 دنده جلو و یک دنده معکوس در خودرو وجود دارد. وقتی با این نوع جعبه دنده، دنده عوض میشود، راننده ضربهای را احساس میکند. این تکان در تعویض دنده خودروها برای رانندگان آشناست. در مقابل، گیربکس CVT تعویض دنده نرمی دارد. این گیربکسها بهطور طبیعی تعویض دنده را بهصورت غیرپیوسته و لحظهای، طوری که راننده و مسافر شتاب ثابتی را حس کنند، عوض میکنند. در تئوری، گیربکسCVT باعث خستگی کمتر موتور و سیستم انتقال قدرت با قابلیت اطمینان بالاتری میشود.
طبیعت ساده و بدون گسستگی CVTها، آنها را به سیستم انتقال قدرتی ایدهآل برای تمام خودروها و وسایل نقلیه تبدیل کرده است، CVTها سالهای زیادی در ابزارهای قدرتی و متهها بهکار میرفتند. همچنین، از آنها در وسایل نقلیه مختلفی اعم از تراکتورها و ماشینهای برفرو و اسکوترهای موتوری استفاده میشود. در تمام این کاربردها، در نوع سیستم انتقال قدرت از تسمههایی با لاستیک فشرده استفاده میشود که میتواند کشیده شده یا سر بخورد و در نتیجه باعث هدر رفتن انرژی و کاهش کارایی شود.
لئوناردو داوینچی 500 سال پیش اندیشه انتقال قدرت پیوسته (CVT) را در سر داشت. این سیستم که در حالحاضر جای انتقال قدرت اتوماتیک را در بعضی خودروها گرفته است. در واقع از اولین CVT که در 1886 ثبت شده تاکنون، تکنولوژی آن بهبود پیدا کرده است، امروزه چندین کارخانه خودروسازی از جمله جنرالموتورز، آیودی، هوندا و نیسان در حال طراحی CVTهای خود هستند.
وظیفه انتقال قدرت، تغییر دادن نسبت سرعت چرخ و موتور است. بهبیانی دیگر، خودروها بدون جعبه دنده، فقط یک دنده خواهند داشت، دندهای که به خودرو اجازه میدهد با سرعتی مناسب حرکت کند. یک لحظه تصور کنید که در حال رانندگی با خودرویی هستید که فقط دنده یک یا دنده سه دارد. در حالت اول، خودرو با شتاب خوبی از حالت سکون حرکت میکند و میتواند از یک تپه با شیب تند بالا برود، اما بیشترین سرعت آن به چند مایل در ساعت محدود میشود، در حالت دوم، خودرو با سرعت 150 کیلومتر بر ساعت در یک بزرگراه به سمت پایین حرکت خواهد کرد، اما هنگام شروع حرکت تقریباً شتابی نخواهد داشت و هرگز نمیتواند از تپه بالا رود.
CVT باعث بهبودی عملکرد و بازده میشود. جدول 1، نشاندهنده بازده انتقال قدرت در یک گیربکس معمولی چندسرعته است (یعنی درصد توانی از موتور که توسط گیربکس انتقال داده میشود). این جدول نشان میدهد که بازده متوسط این گیربکس، حدود 86 درصد است. درحالیکه یک گیربکس دستی نمونه دارای بازده 97 درصد است.
در جدول مقایسهای 2، گستره تغییرات بازده برای چند گیربکس CVT نشان داده شده است. این جدول نشان میدهد که گیربکسهای CVT باعث بهبود بازده نسبت به گیربکسهای دستی میشوند و بازده آنها بستگی به عادات رانندگی ندارد. بهعلاوه، به این دلیل که CVT باعث کارکرد موتور در نقاط بهینه میشود، اقتصاد سوخت را بهبود میبخشد.
جدول 2: بازده گیربکسهای CVT
خط انتقال قدرت خودروهای رایج، معمولاً شامل یک موتور درونسوز، یک وسیله جداکننده نظیر کلاچ، مبدل گشتاور یا یک کوپلینگ مغناطیسی، یک گیربکس، دیفرانسیل و یک گاردان است. در شکل 1، اجزایی مختلف نظیر باک، باتری، سیستم خنککننده، استارت و سایر لوازم PTO نظیر دلکو، پمپ سوخت، پمپ آب و شمع، نشان داده شده است. قسمتی از توان تولید شده توسط موتور در گیربکس و PTO هدر میرود. گشتاور خالص موجود در گاردان، چرخها را به حرکت درمیآورد.
اساس کار سیستم انتقال قدرت پیوسته
به یک جعبه دنده اتوماتیک توجه کنید. در آن، دنیایی از چرخدندهها، ترمزها، کلاچها و دستگاههای کنترل را خواهید دید. در مقابل CVT بسیار ساده است، بیشتر CVTها فقط سه جزء اساسی دارند که عبارتند از:
یک تسمه محکم فلزی یا لاستیکی
یک پولی متغیر محرک (ورودی)
یک پولی خروجی
CVTها دارای انواع مختلفی از ریزپردازندهها و حسگرها هستند، اما سه جزء یاد شده، اجزای اصلی آنها بوده و سیستم اجازه کار میدهند.
پولیهای با شعاع متغیر، قلب CVT تلقی میشوند، هر پولی از دو مخروط با زاویه رأس 20 درجه که رودرروی یکدیگر قرار دارند، تشکیل شده است. تسمهای در شیار بین دو مخروط قرار دارد. در صورت لاستیکی بودن تسمهها از تسمههایV شکل استفاده میشود. تسمههای V شکل سطح مقطع V شکل دارند و اصطکاک تسمه با پولی را افزایش میدهند.
وقتی دو مخروط از هم فاصله بگیرند، یعنی ضخامت پولی بیشتر شود، تسمه به شکاف پایینتر میرود و شعاع تسمه حلقه شده دور پولی کاهش مییابد. وقتی دو مخروط به هم نزدیک میشوند، یعنی ضخامت پولی کاهش مییابد، تسمه به شکاف بالاتر رفته و شعاع تسمه حلقه شده دور پولی افزایش مییابد.CVT میتواند از فشار هیدرولیکی یا نیروی گریز از مرکز و یا کشش فنر بهمنظور تولید نیروی مورد نیاز برای تنظیم دو نیمه پولی، استفاده کند.
پولیها با قطر متغیر همیشه بهصورت دوتایی بهکار میروند، یکی از پولیها که بهعنوان پولی محرک شناخته میشود، به میللنگ موتور متصل است، پولی محرک، پولی ورودی هم نامیده میشود زیرا جایی است که انرژی موتور وارد سیستم انتقال قدرت میشود. پولی دوم پولی گردنده نامیده میشود زیرا پولی اول آن را میچرخاند، به عنوان پولی خروجی، پولی گردنده انرژی را به محور چرخها انتقال میدهد. وقتی یک پولی ضخامت خود را افزایش میدهد، دومی از ضخامت خود میکاهد تا تسمه کشیده باقی بماند.
زمانی که دو پولی ضخامت خود را نسبت به یکدیگر تغییر میدهند، بینهایت نسبت دنده مختلف بهوجود میآید، از کم به زیاد، شامل همه نسبتهای مابین. مثلاً، وقتی شعاع تسمه در پولی محرک کم و در پولی خروجی زیاد باش
خازن[۱] یا انباره عنصری دوسر و پسیو است که انرژی الکتریکی را ذخیره میکند. انواع مختلفی از خازنها وجود دارد اما همه آنها حداقل دو هادی که توسط یک عایق از یکدیگر جدا شده اند را در ساختار خود دارند [۲]. هادی ها می توانند از جنس فلز یا الکترولیت باشند. عایق دی الکتریک نیز که برای افزایش ظرفیت خازن استفاده می شود می تواند از جنس شیشه، سرامیک، پلاستیک، میکا، کاغذ و … باشد. خازنها به همراه مقاومتها، در مدارات تایمینگ استفاده میشوند. همچنین از خازنها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده میشود. از خازنها در مدارات بهعنوانفیلتر هم استفاده میشود. زیرا خازنها به راحتی سیگنالهای متناوب را عبور میدهند ولی مانع عبور سیگنالهای مستقیم میشوند.
خازن المان الکتریکی است که میتواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار میروند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش میدهند.
با توجه به اینکه بار الکتریکی در خازن ذخیره میشود؛ برای ایجاد میدانهای الکتریکی یکنواخت میتوان از خازن استفاده کرد. خازنها میتوانند میدانهای الکتریکی را در حجمهای کوچک نگه دارند؛ به علاوه میتوان از آنها برای ذخیره کردن انرژی استفاده کرد.
ظرفیت خازن
ظرفیت معیاری برای اندازهگیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. باید گفت که ظرفیت خازنها یک کمیت فیزیکیست و به ساختمان خازن وابستهاست و به مدار و اختلاف پتانسیل بستگی ندارد.
واحد اندازه گیری ظرفیت فاراد است. ۱ فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا میباشد. بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است. میکروفاراد (µF)،نانوفاراد (nF) و پیکوفاراد (pF) واحدهای کوچکتر فاراد هستند.
نسبت مقدار باری که روی صفحات انباشته میشود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن (C) گویند؛ که مقداری ثابت است.
در این رابطه:
چند نکته
به عبارت ساده انرژی ذخیره شده در یک خازن یک فارادی ۲۲۰ ولتی میتواند یک مصرف کننده ۶،۷۲۲ وات بر ساعت را به مدت یک ساعت روشن کند .
و یا انرژی ذخیره شده در یک خازن یک فارادی ۱۲ ولتی میتواند یک مصرف کننده ۰،۰۲ وات بر ساعت را به مدت یک ساعت روشن کند ( مثلا یک LED لامپ ۲۰ میلی وات ) .
به طور معمول در صنعت به دلیل وجود موتور های الکتریکی خاصیت سلفی وجود دارد و همانطور که می دانید این خاصیت سلفی باعث پایین امدن ضریب قدرت شبکه میشود که نتیجه آن این است که مقداری از جریان که مصرف کننده از شبکه میگیرد غیر مفید باشد و مصرف نشود و به صورت مرتب بین شبکه و سلف که در موتور استفاده شده رد و بدل شود .
البته این به این معنی نیست که بخواهیم این جریان را با خازن گذاری خذف کنیم نه , این جزو ماهیت و ذات سلف است که مقداری از انرژی را به صورت میدان در خود ذخیره و در نیم سیکل بعد به شبکه پس دهد ما برای رفع مشکل همراه بود جریان غیر مفید با جریان مفید را با موازی کردن خازن رفع می کنیم به این صورت که جریان غیر مفید به جای اینکه از ابتدای شبکه به سمت مصرف کننده بیاید از سمت خازن و مسیر کوتاه که باعث اتلاف توان نشود به سمت سلف می اید.همانطور که میدانید سلف و خازن با هم 90 درجه اختلاف فاز دارن و به همین دلیل جریان هم مدام بین سلف خازن رد و بدل می شود.
حال مزایایی که این کار برای ما دارد رو بررسی میکنیم. خازن گزاری رو میگم.
1-کاهش سطح مقطع سیم و کابل بدلیل حذف جریان غیر مفید
2-کاهش تلفات مسیر
3-کاهش هزینه برق مصرفی
حال بررسی میکنیم در چه مواردی خازن گزاری به ما کمک میکند تا مشکل را حل کنیم.
1-اگر ضریب قدرت تاسیسات الکتریکی ساختمان از 0.85 پایین تر باشد باید به شرکت برق منطقه ای جریمه برق را پرداخت نمود پس برای بالا اوردن ضریب قدرت باید خازن گزاری کنیم.
2-اگر تلفات تاسیسات به دلیل پایین بودن ضریب قدرت بالا باشد با یک محاسبه ساده می توان فهمید که با خازن گزاری ضرف مدت کوتاهی تمام هزینه ها جبران شده و از آن به بعد سود محسوب میشود.
3-در صورتی که قسمتی از تاسیسات بار اضافی داشته باشد و تقلیل امپراژ مد نظر باشد.
4-اگر قرار باشد ماشین الات جدیدی به شبکه ای که ظرفیت ان پر شده اضافه شود.
5-و………….
برای محاسبه قدرت خازن نیاز به ضریب قدرت فعلی سیستم داریم که آن را از راه های زیر بدست می اوریم.
1-چنانچه تاسیات دارای کنتور اکتیو و راکتیو باشد از روی قبض میزان مصرف اکتیو وراکتو را خوانده و از فرمول زیر ضریب قدرت را بدست می آوریم
نکته قبض ها را در یک دوره یکساله بررسی میکنیم بعد میانگین اکتیو و راکتیو را در فرمول قرار میدهیم.
روش دوم :
چنانچه تاسیسات فقط دارای یک کنتور اکتیو باشد طبق فرمول زیر عمل میکنیم.
خازن یا انباره عنصری دوسر و پسیو است که انرژی الکتریکی را ذخیره میکند. انواع مختلفی از خازنها وجود دارد اما همه آنها حداقل دو هادی که توسط یک عایق از یکدیگر جدا شده اند را در ساختار خود دارند [۲]. هادی ها می توانند از جنس فلز یا الکترولیت باشند. عایق دی الکتریک نیز که برای افزایش ظرفیت خازن استفاده می شود می تواند از جنس شیشه، سرامیک، پلاستیک، میکا، کاغذ و … باشد. خازنها به همراه مقاومتها، در مدارات تایمینگ استفاده میشوند. همچنین از خازنها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده میشود. از خازنها در مدارات بهعنوانفیلتر هم استفاده میشود. زیرا خازنها به راحتی سیگنالهای متناوب را عبور میدهند ولی مانع عبور سیگنالهای مستقیم میشوند.
خازن المان الکتریکی است که میتواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار میروند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش میدهند.
با توجه به اینکه بار الکتریکی در خازن ذخیره میشود؛ برای ایجاد میدانهای الکتریکی یکنواخت میتوان از خازن استفاده کرد. خازنها میتوانند میدانهای الکتریکی را در حجمهای کوچک نگه دارند؛ به علاوه میتوان از آنها برای ذخیره کردن انرژی استفاده کرد.
ظرفیت خازن
ظرفیت معیاری برای اندازهگیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. باید گفت که ظرفیت خازنها یک کمیت فیزیکیست و به ساختمان خازن وابستهاست و به مدار و اختلاف پتانسیل بستگی ندارد.
واحد اندازه گیری ظرفیت فاراد است. ۱ فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا میباشد. بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است. میکروفاراد (µF)،نانوفاراد (nF) و پیکوفاراد (pF) واحدهای کوچکتر فاراد هستند.
نسبت مقدار باری که روی صفحات انباشته میشود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن (C) گویند؛ که مقداری ثابت است.
در این رابطه:
چند نکته
به عبارت ساده انرژی ذخیره شده در یک خازن یک فارادی ۲۲۰ ولتی میتواند یک مصرف کننده ۶،۷۲۲ وات بر ساعت را به مدت یک ساعت روشن کند .
و یا انرژی ذخیره شده در یک خازن یک فارادی ۱۲ ولتی میتواند یک مصرف کننده ۰،۰۲ وات بر ساعت را به مدت یک ساعت روشن کند ( مثلا یک LED لامپ ۲۰ میلی وات ) .
ساختمان خازن
یک نمایش ساده از خازنی با صفحههای موازی
ساختمان داخلی خازن از دو قسمت اصلی تشکیل میشود:
هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن میدهند. معمولاً صفحات هادی خازن از جنسآلومینیوم، روی و نقره با سطح نسبتاً زیاد بوده و در بین آنها عایقی (دیالکتریک) از جنس هوا، کاغذ، میکا، پلاستیک، سرامیک، اکسید آلومینیومو اکسید تانتالیوم استفاده میشود. هر چه ضریب دیالکتریک یک ماده عایق بزرگتر باشد آن دیالکتریک دارای خاصیت عایقی بهتر است. به عنوان مثال، ضریب دیالکتریک هوا ۱ و ضریب دیالکتریک اکسید آلومینیوم ۷ میباشد. بنابراین خاصیت عایقی اکسید آلومینیوم ۷ برابر خاصیت عایقی هوا است.
انواع خازن
خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه کلی ثابت و متغیر تقسیمبندی میشوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوتاند. بعضی از خازنها از روغن پر شده و بسیار حجیماند.
خازنهای ثابت
این خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمیکنند. خازنهای ثابت را بر اساس نوع ماده دیالکتریک به کار رفته در آنها تقسیم بندی و نامگذاری میکنند و از آنها در مصارف مختلف استفاده میشود. از جمله این خازنها میتوان انواع سرامیکی، میکا، ورقهای (کاغذی و پلاستیکی)، الکترولیتی، روغنی، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دیالکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار میروند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.
خازنهای سرامیکی
خازن سرامیکی (به انگلیسی: Ceramic capacitor) معمولترین خازن غیر الکترولیتی است که در آن دیالکتریک بکار رفته از جنس سرامیک است. ثابت دیالکتریک سرامیک بالا است، از این رو امکان ساخت خازنهای با ظرفیت زیاد در اندازه کوچک را در مقایسه با سایر خازنها بوجود آورده، در نتیجه ولتاژ کار آنها بالا خواهد بود. ظرفیت خازنهای سرامیکی معمولاً بین ۵ پیکوفاراد تا ۱/۰ میکروفاراد است. این نوع خازن به صورت دیسکی (عدسی) و استوانهای تولید میشود و بسامد کار خازنهای سرامیکی بالای ۱۰۰ مگاهرتز است. عیب بزرگ این خازنها وابسته بودن ظرفیت آنها به دمای محیط است، زیرا با تغییر دما ظرفیت خازن تغییر میکند. از این خازن در مدارهای الکترونیکی، مانند مدارهای مخابراتی و رادیویی استفاده میشود.
خازنهای ورقهای
در خازنهای ورقهای از کاغذ و مواد پلاستیکی به سبب انعطافپذیری آنها، برای دیالکتریک استفاده میشود. این گروه از خازنها خود به دو صورت ساخته میشوند:
خازنهای کاغذی
دیالکتریک این نوع خازن از یک صفحه نازک کاغذ متخلخل تشکیل شده که یک دیالکتریک مناسب درون آن تزریق میگردد تا مانع از جذب رطوبت گردد. برای جلوگیری از تبخیر دیالکتریک درون کاغذ، خازن را درون یک قاب محکم و نفوذناپذیر قرار میدهند. خازنهای کاغذی به علت کوچک بودن ضریب دیالکتریک عایق آنها دارای ابعاد فیزیکی بزرگ هستند، اما از مزایای این خازنها آن است که در ولتاژها و جریانهای زیاد میتوان از آنها استفاده کرد.
خازنهای پلاستیکی
در این نوع خازن از ورقههای نازک پلاستیک برای دیالکتریک استفاده میشود. ورقههای پلاستیکی همراه با ورقههای نازک فلزی (آلومینیومی) به صورت لوله، در درون قاب پلاستیکیبسته بندی میشوند. امروزه این نوع خازنها به دلیل داشتن مشخصات خوب در مدارات زیاد به کار میروند. این خازنها نسبت به تغییرات دما حساسیت زیادی ندارند، به همین سبب از آنها در مداراتی استفاده میکنند که احتیاج به خازنی با ظرفیت ثابت در مقابل حرارت باشد. یکی از انواع دیالکتریکهایی که در این خازنها به کار میرود پلی استایرن (به انگلیسی:Polystyrene) است، از این رو به این خازنها «پلی استر» گفته میشود که از جمله رایجترین خازنهای پلاستیکی است. ماکزیمم بسامد کار خازنهای پلاستیکی حدود یک مگاهرتز است.
خازنهای میکا
در این نوع خازن از ورقههای نازک میکا در بین صفحات خازن (ورقههای فلزی – آلومینیوم) استفاده میشود و در پایان، مجموعه در یک محفظه قرار داده میشوند تا از اثر رطوبت جلوگیری شود. ظرفیت خازنهای میکا تقریباً بین 0/01 تا ۱ میکروفاراد است. از ویژگیهای اصلی و مهم این خازنها میتوان داشتن ولتاژ کار بالا، عمر طولانی و کاربرد در مدارات فرکانس بالا را نام برد.
خازنهای الکترولیتی
این نوع خازنها معمولاً در رنج میکروفاراد هستند. خازنهای الکترولیتی همان خازنهای ثابت هستند، اما اندازه و ظرفیتشان از خازنهای ثابت بزرگتر است. نام دیگر این خازنها، خازن شیمیایی است. علت نامیدن آنها به این نام این است که دیالکتریک این خازنها را به نوعی مواد شیمیاییآغشته میکنند که در عمل، حالت یک کاتالیزور را دارا میباشند و باعث بالا رفتن ظرفیت خازن میشوند. برخلاف خازنهای عدسی، این خازنها دارای قطب یا پایه مثبت و منفی میباشند. روی بدنه خازن کنار پایه منفی، علامت – نوشته شدهاست. مقدار واقعی ظرفیت و ولتاژ قابل تحمل آنها نیز روی بدنه درج شدهاست. خازنهای الکترولیتی در دو نوع آلومینیومی و تانتالیومی ساخته میشوند. یکی از کاربردهای گسترده این نوع خازن استفاده در مدار یکسوساز دیودی بعنوان فیلتر dc است.
خازن آلومینیومی
این خازن همانند خازنهای ورقهای از دو ورقه آلومینیومی تشکیل شدهاست. یکی از این ورقهها که لایه اکسید بر روی آن ایجاد میشود «آند» نامیده میشود و ورقه آلومینیومی دیگر نقش کاتد را دارد. ساختمان داخلی آن بدین صورت است که دو ورقه آلومینیومی به همراه دو لایه کاغذ متخلخل که در بین آنها قرار دارند هم زمان پیچیده شده و سیمهای اتصال نیز به انتهای ورقههای آلومینیومی متصل میشوند. پس از پیچیدن ورقهها آن را درون یک الکترولیت مناسب که شکل گیری لایه اکسید را سرعت میبخشد غوطهور میسازند تا دو لایه کاغذ متخلخل از الکترولیت پر شوند. سپس کل مجموعه را درون یک قاب فلزی قرار داده و با یک پولک پلاستیکی که سیمهای خازن از آن میگذرد محکم بسته میشود.
خازن تانتالیوم
خازن تانتالیوم
در این نوع خازن
سختافزار رایانه (به انگلیسی:
Computer Hardware
به مجموعهای از اجزای فیزیکی گفته میشود که یک رایانه را میسازند. سختافزار رایانه درواقع همان قسمتها یا اجزای فیزیکیِ رایانه مانند نمایشگر، موشواره، صفحهکلید، دیسک سخت، واحد سیستم (کارتهای گرافیک، کارتهای صدا،حافظه اصلی، مادِربورد و تراشههای دیگر) و ... هستند که قابل لمساند.[۱]
در مقابل، نرمافزار مجموعهای از مجموعه دستورالعملهای قابل خواندن برای ماشین است که به پردازنده مرکزی امر میکند تا اعمال خاصی را انجام دهد. ترکیبی از نرمافزار و سختافزار یک سیستم رایانه قابل استفاده را بهوجود میآورند.[۲]
الگوی ساخت تمام رایانههای امروزی معماری فون نویمان است. این معماری برای اولین بار در گزارشی به قلم ریاضیدان مجارستانی، جان فون نویماندر سال ۱۹۴۵ توضیح داده شد. معماری فون نویمان روش طراحی یک رایانه دیجیتال را با تقسیم آن به واحد پردازنده مرکزی، حافظهٔ اصلی، حافظههایذخیرهسازی انبوه و ساز و کارهای ورودی/خروجی شرح میدهد.[۳] در این تقسیمبندی واحد پردازنده مرکزی شامل واحد محاسبه و منطق، ثباتها و یک واحد کنترل (شامل ثبات شمارنده برنامه، ثبات دستورالعمل و ...) است. حافظهٔ اصلی نیز برای ذخیرهسازی دادهها و دستورالعاملها مورد استفاده قرار میگیرد.[۳]
مفهوم عبارت معماری فون نویمان بهتدریج گسترش پیدا کرد و بهمعنای رایانههای تکحافظهای درآمد که در آنها امکان واکشی یک دستورالعمل و یک داده بهصورت همزمان وجود ندارد زیرا هر دو از یک گذرگاه مشترک استفاده میکنند. این مسئله که به گلوگاه معماری فون نویمان نیز معروف است، باعث کاهش کارایی اینگونه سیستمها میشود.
امروزه سیستمهای رایانهای مختلفی مورد استفاده قرار میگیرند.
رایانههای شخصی، که با عنوان PC نیز شناخته میشوند، یکی از رایجترین انواع رایانهها هستند که بهدلیل تنوع، همهکاره بودن و قیمت پایینتر بیش از انواع دیگر مورد استفاده قرار میگیرند. لپتاپها نیز در کل همان رایانههای شخصی هستند که معمولاً با سختافزارهای کممصرفتر و کوچکتر ساخته میشوند.
جعبه رایانه (به انگلیسی: Computer Case) یک محفظه پلاستیکی یا فلزی است که بیشتر قطعات سختافزاری یک رایانه در درون آن قرار میگیرند. نسخههای مربوط به رایانههای رومیزی معمولاً در اندازههایی ساخته میشوند که بتوان آنها را در زیر یک میز جا داد؛ با این حال در سالهای اخیر طراحیهای کوچکتری نیز بهوجود آمده و محصولاتی مانند آیمک شرکت اپل تمامی سختافزارها را در درون یک جعبه قرار میدهند. لپتاپها نیز رایانههایی هستند که در فرم یک جعبه تاشو ساخته میشوند. در سالهای اخیر طراحی اینگونه رایانهها نیز دچار تحول شده است. برای مثال نسخههایی از لپتاپها بهوجود آمدهاند نمایشگر آنها جدا شده و تبدیل به تبلت میشوند.
یک واحد منبع تغذیه (به انگلیسی: Power Supply Unit) مسئول تبدیل برق متناوب با ولتاژ بالا به برق مستقیم با ولتاژ پایین و قابل استفاده برای قطعات سختافزاری رایانه است. لپتاپها میتوانند به کمک باتری نیز تا چند ساعت انرژی مورد نیاز رایانه را تأمین کنند.[۴]
مادربورد یا بوردِ اصلی (به انگلیسی: Motherboard) قسمت اصلی سختافزار یک رایانه است. بورد اصلی یک قطعه مستطیل شکل بزرگ است کهمدارهای مجتمع فراوانی دارد. این قطعه تمامی سختافزارهای دیگر رایانه مانند پردازنده مرکزی، رم، دیسکخوانها (دیسک سخت، دیسک نوری و ...) و دیگر قطعات متصلشدنی را بههم متصل میکند.
قطعاتی که به طور مستقیم به مادربورد متصل میشوند یا بخشی از این بورد هستند:
کارت توسعه در رایانه یک مدار کامل از پیش ساختهشده است که در شیاف توسعه بر روی مادربورد قرار میگیرد و از طریق درگاه توسعه، قابلیت جدیدی را به سیستم اضافه میکند.
ذخیرهساز دادهٔ رایانه که به آن مخرن (به انگلیسی: Storage) یا حافظه (به انگلیسی: Memory) میگویند به قسمتهایی از رایانه اشاره دارد که دادههای دیجیتال را ضبط و نگهداری میکنند. ذخیرهسازی داده یکی از قابلیت اصلی رایانه است و وجود قطعهای برای این کار ضروری است.
دادههای رایانه بر روی رسانههای (به انگلیسی: Media) بسیاری ذخیرهسازی میگردند. دیسکهای سخت بهدلیل قیمت پایین و حجم ذخیرهسازی بالا تقریباً برروی تمامی سیستمهای قدیمیتر وجود دارند. درایوهای حالت جامد (SSD) امروزه بهدلیل سرعت بیشتر کمکم جایگزین این دیسکها میشوند. اما هنوز قیمت بسیار بالاتری نسبت به دیسکهای سخت دارند. بعضی از سیستمها نیز برای کارایی و قابلیت اطمینان بیشتر از کنترلگر صف دیسکها استفاده میکنند.
برای انتقال داده بین رایانههای مختلف میتوان از یک فلشدرایو یا دیسک نوری استفاده کرد. میزان مفید بودن این رسانهها به قابلیت پشتیبانی آنها در سیستمهای مختلف وابسته است. بیشتر سیستمها دارای دیسکگردان نوری هستی و تقریباً تمامی آنها از درگاه یواسبی بهره میبرند.
دستگاههای ورودی و خروجی معمولاً بهصورت دستگاههای خارجی به شاسیِ رایانه متصل میشوند.
دستگاههای ورودی به کاربر اجازه میدهند تا اطلاعاتی را به سیستم وارد و یا عملکرد آن را کنترل کند. بیشتر رایانههای شخصی دارای موشواره و صفحه کلید هستند اما بیشتر لپتاپها بهجای موشواره از تاچپد استفاده میکنند. از دستگاههای ورودی دیگر میتوان به وببین، میکروفون، اهرمک و پویشگر تصاویر اشاره کرد.
دستگاههای خروجی اطلاعات رایانه را بهصورت قابلِ خواندن برای انسان نمایش میدهند. از میان دستگاههای خروجی میتوان به چاپگر، بلندگو و صفحه نمایش اشاره کرد.
یک بزرگرایانه یک رایانه بسیار بزرگ است که معمولاً برای نگهداری نیاز به یک اتاق کامل دارد. این نوع رایانهها صدها و یا هزاران برابر رایانههای شخصیهزینه دارند. این رایانههای طراحی شدهاند تا محاسبات بسیار زیادی را برای دولتها و شرکتهای بزرگ انجام دهند.
در دهههای ۱۹۶۰ و ۱۹۷۰ روز به روز قسمتهای بیشتری از شرکتها رو به استفاده از رایانههایی با کاربری مخصوص مانند کنترل فرایند و اتوماسیونهای آزمایشگاهها کردند. این رایانههای مینیرایانه یا رایانههای کوچک نام گرفتند.
یک ابررایانه در نگاه اول بسیار شبیه به بزرگرایانه است، اما این نوع رایانهها برای پاسخ به درخواستهایِ زیادِ محاسباتی ساخته شدهاند. از ماه نوامبر سال ۲۰۱۳ میلادی سریعترین ابررایانه دنیا تیانهه-۲ (به معنای راهِ شیری-۲) است که در شهر گوانگژو کشور چین واقع شده است.[۶]
عبارت ابررایانه به هیچ تکنولوژی خاصی اشاره نمیکند بلکه در هر دورهٔ زمانی به سریعترین رایانههای در دسترس اطلاق میشود. در اواسط سال ۲۰۱۱ میلادی ابررایانهها از سرعت ۱ پتافلاپ یا (هزار میلیون میلیون) عملیات اعداد اعشاری در ثاینه پیشی گرفتند. با اینکه ابررایانهها بسیار سریع هستند اما بهدلیل هزینهٔ بسیار بالایی که دارند، تنها توسط سازمانهای بسیار بزرگ برای انجام وظایف محاسباتی بسیار سنگین شامل مجموعه دادههای بزرگ مورد استفاده قرار میگیرند. ابررایانهها معمولاً کاربردهای نظامی و علمی دارند. با اینکه استفاده از این نوع رایانهها میلیونها دلار هزینه دارد، اما برای کاربردهای تجاری نیز مورد استفاده قرار میگیرند. مثلاً بانکها برای محاسبه میزان خطر و بدست آوردن استراتژی سرمایهگذاری از ابررایانهها استفاده میکنند یا موسسات بهداشت و درمان با تحلیل دادههای بسیار بزرگ بیماران سعی میکنند روشهای بهینه درمان را پیدا کنند.
سیستم سوخت رسانی انژکتوری یکی از روشهای سوخت رسانی به موتورهای احتراق داخلی به روش تزریق سوخت است که در این سیستم سوخت توسط یک پمپ مکانیکی یا برقی با فشار به داخل لولههای سوخت رسانی و ریل سوخت وارد میشود و از طریق انژکتورها که در واقع نوعی شیر محسوب میشوند به پشت سوپاپ هوا یا درون سیلندر بصورت پودر شده پاشیده میشود و به این ترتیب مخلوطی از هوا و سوخت برای احتراق در موتور و تولید انرژی بدست میآید
تاریخچه
در اواخر دهه ۱۹۵۰ و اوایل دهه ۱۹۶۰ میلادی کارخانه شورولت و پونتیاک اولین طرح سوخت رسانی انژکتوری مکانیکی نوع تزریق دائم را عرضه نمودند. مرسدس بنز در سال 1952 خودروی 300SL W194 که اولین خودروی انژکتوری بنزینی بود را به بازار عرضه نمود. در اواخر دهه ۱۹۵۰ شرکتکرایسلر تعدادی اتومبیل انژکتوری با سیستم الکترونیکی تولید نمود و نام این طرح را بندیکس الکتروژکتور نامید. با ظهور ترانزیستور و دیود در صنعت الکترونیک، در سال ۱۹۶۸ میلادی شرکت فولکس واگن نمونه جالبی از طرح شرکت بوش را که از فناوریهای نوین بهره جسته بود در روی موتورهای خود بکار برد.
مزایای تزریق سوخت
توزیع یکنواخت سوخت بین سلیندرها، کاهش خام سوزی و تولید گازهای خطرناک، راندمان حجمی بالاتر موتور به علت حذف ونتوری، کاهش ارتفاع موتور، عدم نیاز به گرمکن، شتاب گیری زیادتر موتور، کاهش مصرف سوخت و اندازه گیری دقیق سوخت از مزایای روش تزریق سوخت میباشد.
معایب تزریق سوخت
وجود قطعات حساس، دقیق و گران قیمت، نیاز به تخصص فراوان در امر تولید و تعمیر قطعات و پیچیدگی سیستم از معایب روش تزریق سوخت میباشد.
انواع سیستم سوخت رسانی انژکتوری
مکانیکی
الکترونیکی EFI
اجزاء سیستم سوخت رسانی انژکتوری
ریل سوخت و انژکتورهای متصل به آن
انواع روشهای تزریق
3- شیر برقی دور
در هر سیستمی و با هر عملکردی برای تصمیم گیری به داده های ورودی احتیاج داریم. این ورودی ها میتوانند از یک سنسور صوتی, سنسور فاصله سنج , سنسور مادون قرمز , میکروفن و با تصاویر ارسالی از یه دوربین باشد.
امروزه پردازش تصویر بهترین ابزار برای استخراج ویژگی ها و تحلیل موقعیت و در نهایت تصمیم گیری صحیح می باشد. در مورد انسان نیز به همین صورت است, اطلاعات از طریق چشم به مغز ارسال می شوند و مغز با پردازش این اطلاعات تصمیم نهایی را گرفته و فرمان را صادر می کند.
هدف از پردازش تصویر پیاده سازی عملکرد ذهن انسان در قبال داده ها و انجام پردازش های خاصی برای استخراج ویژگی مورد نیاز برای رسیدن به هدف از پیش تعیین شده می باشد.
کوچکترین جزء PIXEL است . پیکسل مخفف Picture Element به معنی المان تصویر است. یک تصویر متشکل از تعداد زیادی پیکسل است که در کنار هم قرار گرفته اند . در واقع زمانی که با یک دوربین دیجیتال عکس می گیرید اگر رزولوشن دوربین شما 640480x باشد به این معنی است که ماتریس با ابعاد 640480x در اختیار شماست که 640 پیکسل در طول و 480 پیکسل در عرض دارد . به ازای هر پیکسل یک سلول نوری در دوربین وجود دارد. شدت نور این سلول نوری مقدار عددی را برای این پیکسل تعیین می کند. به طور مثال به ازای رنگ سیاه مقدار صفر در پیکسل ذخیره می شود و به ازای رنگ سفید مقدار 255 در آن ذخیره می شود.