مشخصات فایل
عنوان: پوشش های سرامیکی ونسوز
قالب بندی: word
تعداد صفحات:36
محتویات
پوشش های سرامیکی ونسوز
فاکتورهای انتخاب
مکانیزم های محافظت
سازگاری شیمیایی ومکانیکی
روشهای کاربرد
مواد پوشش
شیشه های سیلیکاتی
اکسیدها
سیلیسید ها
پوشش های فسفاته
سرمتیها
روشهای پوشش دهی
قابلیت کاربرد
اسپری شعله احتراقی
اسپری شعله ای قوس پلاسمایی
کنترل کیفیت
ساختار وسختی
عنوان مقاله: پوشش های سرامیکی ونسوز
پوششهای سرامیکی شامل شیشه ها یا بدون اضافه کردن ترکیبات دیر گداز می باشند . پوشش های دمای بالا برپایه اکسیدها ، کاربید ها ، سیلیس ها ، بوریدها ، یا نیتریدها ، سرمتیها ومواد معدنی دیگر می باشند .
پوشش های سرامیکی که بر روی فلزات به کار می روند آنها را در برابر اکسیداسیون وخوردگی در دمای اتاق ودماهای بالا محافظت می کنند . پوشش های ویژه برای کاربردهای خاص توسعه یافته اند با مقاومت به سایش مقاومت شیمیایی . قدرت انعکاس بالا ومقاومت الکتریکی وجلوگیری از نفوذ هیدروژن ، فلزات پوشش کاری شده ، با سرامیک در کاربردهایی مانند قطعات کوره ، تجهیزات عملیات حرارتی تجهیزات فرایندهای شیمیایی ، مبدلهای حرارتی ، قطعات موتورهای جت ، و نازلهای موتور موشک وقطعات نیروگاههای هسته ای استفاده می شوند .
فاکتورهای انتخاب :
چندین فاکتور در انتخاب پوششهای سرامیکی باید مورد توجه قرار گیرد .
محیط کاری پوشش ممکن است شامل دامنه گسترده ای ازشرایط مختلف باشد عمر وعملکرد مورد انتظار پوشش ممکن است ازچندثانیه تا چند صدساعت متغیر باشد . محیط ممکن است در معرض اتمسفر گازی با وسیکوزته های متفاوت باشد . قطعاتی که از آلیاژهای دمای بالا ساخته شده اند ممکن است در معرض تنش های خیلی بالا باشند ویا ممکن است به عنوان قطعات محافظ دربرابر گرما ویا سیم پیچ کوره ها به کارروند که تنها نیروی اعمالی وزن قطعه می باشند . نرخ گرم وسرد کردن ممکن است تدریجی و یا سریع باشد وممکن است شامل یک یاچندین چرخه حرارتی باشد . برای هر محیط کاری ویژه پوشش انتخابی باید فلز را در برابر اکسیداسیون وتاثیر برداشت .
هیدروژن با جلوگیری یا به حداقل رساندن نفوذ اکسیژن ،نیتروژن وهیدروژن ازاتمسفر بواسطه پوشش به فلز پایه محافظت کند .
پوشش های سرامیکی بوسیله در مکانیزم فلز را دردماهای بالامحافظت می کنند . یک نوع از پوشش به عنوان یک پایدار اکسیدی روی سطح فلز به کار می رود که از تماس فلز با اتمسفر جلوگیری می کند ویا آن را به تاخیر می اندازد . نوع دیگری از پوشش های فلزی ترکیبات بین فلزی هستند که لایه نازک اکسیدی روی سطح تشکیل می دهند ترکیب بین فلزی ها به گونه ای است که یک ترکیب بهینه عناصر فلزی برای تشکیل لایه محافظ پایدار بر روی سطح ایجادمی کند واگراین لایه شکسته شود دوباره می تواند ایجاد گردد .
بنا براین این نوع پوشش ها وابسته به تشکیل ومحافظت لایه اکسیدی برای محافظت فلز پا یه میبا شد.
مشخصات فایل
عنوان: پاورپوینت پوشش های کامپوزیتی زمینه فلزی حاوی ذرات سرامیکی
قالب بندی: پاورپوینت
تعداد اسلاید: 32
فهرست مطالب
دست یابی سفالگران چینی به تکنولوژی ساخت کوره هایی با دمای 1200 درجه سانتی گراد سبب شد تا ظروف پخته شده در این دما تخلخل بسیار کمی داشته باشند. در حدود سال 600 میلادی، سفالگران چینی ترکیب خاک چینی ((petuntse را کشف کردند که در هنگام پخت با کائولن واکنش داده و ماده ای شیشه ای ایجاد می کرد. مارکوپولو در سال 1292 نام این سرامیک را alla porcella نهاد و امروزه این سرامیک ها با نام پرسلان شناخته می شوند. تلاش اروپایی ها برای ساخت بدنه هایی مشابه با این سرامیک ها سرانجام در سال 1710 در آلمان به نتیجه رسید و اولین خط تولید انبوه پرسلان در سال 1800 در انگلستان راه اندازی شد. تغییرات مهم در صنعت سرامیک در سال 1800 اتفاق افتاد و منجر به تولید مواد جدیدی گردید که خواصی متفاوت با سرامیک های سنتی داشتند.
سفال، سنگینه، پرسلان، آجر، شیشه و سیمان همگی سرامیک های سنتی هستند که امروزه نیز تقریبا در تمام عرصه های زندگی مورد استفاده قرار می گیرند. آن ها هنوز از مواد طبیعی استخراج شده از زمین تشکیل می شوند. اما تغییرات مهمی در دهه 1800 رخ داد که منجر به ظهور سرامیک های جدید ساخته از مواد تخلیص شده و حتی مصنوعی شد که دارای خواصی بودند که سرامیک های سنتی فاقد آن بودند. این سرامیک های جدید که به آن ها سرامیک های مدرن، ظریف یا پیشرفته می گویند راه را برای تمدن جدید هموار ساختند. تاریخ سرامیک های نوین تا حدی شبیه یک معما است که باید قطعات گوناگون آن را یافت تا بتوان تصویر کلی آن را مشخص کرد. کشف الکتریسیته، پیشرفت های اولیه در شیمی و اختراع خودرو همگی به حل این معمای سرامیکی کمک می کنند. حتی تلاش های مردم قدیم برای جادوی ساخت سنگ های قیمتی مانند یاقوت و الماس نقش مهمی در توسعه سرامیک های نوین بازی می کند.
توسعه سرامیک ها تاثیر بسیار زیادی بر تمدن گذاشته است. فقط در یک قرن گذشته، دانش ما نسبت به سرامیک ها به حد انفجار رسیده است. اینک ما برخی از رفتار سرامیک ها که قرن ها ذهن انسان را به خود مشغول کرده بود، شناخته ایم. حال می توانیم سرامیک ها را طراحی و مهندسی و با مواد دیگر مخلوط کنیم تا تقریبا هر مشکلی را برطرف کنیم. برای داشتن بسیاری از محصولات فوق العاده مانند رادیو، تلویزیون، الیاف شیشه ای، لیزر، فراصوت، اسباب مایکروویو و مخابرات، هواپیمای جت، رایانه خانگی و تلفن همراه مرهون سرامیک های نوین هستیم.
به علت گستردگی ترکیبات سرامیکی دسته بندی های متفاوتی برای آن ها صورت گرفته است.
از نقطه نظر تاریخی می توان سرامیک ها را به دو دسته سنتی و مدرن تقسیم بندی نمود:
- سرامیک های سنتی عمدتا سرامیک های سیلیکیاتی هستند که از جمله آن ها می توان به محصولات رسی،سیمان و شیشه های سیلیکاتی اشاره نمود.
- سرامیک های مدرن دارای خواص حرارتی، مکانیکی و شیمیایی ویژه ای هستند. سرامیک های اکسیدی بسیار خالص مانند آلومینا و زیرکونیا، سوخت های هسته ای بر پایه اکسید اورانیم، کاربید ها و نیتریدهای سرامیکی و شیشه سرامیک ها در دسته سرامیک های مدرن جای می گیرند.
سرامیک های مدرن بر اساس ترکیب شیمیایی به دو دسته سرامیک های اکسیدی و غیر اکسیدی تقسیم بندی می شوند.
از میان سرامیک های اکسیدی می توان از آلومینا (Al2O3)، زیرکونیا (ZrO2)، توریا (ThO2)، برلیا (BeO)،منیزیا (MgO) نام برد.
از میان سرامیک های غیر اکسیدی می توان به نیترید سیلیسیوم (Si3N4)، نیترید بور (BN)، کاربید سیلیسیم (SiC) و کاربید تنگستن (WC) اشاره کرد.
به علت وجود ترکیب های زیاد بین اتم های فلزی و غیر فلزی که اجزای سرامیکی را تشکیل می دهند، امکان وجود سرامیک های گوناگون وجود دارد. افزون بر این، برای هر ترکیبی از اتم ها، امکان ایجاد آرایش های ساختاری متعدد وجود دارد. سرامیک ها می توانند چند عنصری و چند فازی باشند و از طرفی معمولا دارای اتم های مختلفی هستند که به صورت ناخالصی وارد ساختار آن ها شده اند. از این رو امکان ایجاد مواد جدید، نامحدود خواد بود. با وجود این، در عمل، ساخت حتی یک سرامیک ساده وقت و منابع زیادی را می گیرد. بنابراین، فقط برخی از مواد برای توسعه مد نظر قرار گرفته می شوند. تعیین اینکه کدام ماده منتخب، منابع قابل دسترس دارد یا از نظر اقتصادی قیمت مناسب دارد را دوباره باید بررسی کرد.
از بین تمامی کشورهای صنعتی، ژاپن دور اندیش ترین کشور بوده و در این راه همت زیادی داشته و برای توسعه سرامیک های جدید برنامه ریزی کرده است. شکل روبرو نموداری است که کاربردهای مختلف سرامیک ها را نشان می دهد و توسط ژاپنی ها تهیه شده است. ژاپنی ها سیاست خود را به خرید فناوری و اسناد انحصاری از تمام کسانی که ایده های نوین دارند، معطوف کردند و اعتقاد دارند که طرح ویژه شان، جهان کاربردهای سرامیک پیشرفته را، هدایت خواهد کرد. سپس روی تکمیل مواد و فرآیندها، جت کاربردهای ویژه تمرکز خواهد کرد.
این شکل کاربردها، خواص و عملکرد سرامیک ها را شرح می دهد. ژاپن در مورد سرامیک های عملگر، بزرگترین صنایع را به طور موفقیت آمیزی بعد از جنگ جهانی دوم توسعه داده است. برای مثال، در عرصه انرژی هسته ای، ژاپن مقدار زیادی از نیروی الکتریکی مورد نیاز خود را توسط تجهیزات هسته ای (12 درصد در سال 1982) تولید کرد و در این راستا آن را توسعه می دهد.
هدف آن ها تولیدی معادل 51 میلیون کیلو وات الکتریسیته (تا 1990) توسط تجهیزات هسته ای بود. بیشتر تجهیزات هسته ای مورد نیاز را، خودشان ساختند.
عملکرد الکتریکی، مغناطیسی مواد، صنعت بزرگ الکترونیک ژاپن را تشکیل می دهد و در ژاپن تمام کاربردها در تجهیزات الکترونیکی به طور موفقیت آمیزی به کار گرفته شدند. عملکرد مکانیکی به طور وسیعی در صنعت خودرو مورد توجه قرار گرفته و در ژاپن برتری داشته است. یکی از بخش های مهم در قسمت کاربردها، ابزار قالب ها است. با ابزارهای برش سرامیکی می توان فلزات را با سرعت خیلی بالایی برش داد و در نتیجه قیمت محصول نهایی کاهش خواهد یافت. ژاپن ابزارهای صنعتی جدید و پر حجمی را نیز توسعه داده است که در این ابزارها،استفاده از تراشه های سرامیکی پیشرفته مورد نیاز بوده است. دیگر کشور ها، به خصوص آمریکا، می کوشند تا موقعیت از دست داده خود را در رقابت با صنعت خودرو دوباره کسب کنند. در کل نمودار، طرح کلی ژاپن جهت توسعه سرامیک های جدید به منظور رهبری بیشتر در دوره فراصنعتی نمایان می شود.
در شکل جدول زیر تفاوت های بین سرامیک های سنتی با سرامیک های جدید یا ظریف نشان داده شده است. فرآیند های پیچیده در سمت راست جایگزین فرآیند های نسبتا ساده ی تولید در سمت چپ شده اند. در نتیجه کاربرد های متفاوتی حاصل شده است. نظیر کاربردهایی در زمینه موشک، راکتور های هسته ای، توربین و خودرو. این تغییر به سبب کنترل ریزساختار سرامیک صورت گرفته است که این ریزساختار فقط توسط تجهیزات پیشرفته ای نظیر میکروسکوپ الکترونی قابل مشاهده است.
یک ویژگی مهم سرامیک ها که برای هر فردی آشنا است تردی و شکست آن ها با کمی تغییر فرم و یا بدون تغییر است. این رفتار با رفتار فلزات که تسلیم شده و تغییر فرم می دهند، متفاوت است. در نتیجه سرامیک ها را نمی توان با روش مورد استفاده برای فلزات شکل داد. دو روش عمده برای شکل دادن سرامیک ها توسعه یافته است. یکی از آن ها استفاده از مخلوطی از ذرات سرامیکی ریز با یک مایع، چسب یا ماده روغن کاری کننده است (مانند مخلوط پلاستیک رس – آب) که دارای خواص رئولوژیکی مناسب و قابلیت شکل دادن است. آنگاه با یک عملیات حرارتی، این مخلوط ذرات ریز به یک محصول یکپارچه و مستحکم تبدیل می شود. در این روش باید ابتدا ذرات ریز را تهیه کرد و شکل داد و سپس با حرارت دادن آن ها را به یکدیگر چسباند. روش دوم ذوب کردن ماده و شکل دادن مذاب حاصل در حین سرد کردن و انجماد آن است. این روش بیشتر برای شکل دادن شیشه ها به کار می رود. برای تکمیل، باید به روش های شکل دهی توسط قالب یا با غوطه ور کردن یک الگو در دوغاب حاوی چسب سرامیکی مانند سیمان پرتلند یا اتیل سیلیکات نیز اشاره کرد.
علاوه بر فرآیند های متداولی که در مورد آن ها توضیح داده شد، فرآیند های دیگری وجود دارد که روش های شکل دهی را تقویت، اصلاح و گسترش می دهند و یا جایگزین آن ها می شوند. این روش ها عبارتند از اعمال لعاب، مینا و پوشش ها، پرس گرم، روش های اتصال فلز به سرامیک، تبلور شیشه، پرداخت و ماشین کاری، ساخت بلورها و فرآیندهای بخار – رسوب.
به طور کلی علم سرامیک را می توان به دو شاخه سرامیک فیزیکی و سرامیک صنعتی تقسیم کرد. سرامیک فیزیکی درباره ساختمان مواد سرامیکی و خواص آنها بحث می کند. در این شاخه ساختمان اتم، اتصالات بین اتم ها، ساختمان های بلوری، ساختمان شیشه، معایب ساختمانی، استحالههای فازی، رشد دانهها، تبلور مجدد و مباحثی نظیر آنها مورد بحث قرار می گیرد. علاوه بر این خواص الکتریکی، مغناطیسی، نوری، حرارتی و مکانیکی سرامیک ها هم مورد بحث قرار می گیرند. اصولا مراحل ساخت هر جسم سرامیکی به صورت زیر است: انتخاب مواد اولیه و تغلیظ و تخلیص آن، آمادهسازی مواد اولیه (خردکردن - دانهبندی - مخلوط کردن )، شکل دادن، خشک کردن، پختن (زینتر کردن) ...
سرامیک مشتق از کلمه keramos یونانی است که به معنی سفالینه یا شئی پخته شده است. در واقع منشا پیدایش این علم همان سفالینههای ساخته شده توسط انسانهای اولیه هستند. در واقع قبل از کشف و استفاده فلزات، بشر از گلهای رس به علت وفور و فراوانی آنها و همچنین شکلگیری بسیار خوب آنها در در صورت مخلوط شدن با آب و درجه حرارت نسبتاً پایین پخت آنها استفاده میکرد. آلومینوسیلیکاتها که خاکهای رسی خود آنها به حساب میآیند، از عناصر آلومینیوم، سیلیسم و اکسیژن ساخته میشوند که این سه عنصر بر روی هم حدود 85 درصد پوسته جامد کره زمین را تشکیل میدهند. این سه عنصر فراوانترین عناصر پوسته زمین هستند.
صنعت ساخت سفالینهها در 4000 سال قبل از میلاد مسیح پیشرفت زیادی کرده بود. اکنون، سرامیک را به طور کلی به عنوان هنر و علم ساختن و به کار بردن اشیاء جامدی که اجزاء تشکیلدهنده اصلی و عمده آنها مواد غیرآلی و غیرفلزی میباشند، تعریف میکنیم و بررسی ساختمان و خواص اینگونه مواد نیز جزء این علم است.
فرآوردههای سرامیکی :
این فرآوردهها را میتوان به دو گروه عمده تقسیم کرد:
1- سرامیکهای سنتی: اساساً مواد تشکیلدهنده صنایع سیلیکاتی یعنی محصولات رسی، سیمان و شیشههای سیلیکاتی و چینیها هستند.
فرآوردههای شیشهای بزرگترین بخش صنعت سرامیک محسوب میشوند. سایر بخشها به ترتیب اولویت عبارتند از :
محصولات سیمانی داخلی ( مانند سیمانهای هیدورلیکی که در صنایع ساختمانی به مصرف میرسند .)
سفیدآلات، ( Whiteware ): شامل سفالینهها، چینیها و ترکیبات چینی مانند هستند .
لعابهای چینی
محصولات رسی ساختمانی: که بهطور عمده از آجرها و کاشیها تشکیل میشوند .
دیرگدازها
صنعت سازنده مواد ساینده: عمدتاً سایندههای سیلسیم کاربیدی و آلومینائی
2- سرامیکهای نوین: این دسته برای جوابگوئی به نیازهای مخصوص مانند مقاومت حرارتی بیشتر، خواص مکانیکی بهتر و خواص الکتریکی ویژه و مقاومت شیمیایی افزونتر به وجود آوردهاند.
گروهی از انواع این نوع سرامیکها عبارتنداز :
سرامیکهای اکسیدی خالص با ساختمانی یکنواخت: به عنوان اجزاء الکتریکی با دیرگداز بکار میروند . اکسیدهایی مانند آلومینا ( Al 2 O 3 ) ، زیرکونیا ( ZrO 2 ) ، توریا ( ThO 2 ) ، بریلیا ( BeO ) و منیزیا ( MgO ) بیشتر مورد استفاده قرار میگیرند .
سرامیکهای الکترواپتیکی (الکترونیکی – نوری): مانند نایوبیت لیتیم ( LiNbO 3 ) و تیتانات که اینها محیطی را فراهم میآورند که بوسیله آن علائم الکتریکی به نوری تبدیل میشوند .
سرامیکهای مغناطیسی: این مواد اساس واحدهای حافظه مغناطیسی را در کامپیوترهای بزرگ تشکیل میدهند .
تک بلورها
مشخصات فایل
عنوان: پوشش های سرامیکی ونسوز
قالب بندی: word
تعداد صفحات:36
محتویات
پوشش های سرامیکی ونسوز
فاکتورهای انتخاب
مکانیزم های محافظت
سازگاری شیمیایی ومکانیکی
روشهای کاربرد
مواد پوشش
شیشه های سیلیکاتی
اکسیدها
سیلیسید ها
پوشش های فسفاته
سرمتیها
روشهای پوشش دهی
قابلیت کاربرد
اسپری شعله احتراقی
اسپری شعله ای قوس پلاسمایی
کنترل کیفیت
ساختار وسختی
عنوان مقاله: پوشش های سرامیکی ونسوز
پوششهای سرامیکی شامل شیشه ها یا بدون اضافه کردن ترکیبات دیر گداز می باشند . پوشش های دمای بالا برپایه اکسیدها ، کاربید ها ، سیلیس ها ، بوریدها ، یا نیتریدها ، سرمتیها ومواد معدنی دیگر می باشند .
پوشش های سرامیکی که بر روی فلزات به کار می روند آنها را در برابر اکسیداسیون وخوردگی در دمای اتاق ودماهای بالا محافظت می کنند . پوشش های ویژه برای کاربردهای خاص توسعه یافته اند با مقاومت به سایش مقاومت شیمیایی . قدرت انعکاس بالا ومقاومت الکتریکی وجلوگیری از نفوذ هیدروژن ، فلزات پوشش کاری شده ، با سرامیک در کاربردهایی مانند قطعات کوره ، تجهیزات عملیات حرارتی تجهیزات فرایندهای شیمیایی ، مبدلهای حرارتی ، قطعات موتورهای جت ، و نازلهای موتور موشک وقطعات نیروگاههای هسته ای استفاده می شوند .
فاکتورهای انتخاب :
چندین فاکتور در انتخاب پوششهای سرامیکی باید مورد توجه قرار گیرد .
محیط کاری پوشش ممکن است شامل دامنه گسترده ای ازشرایط مختلف باشد عمر وعملکرد مورد انتظار پوشش ممکن است ازچندثانیه تا چند صدساعت متغیر باشد . محیط ممکن است در معرض اتمسفر گازی با وسیکوزته های متفاوت باشد . قطعاتی که از آلیاژهای دمای بالا ساخته شده اند ممکن است در معرض تنش های خیلی بالا باشند ویا ممکن است به عنوان قطعات محافظ دربرابر گرما ویا سیم پیچ کوره ها به کارروند که تنها نیروی اعمالی وزن قطعه می باشند . نرخ گرم وسرد کردن ممکن است تدریجی و یا سریع باشد وممکن است شامل یک یاچندین چرخه حرارتی باشد . برای هر محیط کاری ویژه پوشش انتخابی باید فلز را در برابر اکسیداسیون وتاثیر برداشت .
هیدروژن با جلوگیری یا به حداقل رساندن نفوذ اکسیژن ،نیتروژن وهیدروژن ازاتمسفر بواسطه پوشش به فلز پایه محافظت کند .
پوشش های سرامیکی بوسیله در مکانیزم فلز را دردماهای بالامحافظت می کنند . یک نوع از پوشش به عنوان یک پایدار اکسیدی روی سطح فلز به کار می رود که از تماس فلز با اتمسفر جلوگیری می کند ویا آن را به تاخیر می اندازد . نوع دیگری از پوشش های فلزی ترکیبات بین فلزی هستند که لایه نازک اکسیدی روی سطح تشکیل می دهند ترکیب بین فلزی ها به گونه ای است که یک ترکیب بهینه عناصر فلزی برای تشکیل لایه محافظ پایدار بر روی سطح ایجادمی کند واگراین لایه شکسته شود دوباره می تواند ایجاد گردد .
بنا براین این نوع پوشش ها وابسته به تشکیل ومحافظت لایه اکسیدی برای محافظت فلز پا یه میبا شد.