لینک پرداخت و دانلود پایین مطلب فرمت فایل : word تعداد صفحه : 29
مقدمه:
در ادبیات اقتصادی مکانیزم قیمتها وظیفه تخصیص منابع محدود را میان فعالیتهای مختلف اقتصادی بر عهده دارد. این تخصیص در حالت رقابت کامل، کارائی را حداکثر می کند. طبق این مکانیزم هنگامی که تقاضای کالایی افزایش یابد، قیمت آن افزایش یافته و تولید آن کالا سودآور می شود. سودآوری تولید منجر به افزایش عرضه شده و عرضه کالا به سمت تقاضای کالا حرکت می کند. عمل آزادانه مکانیزم قیمتها موجب خواهد شد تا تنها کسانی بتوانند از کالاها برخوردار شوند که قادر باشد قیمت آنها را بپردازد. نتیجه آنکه در این مکانیزم وضعیت کسانی که قدرت خرید کالاها را ندارند مورد توجه قرار نمی گیرد. در واقع جهت گیری اصلی مکانیزم قیمت ها دستیابی به کارائی بود.
بحث عدالت در آن مطرح نمی شود. هرچند که حالت رقابت کا مل از کارآیی و عدالت نسبی بیشتری نسبت به حالت وجود اعضای و نشست های اقتصادی بهرهمند می باشد.
برای دولت ها این مسئله مهمی است که بین دستیابی به کارآیی صرف و بی عدالتی احتمالی ملازم با آن و یا کارآیی کمتر ولی عدالت نسبی بیشتر یکی را انتخاب کنند. بی عدالتی هرچه شدیدتر باشد بحران های اجتماعی تشدید می شود. گسترش بحرانهای اجتماعی ممکن است حیات اقتصادی و به نفع آن کارآیی را به زیر سئوال ببرد.
این مسئله در شرایط توزیع ناعادلانه درآمد حادتر می شود. از اینرو دولت ها برای جلوگیری از گسترش بحران های اجتماعی و سیاسی ما عدالت نسبی را به بهای از دست رفتن بخشی از کارآیی مورد توجه قرار می دهند.
هفتاد میلادی به وجود آمد بکارگیری مینی کامپیوتر ها در صنعت ماشینکاری مرسوم گردید.
ماشین ابزارهایی که به کمک کامپیوتر هدایت می شدند CNC نام گرفتند. به کمک CNC به تدریج دقت مورد نیاز برای تولید قطعات پیچیده در صنایع مختلف مانند هوافضا و قالب سازی حاصل شد. با دست یابی به تلرانسهای بسیار دقیق برای تولید یک قطعه تدریجا اندیشه بالاتر بردن سرعت تولید نیز قوت یافت. با ساخت ابزارهایی با سختی زیاد، شرایط برای بالا بردن نرخ تولید نیز بهبود یافت «2». تا اینکه امروزه با بکارگیری تکنیکهای ماشینکاری با سرعتهای بالا قطعاتی با تلرانسهای دقیق در زمان بسیار کوتاهی تولید می گردند. برای دست یابی به قابلیت ماشین کاری با سرعتهای بالا می باید در زمینه های مختلف مانند طراحی سازه ای، کنترل ارتعاشات خود برانگیخته، یافتن بهترین نرخ براده برداری و کنترل حرکت و سرعت در راستای مسیر مورد نظر به پیشرفتهایی دست یافت.
فصل اول :
Cnc :
کنترل حرکت در راستای یک مسیر در ماشینهای CNC در واحد درونیاب صورت می گیرد. اکثر درونیابهای CNC فقط قابلیت درونیابی در راستای خط و دایره را دارا می باشند. به دلیل اینکه برای ماشینکاری یک مسیر منحنی شکل در حالت عمومی با بکارگیری این نوع درونیابها نیاز به شکسته شدن منحنی به قطعاتی از خط و دایره می باشد، لذا این دو نوع درونیابی به تنهایی پاسخگوی همه کاربردها از جمله ماشینکاری در سرعتهای بالا، نیستند. بنابراین بکارگیری نوع دیگری از درونیابها یعنی درونیابی در راستای یک منحنی ضروری به نظر می رسد. محققین مختلفی در این زمینه به تحقیق پرداخته اند و الگوریتمهای مختلفی را بر مبنای بکارگیری منحنی های پارامتری چند جمله ای در حالت عمومی ارائه داده اند.
Korn در ابتدا با توسعه درونیابی دایره ای، روشهایی را برای درونیابی منحنی ها درجه دو ارائه داد Korn , Yang , Kong, Huang , Yang با بکارگیری منحنی های پارامتری چند جمله ای روشهایی را برای درونیابی یک منحنی ارائه دادند اما این روشها قاعدتاً برای درونیابی یک منحنی درجه سه به کار می رود و در بکارگیری منحنی های درجه بالاتر کارآیی لازم را ندارند. به تدریج با بکارگیری مفاهیم B-Spline ها، Bedi و همکاران روش دیگری را برای درونیابی در راستای یک منحنی ارائه دادند. تقریباً در همین زمان Wang Yang , بر اساس پارامتر سازی طول کمان روش بسیار مناسبی را برای مسأله درونیابی Real-Time در راستای منحنی ارائه دادند.که این روش برای بکارگیری در CNC نسبتاً رواج یافت. با بهبود روش پارامتر سازی طول کمان توسط Wang , Wright این روش برای بکارگیری منحنی های درجه پنج بسیار کارا گردید. همچنین این روش توسط [1]Altintas نیز با بکارگیری پروفیل سرعت متفاوتی استفاده شده اتس. اما تمامی این روشه که مبتنی بر پارامتر سازی طول کمان می باشند روشهای تقریبی هستند.
با بکارگیری منحنی های خاصی بنام منحنی های فیثاغورث – هدوگراف[1] (PH) که زیر مجموعه ای از منحنی های پارامتری چند جمله ای می باشند مسأله درونیابی Real-Time را می توان به صورت تحلیلی نیز حل نمود. این منحنی ها که توسط Farouki , Sakkalis معرفی شدند خواص ریاضی ویژه ای دارند که این خواص قابلیت محاسبه طول کمان به صورت یک عبارت پارامتری چند جمله ای را ممکن می سازند. روشهای درونیابی مختلفی به صورت Real-Time بر مبنای انی منحنی ها توسط Farouki ارائه گردیده است. همچنین با بکارگیری منحنی های فیثاغورث-هدوگراف می توان سرعت پیشروی بهینه را برای حرکت بر روی یک مسیر منحنی با توجه به قدرت ماشین نیز بدست آورد.
همچنین ترکیب متفاوتی از انواع پروفیل های سرعت برای ماشینکاری یک مسیر منحنی بررسی شده و بهترین پروفیل سرعت جهت بکارگیری در ماشینکاری با سرعتهای بالا پیشنهاد می گردد. در بخشهای بعدی مسأله یافتن سرعت پیشروی بهینه بر روی یک منحنی فیثاغورث-هدوگراف با توجه به توانایی و قدرت ماشین مورد استفاده بیان شده و پروفیلهای سرعت متفاوتی برای حل این مسأله بکار گرفته می شوند.
ضمن اینکه با وارد کردن نیروهای برشی در قیود موجود و بکارگیری پروفیلهای سرعت مناسب تر، فرمول بندی جدیدی برای مسأله صورت می گیرد و جوابهای واقعی تری برای حل این مسأله ارائه می گردد. در پایان الگوریتمهای شبیه سازی شده برای درونیابی در راستای خط، دایره و منحنی با بکارگیری تکنیکهای خاصی عملاً بر روی دستگاه CNC موجود پیاده می گردند.
فصل دوم: مبانی ماشینکاری
1-2- مقدمه
سیستم های تولید پیشرفته و رباتهای صنعتی سیستم های اتوماتیک پیشرفته ای هستند که از کامپیوترها به عنوان واحد کنترل استفاده می کنند. کامپیوترها امروزه اصلی ترین قسمت اتوماسیون می باشند که سیستم های مختلف تولید مانند ماشینهای ابزار پیشرفته، ماشین های جوشکاری دستگاههای برش لیزری و غیره را کنترل می کنند.
پس از اینکه مکانیزم تولید اتوماتیک و تولید انبوه در اواخر قرن 18 توسعه یافت اولین ماشینهای ابزار اتوماتیک مانند ماشینهای کپی تراش بوجود آمدند [1]. نخستین ماشین ابزار کنترل عددی بوسیله شرکت پارسونز و MIT در سال 1952 ساخته شد. اولین نسل ماشین های کنترل عددی از مدارهای الکترونیکی دیجیتال استفاده می کردند و در حقیقت در آنها هیچ واحد پردازش مرکزی وجود نداشت. در دهه 1970 با بکارگیری مینی کامپیوترها به عنوان واحد کنترل ماشین های ابزار با کنترل عددی به کمک کامپیوتر (CNC) گسترش یافتند.
این ماشینها توانای ماشینکاری انواع شکلهای پیچیده در صنعت قالب سازی و هوافضا را به خوبی دارا بودند. از اواسط دهه 80 با توسعه صنعت ساخت ابزارهایی با سختی بالا ماشینکاری با سرعتهای بالا (HSM[2]) به منظور افزایش نرخ تولید رواج یافت. بکارگیری این قابلیت در CNC نیاز به داشتن اطلاعات ویژه ای درباره نرخ براده برداری بهینه ، پیش بینی وقوع ارتعاشات خود برانگیخته، طراحی سازه ای و نحوه کنترل محورها را بیش از پیش ضروری ساخت. امروزه علاوه بر این موارد انتخاب صحیح نرخ پیشروی و شتاب گیری محورها در ماشینکاری با سرعت بالا حایز اهمیت می باشد بطوری که سعی می شود به نحوی مقادیر بهینه آنها در ماشینکاری بکار گرفته شود.
هم اکنون با پیشرفت در صنعت الکترونیک و کامپیوتر ماشینهای CNC با بکارگیری چندین میکروپرسسور و کنترل کننده منطقی بطور موازی قابلیتهای بسیاری را دارا می باشند بطوری که این ماشینها قابلیت کنترل موقعیت و سرعت چندین محور و قابلیت برنامه ریزی بصورت Real-Time و نمایش گرافیکی مراحل مختلف کار و پروسه برش و نمایش تغییر اندازه قطعه در حل ماشینکاری را دارا می باشند.
در این فصل ضمن بیان مبانی کنترل عددی و معرفی اجزای CNC و ساختار برنامه ای آن به طبقه بندی سیستم های NC و معرفی HSM نیز پرداخته می شود.
2-2- مبانی کنترل عددی NC:
کنترل یک ماشین ابزار بوسیله یک برنامه تهیه شده را کنترل عددی (NC) می نامند. یک سیستم کنترل عددی توسط (Electronic Industrial Association) EIA بصورت زیر تعریف می گردد:
سیستم کنترل عددی سیستمی است که حرکات در آن بوسیله وارد کردن اطلاعات بصورت عددی در هر نقطه صورت می گیرد و این سیستم می باید این اطلاعات را به عنوان فرمان به صورت اتوماتیک اجرا کند.
در یک سیستم NC اطلاعات عددی مورد نیاز برای تولید یک قطعه بصورت برنامه قطعه به ماشین داده می شود که این برنامه در گذشته بوسیله نوار پانچ به ماشین وارد می شد. برنامه یک قطعه به صورت بلوکهایی از اطلاعات مرتب می شود که هر بلوک حاوی اطلاعات عددی مربوط به تولید یک قسمت از قطعه کار مانند: طول قطعه، سرعت برش، نرخ پیشروی و ... می باشد. اطلاعات ابعادی (طول، عرض، شعاع دوایر) و نوع درونیابی (خطی، دایره ای، در راستای منحنی) با توجه به طراحی قطعه مشخص می گردند. همچنین سرعت برش، نرخ پیشروی و توابع کمکی مانند خاموش و روشن کردن مایع خنک کننده جهت چرخش اسپیندل و ... با توجه به پرداخت نهایی سطح و تلرانسهای مورد نیاز در برنامه قطعه کار وارد می گردند.
در مقایسه با ماشینهای ابزار سنتی، سیستم NC جایگزین عملیاتی می شود که اپراتور بصورت دستی انجام می دهد. در ماشینکاری سنتی یک قطعه با حرکت ابزار در طول قطعه کار بوسیله چرخاندن دستگیره متصل به پیچهای راهنما توسط اپراتور تولید می شود. بنابراین نیاز به اپراتوری با تجربه و زبردست می باشد که بتواند قطعه مورد نظر را ماشینکاری کند. اما در ماشین های NC نیازی به اپراتور با مهارت نیست در حقیقت اپراتور فقط می باید مراقب درست انجام شدن روند ماشینکاری با توجه به دستورات منتقل شده به ماشین باشد.
کلیه ابعادی که در برنامه وارد می گردند بر اساس واحد طول-مبنی (Basic Length Unit) BLU مقیاس بندی شده و به محورها ارسال می گردند. واحد طول – مبنی (BLU) به عنوان اندازه نمو نیز شناخته می شود که در عمل مربوط به دقت سیستم NC می شود و در حقیقت کوچکترین اندازه نموی می باشد که هر یک از محورهای می توانند حرکت کنند. در سیستم NC برای صدور فرمان حرکت هریک از محورها ابتدا طول حقیقی بر واحد-طول مبنی تقسیم می گردد. بعنوان مثال در یک سیستم NC که در آن BLU=0.0001 است برای حرکت 0.7 mm محور x در جهت مثبت دستور حرکت x+700 صادر می شود.
در ماشینهای NC هریک از محورهای حرکت مجهز به یک وسیله محرک جداگانه می باشند. این وسیله محرک می توا
انواع شبکه ها از دیدگاه مقیاس بزرگی :
PAN : Personal Area Network
LAN : Local Area Network
MAN : Metropolition Area Network
RAN : Regional Area Network
WAN : Wide Area Network
در اواخر سال 1960 اولین شبکه بین چهار کامپیوتر که دوتایی آنها دردانشگاه MIT یکی در دانشگاه کالیفورنیا و دیگری در مرکز تحقیقات استنفورد قرار داشتند برقرار شد که این شبکه را ARPA Net نامگذاری کردند .
اولین ارتباط از راه دور در سال 1965 بین دانشگاه MIT و یک مرکز دیگر برقرار شد.
در سال 1967 اولین نامه الکترونیکی یا همان email ارسال شد و با موفقیت به مقصد رسید و در همان سال شبکه را به عموم مردم معرفی کردن .
برای ایجاد امنیت کامل در یک سیستم کامپیوتری،
علاوه بر دیواره های آتش و دیگر تجهیزات جلوگیری از نفوذ،
سیستمهای دیگری به نام سیستم های تشخیص نفوذ (IDS) مورد نیاز می باشد تا بتوان درصورتی که نفوذ گر
از دیواره آتش ، آنتی ویروس و دیگرتجهیزات امنیتی عبور کرد و وارد سیستم شد،
آن را تشخیص داده و چارهای برای مقابله باآن بیاندیشند.
سیستم های تشخیص نفوذ رامی توان از سه جنبه ی روش تشخیص،معماری و نحوه ی پاسخ به نفوذطبقه بندی کرد.
انواع روش های تشخیص نفوذ عبارتند از:
تشخیص رفتار غیرعادی و تشخیص سوءاستفاده (تشخیص مبتنی بر امضاء).
انواع مختلفی از معماری سیستمهای تشخیص نفوذ وجود دارد که به طورکلی می توان آنها را در دو دسته ی
مبتنی بر میزبان (HIDS) ، مبتنی بر شبکه (NIDS) تقسیم بندی نموده.
اصول طراحی مبدلهای حرارتی صفحه ای
مبدل حرارتی صفحهای اساساً" با توجه به سادگی نت و با توجه به نیازهای صنایع غذائی در دهه ۱۹۳۰ ابداع شدند و طراحی بهینه آن در دهه ۱۹۶۰ با تکامل موثرتر هندسه صفحات، مونتاژ اجزا و مواد بهینه تر برای ساخت واشرهای مورد استفاده در این نوع مبدلها کارآمدتر از گذشته مورد بازبینی قرار گرفت و موارد استفاده از آنها به تمامی صنایع راه پیدا کرد و توانسته است از رقیب خود (مبدلهای لولهای) پیشی بگیرد. به دلیل تنوع بسیار زیاد محدودههای طراحی این نوع مبدلها که در نوع صفحات و آرایش آنها قابل بررسی است عملاً شرکتهای سازنده آنها اطلاعات محرمانه طراحی را اعلام نمیکنند.
مبدلهای صفحهای واشردار تشکیل شده است از تعدادی صفحات نازک با سطح چین دار و یا موج دار که جریان سیال گرم و یا سرد را از هم جدا میکنند. صفحات دارای قطعاتی در گوشهها هستند و به نحوی چیدمان شدهاند که دو سیال عامل بصورت یک در میان میان صفحات جریان دارند. طراحی و واشربندی بهینه این امکان را ایجاد میکند که مجموعه از صفحات در کنار یگدیگر تشکیل یک مبدل صفحهای مناسب را بدهند. مبدلهای حرارتی صفحهای معمولاً "در جریان سیالتی با فشار پائین تر از ۲۵bar و دمای کمتر از ۲۵۰ درجه محدود میشوند. از آنجا که کانالهای جریان کاملاً کوچک هستند جریان قوی گردابهای و توربولانس موجب بزرگ بودن ضرایب انتقال حرارت و افت فشارها میگردد بعلاوه بزرگ بودن تنش برشی موضعی باعث کاهش تشکیل رسوب میشود. واشرها از نشتی سیال به بیرون مبدل جلوگیری میکنند و سیالها را در صفحات به شکل مورد نظر هدایت مینمایند. شکل جریان عموماً" به نحوی انتخاب میشوند که جریان سیالها خلاف جهت یکدیگر باشند.
انواع مبدلهای صفحه ای
صفحه ای حلزونی
مبدل حرارتی حلزونی سیال گرم ۱ و سیال سرد ۲
با پیچاندن دو صفحه بلند موازی به شکل یک حلزونی و با استفاده از مندرل و جوش دادن لبههای صفحات مجاور به صورتی که یک کانال را تشکیل دهند، شکل داده میشود. در هر یک از دو مسیر حلزونی یک جریان ثانویه ایجاد میشود که انتقال حرارت را افزایش و تشکیل رسوب را کاهش میدهد این نوع مبدلهای حرارتی بسیارفشرده هستند و طبعاً گران قیمت میباشند. سطح انتقال حرارت برای این مبدلها در محدوده ۰٫۵ تا m۲۵۰۰ و فشار کارکرد تا ۱۵ بار و دمای ۵۰۰ سانتیگراد محدوده میشود. این نوع مبدل بیشتر در کاربرد سیال لجن آلود، مایعات لزج و مایعاتی با ذرات جامد معلق شامل ذرات بزرگ و جریان دو فازی مایع – جامد استفاده میشود.
لاملا
مبدل حرارتی نوه لاملا (ریمن) شامل مجموعه کانالهای ساخته شده از صفحات فلزی نازک است که بطور موازی جوشکاری شده است. بدلیل آشفتگی زیاد جریان توزیع یکنواخت جریان و سطوح صاف بسادگی رسوب نمیگیرند. این طرح از مبدل میتواند تحمل فشار تا ۳۵ بار و دمای ۲۰۰ درجه سانتیگراد برای واشرهای تفلون و ۵۰۰ درجه سانتیگراد برای واشرهای آزبست میباشد.
صفحه ای واشردار
خصوصیات مکانیکی صفحه ای واشردار
یک مبدل حرارتی صفحهای تشکیل شده است از صفحات ثابت، صفحات فشار دهنده و تجهیزات پنوماتیکی و یا مکانیکی متعلقه و connection ports ها. سطح انتقال حرارت از یک سری صفحات با مجاری ورودی و خروجی تشکیل میشود.
مجموعه صفحات و فریم اصلی
هنگامیکه تعدادی از صفحات این نوع مبدلها بهم فشرده میشوند و تشکیل مبدل صفحهای را میدهند سوراخهای واقع در گوشههای این صفحات تشکیل تونلها و یا مجاری پیوستهای را میدهند که سیال را از مبدا ورودی به صفحات هدایت میکند که در آنجا با توجه به شکل شیارهای صفحات بین آنها توزیع میشود. مجموعه این دسته از صفحات با وسائل مکانیکی و یا هیدرولیکی بهم فشرده میشوند. جویهای جریان سیال که در مابین صفحات و خروجی گوشههای آن تشکیل میشود به نحوی چیدمان شده است که جریانهای سرد و گرم انتقال حرارت بشکل یک در میان در کنار یکدیگر قرار میگیرند بطوریکه همیشه دارای چیدمان مخالف جهت حرکت جریان میباشند. در طی عبور از مبدل حرارتی، سیال گرمتر بخشی از انرژی حرارتی خود را از طریق دیواره صفحهای نازک به سیال سردتر در سمت دیگر منتفل میکند و در نهایت سیالها به حفرههای لولهای شکلی که در انتهای دیگر مجموعه صفحات وجود دارد سرازیر میشوند و از مبدل خارج میشود. این صفحات میتوانند تا صد عدد در یک مبدل در کنار هم قرار گیرند و خدمات حرارتی خود را به صنعت ارائه دهند. مجموعه صفحات بین دو صفحه فلزی انتهائی بوسیله پیچ بهم وصل میشوند. صفحات و قطعات منفصل فریم از میله حامل بالائی آویزان هستند و در انتهای مبدل بوسیله میله راهنما نگهداری میشوند. میله حامل و میله راهنما به قطعه ثابت فریم پیچ و مهره میشود و بجز مبدلهای کوچک بقیه به تکیه گاه انتهائی متصل میشوند هر چند این نمیتواند همیشه یک قاعده کلی باشد. مجموعه صفحات مانند دسته لولهها در مبدلهای پوستهای و لولهای است با این تفاوت مهم که دو سمت جریان گرم و سرد در یک مبدل حرارتی صفحهای معمولاً دارای مشخصههای هیدرودینامیکی یکسانی میباشد. صفحه فلزی مبدل جزء اساسی این سیستم حرارتی محسوب میشود که اندازه بزرگترین صفحه از ۳/۴ متر ارتفاع و ۱/۱ متر عرض می باشد. نرخ انتقال حرارت برای یک صفحه در محدوده رنج ۰۱/۰تا ۶/۳ متر مربع قرار دارد که برای اجتناب از توزیع غیریکسان سیال درعرض صفحه، حداقل نسبت طول/عرض حدود ۸/۱ انتخاب میشود. ضخامت صفحات مبدل در محدوده رنج ۵/۰ تا ۲/۱ میلیمتر که در فواصل ۵/۲ تا ۵ میلیمتر از یکدیگر قرار گرفتهاند تا قطر هیدرولیکی ۴ تا ۱۰ میلیمتر را برای کانال عبور جریان ایجاد کند.
واشر بندی
با واشر بندی و عایقکاری دور لبه صفحه خارجی میتوان از نشتی جریان از کانالهای صفحات به محیط بیرون جلوگیری نمود. صفحات میتوانند از جنس استنلس استیل، تیتانیوم، تیتانیوم-پالادیوم و ... ساخته شوند که با توجه به ضریب هدایت گرمائی متفاوتی که دارا میباشند در طراحی مورد توجه واقع میشوند.
ماده ضریب هدایت گرمائی
استنلس استیل(۳۱۶) ۱۶٫۵ تیتانیوم ۲۰ اینکونل ۶۰۰ ۱۶ اینکولوی ۸۲۵ ۱۲ هستلوی C -۲۷۶ ۶/ ۱۰ مونل ۴۰۰ ۶۶ نیکل ۲۰۰ ۶۶ کاپرونیل ۱۰/۹۰ ۵۲ کاپرونیل ۳۰/۷۰ ۳۵
انواع صفحات مبدل
در عمل محدوده نسبتاً متنوع و زیادی از انواع صفحات مبدل وجود دارد اما به بررسی دو نوع نسبتاً جدید از این صفحات میپردازیم که کاربرد وسیعتری دارند. این دو نوع بنامهای شورون(chevron ) و واشبرد (washboard) در دسترس هستند. البته با توجه به تغییرات زیاد انتقال حرارت و فشار در هر الگوی صفحات موجدار روشهای پیشگوئی انتقال حرارت و فشار بر اساس دادههای تجربی همان الگوی مشخص استوار میباشد. در صفحات نوع واشبرد، صفحات مجاور بصورتی مونتاژ میشوند که کانال جریان سیال حرکتی آشفته و گردابی با سیال میدهد. این الگوی موجدار زاویهای بنام دارد که از آن به زاویه شورون نام میبریم.
که این زاویه در صفحات مجاور هم معکوس میشوند بصورتیکه وقتی صفحات به یکدیگر محکم میشوند موجهای سطحی نقاط تماس زیادی برقرار میکنند که به همین دلیل صفحات مبدل میتواند از مواد بسیار نازک تا حدود ۶/۰ میلیمتر طراحی شوند. تغییرات زاویه حدود بین رنج ۶۵ و ۲۵ درجه میباشد که این زاویه تعیین کننده مشخصههای انتقال حرارت و افت فشار صفحه مبدل میباشد.
مزایای مبدلهای صفحه ای
مبدلهای صفحهای بصورت ویژهای فشرده هستند و در نرخ انتقال حرارت حرارت مشابه فضای محدودتری در مقایسه با مبدلهای لوله دارد ضمن اینکه حجم کم و وزن کمتر و به طبع آن هزینههای کمتر در ساخت و بهره برداری و نگهداری را به همراه دارد. البته این نوع مبدل مانند همه تجهیزات صنعتی دارای محدودیتهائی هستند.
محدودیتها
حداکثر فشار کارکرد ۲۵ بار و در موارد کاملاً خاص حداکثر ۳۰ بار
علت اصلی عدم پیشرفت استفاده از این نوع مبدلهای در صنایع محدودیت ساخت صفحات بزرگ به جهت محدودیت در پرسکاری و ساخت صفحات میباشد. که عملاً مبدلهای حرارتی با اندازههای بیشتر از قابل ساخت نیستند یعنی در واقع بصرفه هم نیستند. دبیهای بزرگ جریان باعث افت فشارهای اضافی خواهد شد که از این منظر باعث محدودیت در ظرفیت گرمائی میشود که در مرتبه بالاتر طراحی واشرها به ترتیبی نیست که در فشارو دماهای بالاتر بتوان از این نوع مبدلها سود جست.
مبدلهای حرارتی صفحهای را نمیتوان برای کولینگ هوا استفاده کرد و حتی برای تبادل حرارت در کوپلهای هوا-هوا و یا گاز-گاز نیز مناسب نیستند ضمناً سیالاتی با لزجت بالا بویژه وقتی خنک کاری مورد نظر باشد با توجه به اثرات توزیع جریان در این نوع مبدلها ناکارآمد جلوه میکنند. ضمناً سرعتهای کم جریان سیال کمتر از، ضرایب کوچک انتقال حرارت و به تبع آن بازدهی غیر بهینه را در مبدلهای صفحهای ایجاد میکند که به همین علت در سرعتهای کمتر از نمی توان از این نوع مبدلها سود جست.
مبدلهای حرارتی صفحهای برای انجام کندانس خیلی مناسب نیستند که این مورد بخصوص در مورد بخارها در خلا نسبی صدق میکند زیرا فاصلههای باریک صفحات و توربولانس ایجاد شده باعث بوجود آمدن افت فشارهای قابل ملاحظهای در سمت بخار میشود. هرچند با توجه به پیشرفتهای حاصل شده در حال حاضر مبدلهای حرارتی صفحهای با طراحیهای ویژه را می توان در سیستمهای تبخیر و کندانس نیز استفاده کرد. مسیرها و چیدمان جریان
واژه مسیر یا گذرگاه (passage) در مبدلهای حرارتی صفحه ای به دستهای از کانالها گفته میشود که در آنها جهت جریان یکسان باشد. شکل ذیل چیدمان تک مسیری را که بنام چیدمان "U"و "Z" اطلاق میشود را مشاهده میکنید که هر چهار دهنه ورودی و خروجی در صفحه سر همگرا هستند (fixed-head plate) که این خاصیت امکان دمونتاژ مبدل را برای تعمیر و نگهداری بدون ایجاد مشکل در سیستم لوله کشی خارجی آن را فراهم میکند ضمناً در این نوع چیدمان توزیع جریان توربولانس تر از چیدمان نوعZ میباشد.
چیدمان چند مسیره شامل مسیرهای متصل شده بشکل سری هستند که در شکل زیر چیدمان شکل بندی با دو مسیر و سه یا چهارکانال نمایش میدهند که باختصار آنرا و یا می نامند. این سیستم بجز صفحه مرکزی که در آن جریان هم جهت روان است دارای جریان مخالف جهت میباشد.
شکل زیر سیستم جریان دو مسیر –یک مسیر (شکل بندی نوع ۱/۲) را نشان می دهد که در آن یک سیال در مسیر خط چین و سیال دیگر در دو مسیر خط توپر جریان دارد. در این نوع چیدمان نیمی از مبدل دارای جریان مخالف و نصف دیگر دارای جریان هم جهت میباشد که از آن به عنوان سیستم نامتقارن نام برده میشود و اگر یکی از سیالهای مورد استفاده دارای دبی حجمی بزرگتر از دیگری و یا افت فشار مجاز کوچکتر از جریان دیگر باشد مورد استفاده قرار میگیرد.
چیدمانهای چند مسیره همیشه باید ورودی و خروجی مبدل در هر دو سر ثابت و متحرک وجود داشته باشد .معمولاً تعداد مسیرها، تعدادکانالها (مسبر جریان در دوصفحه مجاور )به ازای هر مسیر، برای دو سیال یکسان و بصورت متقارن باشد.
توزیع غیرمتقارن در هر سیستم با کانالهای متصل بهم منجمله مبدلهای صفحهای می تواند مشکل آفرین باشد که مسئله باید در طراحی این نوع سیستمهای حرارتی بسیارمورد توجه قرار گیرد.
سطوح کاربرد و استفاده مبدلهای حرارتی صفحه ای
مبدلهای حرارتی صفحه ای با داشتن مشخصات خاص بطور گسترده ای در صنایع غذائی مورد استفاده قرار می گیرند که به دلیل همین خاصیت یعنی تعمیر و نگهداری آسان و تمیز کاری بسیار راحتر دامنه نفوذ خود را حتی تا صنعت خودرو سازی نیز گسترش داده است . کاربردهای عمومی مبدلهای حرارتی صفحه ای اصولاً در شرایط فازی مایع – مایع و جریانهای توربولانس می باشد. از موارد بسیار مهم استفاده
لینک پرداخت و دانلود پایین مطلب فرمت فایل : word تعداد صفحه : 29
مقدمه:
در ادبیات اقتصادی مکانیزم قیمتها وظیفه تخصیص منابع محدود را میان فعالیتهای مختلف اقتصادی بر عهده دارد. این تخصیص در حالت رقابت کامل، کارائی را حداکثر می کند. طبق این مکانیزم هنگامی که تقاضای کالایی افزایش یابد، قیمت آن افزایش یافته و تولید آن کالا سودآور می شود. سودآوری تولید منجر به افزایش عرضه شده و عرضه کالا به سمت تقاضای کالا حرکت می کند. عمل آزادانه مکانیزم قیمتها موجب خواهد شد تا تنها کسانی بتوانند از کالاها برخوردار شوند که قادر باشد قیمت آنها را بپردازد. نتیجه آنکه در این مکانیزم وضعیت کسانی که قدرت خرید کالاها را ندارند مورد توجه قرار نمی گیرد. در واقع جهت گیری اصلی مکانیزم قیمت ها دستیابی به کارائی بود.
بحث عدالت در آن مطرح نمی شود. هرچند که حالت رقابت کا مل از کارآیی و عدالت نسبی بیشتری نسبت به حالت وجود اعضای و نشست های اقتصادی بهرهمند می باشد.
برای دولت ها این مسئله مهمی است که بین دستیابی به کارآیی صرف و بی عدالتی احتمالی ملازم با آن و یا کارآیی کمتر ولی عدالت نسبی بیشتر یکی را انتخاب کنند. بی عدالتی هرچه شدیدتر باشد بحران های اجتماعی تشدید می شود. گسترش بحرانهای اجتماعی ممکن است حیات اقتصادی و به نفع آن کارآیی را به زیر سئوال ببرد.
این مسئله در شرایط توزیع ناعادلانه درآمد حادتر می شود. از اینرو دولت ها برای جلوگیری از گسترش بحران های اجتماعی و سیاسی ما عدالت نسبی را به بهای از دست رفتن بخشی از کارآیی مورد توجه قرار می دهند.
هفتاد میلادی به وجود آمد بکارگیری مینی کامپیوتر ها در صنعت ماشینکاری مرسوم گردید.
ماشین ابزارهایی که به کمک کامپیوتر هدایت می شدند CNC نام گرفتند. به کمک CNC به تدریج دقت مورد نیاز برای تولید قطعات پیچیده در صنایع مختلف مانند هوافضا و قالب سازی حاصل شد. با دست یابی به تلرانسهای بسیار دقیق برای تولید یک قطعه تدریجا اندیشه بالاتر بردن سرعت تولید نیز قوت یافت. با ساخت ابزارهایی با سختی زیاد، شرایط برای بالا بردن نرخ تولید نیز بهبود یافت «2». تا اینکه امروزه با بکارگیری تکنیکهای ماشینکاری با سرعتهای بالا قطعاتی با تلرانسهای دقیق در زمان بسیار کوتاهی تولید می گردند. برای دست یابی به قابلیت ماشین کاری با سرعتهای بالا می باید در زمینه های مختلف مانند طراحی سازه ای، کنترل ارتعاشات خود برانگیخته، یافتن بهترین نرخ براده برداری و کنترل حرکت و سرعت در راستای مسیر مورد نظر به پیشرفتهایی دست یافت.
فصل اول :
Cnc :
کنترل حرکت در راستای یک مسیر در ماشینهای CNC در واحد درونیاب صورت می گیرد. اکثر درونیابهای CNC فقط قابلیت درونیابی در راستای خط و دایره را دارا می باشند. به دلیل اینکه برای ماشینکاری یک مسیر منحنی شکل در حالت عمومی با بکارگیری این نوع درونیابها نیاز به شکسته شدن منحنی به قطعاتی از خط و دایره می باشد، لذا این دو نوع درونیابی به تنهایی پاسخگوی همه کاربردها از جمله ماشینکاری در سرعتهای بالا، نیستند. بنابراین بکارگیری نوع دیگری از درونیابها یعنی درونیابی در راستای یک منحنی ضروری به نظر می رسد. محققین مختلفی در این زمینه به تحقیق پرداخته اند و الگوریتمهای مختلفی را بر مبنای بکارگیری منحنی های پارامتری چند جمله ای در حالت عمومی ارائه داده اند.
Korn در ابتدا با توسعه درونیابی دایره ای، روشهایی را برای درونیابی منحنی ها درجه دو ارائه داد Korn , Yang , Kong, Huang , Yang با بکارگیری منحنی های پارامتری چند جمله ای روشهایی را برای درونیابی یک منحنی ارائه دادند اما این روشها قاعدتاً برای درونیابی یک منحنی درجه سه به کار می رود و در بکارگیری منحنی های درجه بالاتر کارآیی لازم را ندارند. به تدریج با بکارگیری مفاهیم B-Spline ها، Bedi و همکاران روش دیگری را برای درونیابی در راستای یک منحنی ارائه دادند. تقریباً در همین زمان Wang Yang , بر اساس پارامتر سازی طول کمان روش بسیار مناسبی را برای مسأله درونیابی Real-Time در راستای منحنی ارائه دادند.که این روش برای بکارگیری در CNC نسبتاً رواج یافت. با بهبود روش پارامتر سازی طول کمان توسط Wang , Wright این روش برای بکارگیری منحنی های درجه پنج بسیار کارا گردید. همچنین این روش توسط [1]Altintas نیز با بکارگیری پروفیل سرعت متفاوتی استفاده شده اتس. اما تمامی این روشه که مبتنی بر پارامتر سازی طول کمان می باشند روشهای تقریبی هستند.
با بکارگیری منحنی های خاصی بنام منحنی های فیثاغورث – هدوگراف[1] (PH) که زیر مجموعه ای از منحنی های پارامتری چند جمله ای می باشند مسأله درونیابی Real-Time را می توان به صورت تحلیلی نیز حل نمود. این منحنی ها که توسط Farouki , Sakkalis معرفی شدند خواص ریاضی ویژه ای دارند که این خواص قابلیت محاسبه طول کمان به صورت یک عبارت پارامتری چند جمله ای را ممکن می سازند. روشهای درونیابی مختلفی به صورت Real-Time بر مبنای انی منحنی ها توسط Farouki ارائه گردیده است. همچنین با بکارگیری منحنی های فیثاغورث-هدوگراف می توان سرعت پیشروی بهینه را برای حرکت بر روی یک مسیر منحنی با توجه به قدرت ماشین نیز بدست آورد.
همچنین ترکیب متفاوتی از انواع پروفیل های سرعت برای ماشینکاری یک مسیر منحنی بررسی شده و بهترین پروفیل سرعت جهت بکارگیری در ماشینکاری با سرعتهای بالا پیشنهاد می گردد. در بخشهای بعدی مسأله یافتن سرعت پیشروی بهینه بر روی یک منحنی فیثاغورث-هدوگراف با توجه به توانایی و قدرت ماشین مورد استفاده بیان شده و پروفیلهای سرعت متفاوتی برای حل این مسأله بکار گرفته می شوند.
ضمن اینکه با وارد کردن نیروهای برشی در قیود موجود و بکارگیری پروفیلهای سرعت مناسب تر، فرمول بندی جدیدی برای مسأله صورت می گیرد و جوابهای واقعی تری برای حل این مسأله ارائه می گردد. در پایان الگوریتمهای شبیه سازی شده برای درونیابی در راستای خط، دایره و منحنی با بکارگیری تکنیکهای خاصی عملاً بر روی دستگاه CNC موجود پیاده می گردند.
فصل دوم: مبانی ماشینکاری
1-2- مقدمه
سیستم های تولید پیشرفته و رباتهای صنعتی سیستم های اتوماتیک پیشرفته ای هستند که از کامپیوترها به عنوان واحد کنترل استفاده می کنند. کامپیوترها امروزه اصلی ترین قسمت اتوماسیون می باشند که سیستم های مختلف تولید مانند ماشینهای ابزار پیشرفته، ماشین های جوشکاری دستگاههای برش لیزری و غیره را کنترل می کنند.
پس از اینکه مکانیزم تولید اتوماتیک و تولید انبوه در اواخر قرن 18 توسعه یافت اولین ماشینهای ابزار اتوماتیک مانند ماشینهای کپی تراش بوجود آمدند [1]. نخستین ماشین ابزار کنترل عددی بوسیله شرکت پارسونز و MIT در سال 1952 ساخته شد. اولین نسل ماشین های کنترل عددی از مدارهای الکترونیکی دیجیتال استفاده می کردند و در حقیقت در آنها هیچ واحد پردازش مرکزی وجود نداشت. در دهه 1970 با بکارگیری مینی کامپیوترها به عنوان واحد کنترل ماشین های ابزار با کنترل عددی به کمک کامپیوتر (CNC) گسترش یافتند.
این ماشینها توانای ماشینکاری انواع شکلهای پیچیده در صنعت قالب سازی و هوافضا را به خوبی دارا بودند. از اواسط دهه 80 با توسعه صنعت ساخت ابزارهایی با سختی بالا ماشینکاری با سرعتهای بالا (HSM[2]) به منظور افزایش نرخ تولید رواج یافت. بکارگیری این قابلیت در CNC نیاز به داشتن اطلاعات ویژه ای درباره نرخ براده برداری بهینه ، پیش بینی وقوع ارتعاشات خود برانگیخته، طراحی سازه ای و نحوه کنترل محورها را بیش از پیش ضروری ساخت. امروزه علاوه بر این موارد انتخاب صحیح نرخ پیشروی و شتاب گیری محورها در ماشینکاری با سرعت بالا حایز اهمیت می باشد بطوری که سعی می شود به نحوی مقادیر بهینه آنها در ماشینکاری بکار گرفته شود.
هم اکنون با پیشرفت در صنعت الکترونیک و کامپیوتر ماشینهای CNC با بکارگیری چندین میکروپرسسور و کنترل کننده منطقی بطور موازی قابلیتهای بسیاری را دارا می باشند بطوری که این ماشینها قابلیت کنترل موقعیت و سرعت چندین محور و قابلیت برنامه ریزی بصورت Real-Time و نمایش گرافیکی مراحل مختلف کار و پروسه برش و نمایش تغییر اندازه قطعه در حل ماشینکاری را دارا می باشند.
در این فصل ضمن بیان مبانی کنترل عددی و معرفی اجزای CNC و ساختار برنامه ای آن به طبقه بندی سیستم های NC و معرفی HSM نیز پرداخته می شود.
2-2- مبانی کنترل عددی NC:
کنترل یک ماشین ابزار بوسیله یک برنامه تهیه شده را کنترل عددی (NC) می نامند. یک سیستم کنترل عددی توسط (Electronic Industrial Association) EIA بصورت زیر تعریف می گردد:
سیستم کنترل عددی سیستمی است که حرکات در آن بوسیله وارد کردن اطلاعات بصورت عددی در هر نقطه صورت می گیرد و این سیستم می باید این اطلاعات را به عنوان فرمان به صورت اتوماتیک اجرا کند.
در یک سیستم NC اطلاعات عددی مورد نیاز برای تولید یک قطعه بصورت برنامه قطعه به ماشین داده می شود که این برنامه در گذشته بوسیله نوار پانچ به ماشین وارد می شد. برنامه یک قطعه به صورت بلوکهایی از اطلاعات مرتب می شود که هر بلوک حاوی اطلاعات عددی مربوط به تولید یک قسمت از قطعه کار مانند: طول قطعه، سرعت برش، نرخ پیشروی و ... می باشد. اطلاعات ابعادی (طول، عرض، شعاع دوایر) و نوع درونیابی (خطی، دایره ای، در راستای منحنی) با توجه به طراحی قطعه مشخص می گردند. همچنین سرعت برش، نرخ پیشروی و توابع کمکی مانند خاموش و روشن کردن مایع خنک کننده جهت چرخش اسپیندل و ... با توجه به پرداخت نهایی سطح و تلرانسهای مورد نیاز در برنامه قطعه کار وارد می گردند.
در مقایسه با ماشینهای ابزار سنتی، سیستم NC جایگزین عملیاتی می شود که اپراتور بصورت دستی انجام می دهد. در ماشینکاری سنتی یک قطعه با حرکت ابزار در طول قطعه کار بوسیله چرخاندن دستگیره متصل به پیچهای راهنما توسط اپراتور تولید می شود. بنابراین نیاز به اپراتوری با تجربه و زبردست می باشد که بتواند قطعه مورد نظر را ماشینکاری کند. اما در ماشین های NC نیازی به اپراتور با مهارت نیست در حقیقت اپراتور فقط می باید مراقب درست انجام شدن روند ماشینکاری با توجه به دستورات منتقل شده به ماشین باشد.
کلیه ابعادی که در برنامه وارد می گردند بر اساس واحد طول-مبنی (Basic Length Unit) BLU مقیاس بندی شده و به محورها ارسال می گردند. واحد طول – مبنی (BLU) به عنوان اندازه نمو نیز شناخته می شود که در عمل مربوط به دقت سیستم NC می شود و در حقیقت کوچکترین اندازه نموی می باشد که هر یک از محورهای می توانند حرکت کنند. در سیستم NC برای صدور فرمان حرکت هریک از محورها ابتدا طول حقیقی بر واحد-طول مبنی تقسیم می گردد. بعنوان مثال در یک سیستم NC که در آن BLU=0.0001 است برای حرکت 0.7 mm محور x در جهت مثبت دستور حرکت x+700 صادر می شود.
در ماشینهای NC هریک از محورهای حرکت مجهز به یک وسیله محرک جداگانه می باشند. این وسیله محرک می توا
انواع شبکه ها از دیدگاه مقیاس بزرگی :
PAN : Personal Area Network
LAN : Local Area Network
MAN : Metropolition Area Network
RAN : Regional Area Network
WAN : Wide Area Network
در اواخر سال 1960 اولین شبکه بین چهار کامپیوتر که دوتایی آنها دردانشگاه MIT یکی در دانشگاه کالیفورنیا و دیگری در مرکز تحقیقات استنفورد قرار داشتند برقرار شد که این شبکه را ARPA Net نامگذاری کردند .
اولین ارتباط از راه دور در سال 1965 بین دانشگاه MIT و یک مرکز دیگر برقرار شد.
در سال 1967 اولین نامه الکترونیکی یا همان email ارسال شد و با موفقیت به مقصد رسید و در همان سال شبکه را به عموم مردم معرفی کردن .
برای ایجاد امنیت کامل در یک سیستم کامپیوتری،
علاوه بر دیواره های آتش و دیگر تجهیزات جلوگیری از نفوذ،
سیستمهای دیگری به نام سیستم های تشخیص نفوذ (IDS) مورد نیاز می باشد تا بتوان درصورتی که نفوذ گر
از دیواره آتش ، آنتی ویروس و دیگرتجهیزات امنیتی عبور کرد و وارد سیستم شد،
آن را تشخیص داده و چارهای برای مقابله باآن بیاندیشند.
سیستم های تشخیص نفوذ رامی توان از سه جنبه ی روش تشخیص،معماری و نحوه ی پاسخ به نفوذطبقه بندی کرد.
انواع روش های تشخیص نفوذ عبارتند از:
تشخیص رفتار غیرعادی و تشخیص سوءاستفاده (تشخیص مبتنی بر امضاء).
انواع مختلفی از معماری سیستمهای تشخیص نفوذ وجود دارد که به طورکلی می توان آنها را در دو دسته ی
مبتنی بر میزبان (HIDS) ، مبتنی بر شبکه (NIDS) تقسیم بندی نموده.