مهندسی بهداشت حرفهای : Occupational Health Engineering یا سلامت شغلی یا سلامت کار شاخهای است ازعلم بهداشت وعبارتست از شناسائی، ارزیابی و کنترل عوامل زیان آور موجود در محیط کار به همراه یکسری مراقبتهای بهداشتی درمانی به منظور سالمسازی محیط کار و حفظ سلامت نیروی کار . مهندسی بهداشت حرفهای را میتوان به طور خلاصه علم و هنر تامین سلامت در محیطهای شغلی تعریف کرد و یک مهندس بهداشت حرفهای یا متخصص سلامت شغلی کسی است که وظیفه شناسایی، ارزشیابی و حذف یا کنترل عوامل مخاطره آمیز شغلی را به عهده دارد
نخستین کمیته مشترک سازمان بهداشت جهانی وسازمان بینالمللی کار که درسال ۱۹۵۰ تشکیل شد،مهندسی بهداشت حرفهای را چنین تعریف نموده است:تامین و ارتقاء عالی ترین سطح سلامت جسمی، روانی واجتماعی برای کارگران همهٔ مشاغل، پیشگیری ازبیماریها و حوادث ناشی ازکار، بکارگماردن نیروی کار درمحیط وشغلی که از لحاظ جسمی و روانی قدرت انجام آنرا دارد و بطورخلاصه تطابق کاربا انسان یا ارگونومی که از کلمه یونانی برگرفته شده است.[۲]
مهندسی بهداشت حرفهای رشتهای است که به محیط کار بر میگردد. در واقع متخصصان در این رشته خطرهای بالقوهای که در محیط کار وجود دارد را شناسایی میکنند و در مراحل بعد به اندازهگیری و ارزیابی این خطرات و کنترل آنها میپردازند. البته کسانی که علم بیشتری در این رشته دارند، خطرهای شغلی را پیش بینی نیز میکنند. به این نکته باید اشاره کرد که کسب این مهارتها به نحوه تربیت دانشجویان بستگی دارد.
تاریخچه بهداشت حرفهای
تا قرن شانزدهم میلادی در کتب طبی به بهداشت حرفهای و ارتباط بیماریهای مختلف با شغل افراد اشاره قابل توجهی نشده است. از قرن شانزدهم به بعد در تاریخ به چهرههای درخشانی بر میخوریم که تمام عمر خود را صرف تشخیص وجلوگیری از بیماریهای ناشی از کار نموده و خدمات با ارزشی انجام دادهاند.
اولین فردی که آثار ارزندهای در مورد بهداشت حرفهای از خود به یادگار گذاشته است طبیبی از ناحیه ساکسونی در ایتالیا بنام اگریکولا بود او کتابی در ۱۲ جلد درباره اکتشافات و استخراج فلزات. ابزار کار. حوادث و بیماریهای ناشی از کار و ... نوشت که در سال ۱۵۵۶ منتشر شد. بعداز اودر سال ۱۵۶۷ پزشک دیگری اهل سوئیس بنام پاراسلسوس کتابی درباره بیماریهای وابسته به شغل در بین کارکنان معدن ذوب و فلزات منتشر کرد. در سال ۱۶۳۳ پدر طب کار یا همان رامازینی بدنیا آمد که یکی از پیشقدمان بزرگ قرن ۱۷ در زمینه بهداشت حرفهای میباشد. کتاب معروفش در باره بیماریهای حرفهای در سال ۱۷۰۰ میلادی منتشر شد. او برای اولین بار به پزشکان توصیه کرد که علاوه بر سوالات که در زمان معاینه از بیماران میپرسیدند از همه بپرسند شغل شما چیست این جمله کوتاه نقطه عطفی در تاریخ بهداشت حرفهای و طب کار بشمار آمده است
بهداشت حرفهای در جهان
پدیداری دانش بهداشت حرفهای، به عنوان یک تخصص ویژه وجدا از دیگردانشها، به نسبت تازه است، اما مفاهیم مطرح شده دراین دانش از زمانهای کهن موردتوجه بوده است.
چهارصد سال پیش ازمیلاد مسیح بقراط اثرات زیان آور مواجهه با سرب راشناسایی کرده و در نوشتههایش یاد میکند. درآن زمان عمدتاً از بردگان جهت مشاغل سخت استفاده میگردید وازآنجاکه حکومتها هیچگونه مسئولیتی در برابر بردگان نداشتند، بدیهی است که اقدامات خاصی نیزبرای حل مشکلات آنها صورت نمیپذیرفت.[۵]
درنخستین سدهٔ پس ازمیلاد، پلنی(۲۳تن۷۹ب. م) که یک دانشمند رومی بود، از مثانهٔ حیوانات یک ماسک تنفسی ساخت وکاربرد آن را برای کار در معادن پیشنهاد نمود
در سال ۱۴۷۳ میلادی النبوگ Ulrich Ellenbog نخستین نشریه بهداشتی در مورد بیماریهاوآسیبهای شغلی را انتشار داد. او در این مجموعه در باره بیماریهای شغلی وصدماتی که در میان کارگران طلا شایع است مطالبی را به رشته تحریر در آورده است. درقرن شانزدهم آگریکولا (آگریکولا) و پاراسلوس (پاراسلسوس) در باره بیماریهای شغلی کارگران ذوب آهن، فلزات و بیماریهای معدنچیان و مسمومیت جیوه آثاری به جای گذاردهاند. کتاب آگریکولا در سال ۱۵۵۶ یکسال بعد از مرگ او و کتاب پاراسلوس در سال ۱۵۶۷ منتشر شد.
رامازینی، نخستین پزشکی است، که به توصیف پیشههای گوناگون و بیماریهای ناشی از آنها میپردازد. برای نمونه فلج دستها از میان رفتن دندانها، نا شکیبایی و صورتهای نزار و رنجور سفالگران در برابر سرب را توصیف کرده است.
توماس الیور در کتاب خود که در سال ۱۹۰۸ منتشر کرد به بیماریهای شغلی اشاره نموده است. دکتر توماس لِگ (Thomas moris legge) در کتاب خود به نام جذب و مسمومیت سرب که به کمک دکتر گادبای در سال ۱۹۱۲ منتشر کرد به مضرّات این فلز اشاره مینماید.
در سال ۱۹۱۸،آلیس هامیلتون، رشتهٔ بهداشت صنعتی را در دانشگاه هاروارد امریکا پایهگذاری کرد. بررسیهای گستردهٔ او در زمینه سم شناسی، به ویژه مسمومیت با فسفر سفید در صنایع کبریت سازی و مسمومیت سرب، موجب رشد سریع بهداشت حرفهای شد.
بر اساس فعالیتهای گونا گون برای بهبود شرایط محیط کار و نیز، جنبشهای کارگری، در سال ۱۹۱۹،سازمان بینالمللی کار (سازمان بینالمللی کار) بر پا شد. پس از آن، به علت موفقیتهایی که امریکا در جنگ جهانی در زمینه تولید تسلیحات نظامی به دستآورد، نه تنها صنایع بلکه بهداشت حرفهای در این کشور به سرعت رشد یافت. در آن زمان، شعار تبلیغاتی سازمان خدمات بهداشتی امریکا بر تندرستی کار گر تاکید داشت: "کارگر را سالم نگهدار تا خوب کار کند"
توسعهٔ سریع صنایع وعلوم درقرن بیستم واستفاده بشر ازمواد گوناگون درمصارف صنعتی، ازیک طرف برتعداد و دامنه بیماریهای ناشی ازکارافزود وازطرف دیگر وسیله تحقیق و بررسی برروی جلوگیری ودرمان آنهارابیش ازپیش فراهم نمود. رشد اجتماعات کارگری وتشکیل اتحادیهها، و سندیکاهای کارگری رانیز میتوان از عوامل موثردربهبودبهداشت محیطهای کار دانست
وقایع نگاری سلامت شغلی در گذر تاریخ
برخی از رویدادهای مهم سلامت شغلی در کشورهای غربی عبارت هستند ا ز:
۱۸۱۵ میلادی: نخستین قانون ایمنی به وسیلهٔ ادارهٔ معادن در امریکا به تصویب رسیدبر پایه این قانون لازم شد هر معدن دارای دو راه خروج باشد، تا در صورت ریزش و بسته شدن یکی از آنها، راه خروج دیگر باز باشد.
۱۸۱۵میلادی: هامفری دیوی، نخستین وسیله ایمنی را اختراع کرد. بنا به درخواست انجمن پیشگیری از حوادث در معادن ذغال سنگ و با تلاش فراوان، دیوی توانست چراغ ایمنی را برای معادن ذغال سنگ طراحی کند.
کارگر جوانی که گاری حاوی ذغال سنگ را در معدن حمل میکند[۸]در سالهای ۱۸۴۴-۱۸۴۲ قوانینی برای بهبود شرایط کار در بریتانیا به تصویب رسید
۱۸۳۳ میلادی: نخستین قانون صنایع در انگلستان به تصویب رسید. تا پیش از تصویب این قانون، ۱۲ ساعت کار در روز اجباری بود.
۱۸۶۴ میلادی: قانون ایمنی در معادن پنسیلوانیا به تصویب رسید.
۱۸۶۶ میلادی: اداره ملی آتشنشانی در امریکا تاسیس شد.
۱۸۶۷ میلادی: نخستین برنامهٔ بازرسی صنایع به وسیلهٔ مسوولان دولتی در ایالت ماساچوست امریکا تدوین شد.
۱۸۹۶ میلادی:انجمن ملی حفاظت در برابر آتش (NFPA) در امریکا تاسیس شد
۱۹۰۶ میلادی: نخستین بررسی منظم از حوادث شغلی منجر به مرگ در پنسیلوانیا انجام شد.
۱۹۱۴: در امریکا، دفتر بهداشت و سلامت در صنایع، به وسیلهٔ اداره خدمات بهداشت همگانی تاسیس شد. این مرکز پس از چندین بار تغییر نام در سال ۱۹۷۰ به نام موسسهٔ ملی ایمنی و بهداشت شغلی (NIOSH) نامگذاری شد.
۱۹۳۱ میلادی: نخستین الگوی علمی دربارهٔ علل بروز حوادث، به وسیلهٔ هانریش ارائه شد.
۱۹۵۶ میلادی: برنامههای پیشگیری از حوادث به وسیله اداره بهداشت همگانی امریکا ارائه شد.
۱۹۶۸ میلادی: جانسون، رییس جمهور وقت امریکا لزوم برپایی قوانین دولتی ایمنی و بهداشت را اعلام کرد.
۱۹۷۰: در زمان ریاست جمهوری نیکسون، قانون یاد شده به تصویب رسید، که موجب ایجاد ادارهٔ ایمنی و بهداشت شغلی (OSHA) وموسسهٔ ملی ایمنی و بهداشت شغلی (NIOSH) شد
بهداشت حرفهای در ایران
در مرداد سال ۱۳۲۵ وزارت کار و امور اجتماعی تشکیل و قانون موقت کار را تدوین نمود و در سال ۱۳۳۷ قانون مزبور با اصلاحات و تغییراتی به صورت قانون به تصویب رسید و اجرای وظایف مربوط به بهداشت و ایمنی مندرج در قانون کار وقت به عهده اداره کل بازرسی کار قرار گرفت.
در سال ۱۳۴۶ در حوزه معاونت فنی وزارت بهداشت وقت، اداره بهداشت محیط کار در تشکیلات اداره کلّ بهداشت محیط پیش بینی شد و سپس در سالهای ۱۳۴۷، ۱۳۴۸ و ۱۳۴۹، اداره طب صنعتی در اداره کل خدمات بهداشتی حوزه معاونت فنی وزارت بهداری وقت تاسیس گردید. سپس در سالهای ۱۳۵۰، ۱۳۵۱ و ۱۳۵۲ تا اوایل ۱۳۵۳، اداره بهداشت محیط کار به بهداشت محیط کار و هوا تغییر نام داد و اداره طب صنعتی همچنان به وظایف خود ادامه میداد. در اواخر دهه ۱۳۵۰ در حوزه معاونت امور بهداشتی و جمعیت و تنظیم خانوادهوزارت بهداری وقت اداره بهداشت حرفهای در دفتر خدمات بهداشتی ویژه که بعداً به اداره کل خدمات بهداشتی ویژه تغییر نام داد تشکیل گردید.
تا قبل از سال ۱۳۶۲ وزارت کار و امور اجتماعی و وزارت بهداشت وقت مشترکاً بر نیروی کار و محیط کار نظارت و مراقبت داشتند. به منظور جلوگیری از دو باره کاری و ارتقاء کیفیت ارائه خدمات برای حفظ و بالا بردن سلامت شاغلین، درسال۱۳۶۲ مسائل بهداشتی محیط کار و کارگر، از وظایف وزارت بهداشت، درمان و آموزش پزشکی شناخته شد و جهت انجام این وظیفه، اداره کل بهداشت حرفهای تشکیل و مسئولیت حفظ و ارتقاء سلامت نیروهای شاغل کشور در مشاغل گوناگون جامعه را عهده دار گردید. با توجه به تصویب قانون جدید کار توسط مجمع تشخیص مصلحت نظام جمهوری اسلامی ایران در سال ۱۳۶۹، به حکم ماده ۸۵ قانون کار وزارت بهداشت، درمان و آموزش پزشکی عهده دار بهداشت و درمان کارگران و وزارت کار و امور اجتماعی مسئول ایمنی کارگران میباشد
هدف کلی مهندسی بهداشت حرفهای
نگهداری و بهبود حداکثر سلامت جسمی، روانی و اجتماعی کارکنان مشاغل مختلف از طریق پیشگیری از خطرات تهدید کننده سلامت کارگران، مطالعه شرایط نامناسب محیط کار و اثرات سوء آن بر تندرستی آنان میباشد. کارشناسان بهداشت حرفهای که دراین زمینه فعالیت دارند، با شناختی که ازمحیط کار، فرایندهای کاری، خطرات وعوامل زیانآور محیط کار، ونیزتاثیراتی که این عوامل بر سلامت شاغلین میگذارند، از طریق بررسی، ارزیابی، اندازهگیری وکنترل عوامل زیان آورمحیط کار، درصددسالمسازی وبهسازی محیط کاربرمیایند. بنابراین ازاین طریق باعث کنترل بیماریها، عوارض وآسیبهای شغلی ودرنهایت تامین سلامت شاغلین میگردند.
برنامههاوفعالیتهای بهداشت حرفهای
به منظوردست یابی به هدف فوق دربهداشت حرفهای برنامههایی درنظرگرفته شده است که به طورخلاصه عبارتنداز:
مهندسی بهداشت حرفهای نه تنهامسائلی راکه دراثرتماس باعوامل زیان آورمحیط کاربروزمی نمایددرنظرمی گیرد، بلکه سایرمسائل ازقبیل:پیشگیری ازبیماریها، بهداشت عمومی محیط کار، آب آشامیدنی، نظافت عمومی وفردی، دفع حشرات، دفع زباله وفضولات، نهارخوریها، حمام، توالت، دوش ودستشویی، وسایل وحفاظت فردی وجمعی وغیره رانیز درمحیطهای کاری درمدنظردارد.
عوامل زیان آور محیط کار
ابزار اندازهگیری نور،نورسنج
به طورکلی میتوان گفت که بهداشت حرفهای علمی چند رشتهای بوده وترکیبی از علوم پزشکی ومهندسی میباشد. یکی ازبرنامههای اصلی بهداشت حرفهای، مطالعهٔ شرایط نامناسب محیط کار یابه عبارتی بررسی وارزیابی عوامل زیان آورمحیط کار میباشد، که این عوامل خودبه پنج دسته تقسیم میشوند:
چنانچه هریک ازعوامل یادشدهٔ فوق ازحدتحمل فیزیولوژیک بدن انسان پیشی گیرد، عوارض وآسیبهایی راایجادخواهدنمود. دربهداشت حرفهای عمده کوششها برشناسایی این عوامل، اندازهگیری ودرصورت نیاز کنترل آنها متمرکزاست.
هبلکس چیست؟
هبلکس نام تجاری است که برای بتن هوادار اتوکلاوی (Autoclaved Aerated Concrete – AAC) تولید شده در اروپا قرارداده اند که همان بتن سبک، بتن گازی سبک یا متخلخل میباشد و در سال ۱۹۲۴ میلادی توسط یک مهندس آرشیتکت سوئدی اختراع و به جامعه مهندسی معرفی گردید.
این بتن هم اکنون در اروپا و آمریکا به نام های تجاری “YTONG” و یا “HEBELEX” ارایه میشود. ساخت این محصول به روش اختلاط و پخت مواد اولیه انجام می گیرد.
حدود ۶۰% وزنی مواد اولیه سنگدانه سیلیسی میکرونیزه شده با خلوص بالای ٨٠% میباشد و این میزان سیلیس غیر قابل جایگزینی با سایر سنگدانه های دیگر میباشد.
مصرف سیمان نیز کمتر از ١٠٠ کیلوگرم در هر مترمکعب میباشد.
پودر اکسید آلومینیوم مورد استفاده با دانه بندی تعریف شده و مخصوصی میباشد.
لازم بذکر است بکارگیری سیلیس از معادن و خردایش (خرد کردن) آنها تا حد زیادی تولید را غیر اقتصادی می نماید، در نتیجه کنترل کیفیت سیلیس در خط تولید نیاز به بررسی بیشتری دارد.
هبلکس مخلوطی از سیلیس، سیمان، آهک و پودر آلومینیوم درحرارت ۲۰۰ درجه سانتی گراد و فشار ۱۲ اتمسفر در اتوکلاوها پخته و به قطعات مورد نیاز ساختمانی بریده میشود.
این محصول امتیازات ویژه ای نیز نسبت به دیگر مصالح دارد از جمله این که عایق مناسب حرارتی و صدا میباشد، در برابر فشار مقاوم است، با ابزار معمولی به آسانی بریده میشود و میتوان آن را به هر شکل تراشید، سوراخ کرد و یا تغییر شکل داد.
در موقعیت کنونی بتن سبک یا هبلکس بهترین ماده برای ساخت ساختمان های کوچک و بزرگ مسکونی، خدماتی، صنعتی و کشاورزی بویژه در مناطق زلزله خیز میباشد.
روش تولید هبلکس (HEBELEX)
سیلیس از مهمترین مواد اولیه بتن سبک هبلکس میباشد و از معادن داخل کشور تهیه میشود، آهک نیز بصورت فرآوری شده و پخته شده به داخل کارخانه حمل می گردد.
در خط تولید بتن سبک یا هبلکس ۳ سیلوی نگهداری مواد اولیه وجود دارد که عبارتند از: سیلوی سیلیس، سیلوی آهک و سیلوی سیمان، که مواد اولیه پس از نگهداری در این سیلوها به تدریج وارد خط تولید میشوند. سیلیس، آهک و سیمان بوسیله الواتورهای مخصوص از سطح زیرین سیلوها به داخل آنها منتقل و درمدت زمان مشخص وارد خط تولید میشوند.
در نخستین مرحله از تولید بتن سبک، مواد اولیه شامل سیلیس و آب در آسیاب شماره ۱ بصورت دوغاب یا گل در آورده میشود و در آسیاب شماره ۲ مواد مورد مصرف شامل سیلیس، آهک و سیمان بصورت خشک پس از توزین مخلوط میشوند و در واقع دو آسیاب در این مرحله وجود دارد آسیاب شماره ۱ (آسیاب مواد تر) و آسیاب شماره ۲ (مواد خشک) که پس از مخلوط شدن و فرآوری، مواد به محل قالب ریزی انتقال داده میشوند.
پیش از آنکه مواد به قسمت قالب ریزی انتقال یابند بدقت توزین شده و در میکسرهای مخصوصی در مدت زمان لازم و مشخص مخلوط میشوند. در این بخش ۳ نوع مواد اولیه وجود دارد که توزین نهایی مواد در آنها انجام میشود. هر ۳ نوع مواد شامل آهک، سیمان و سیلیس در این بخش توزین شده و وارد آسیاب های خشک و تر میشوند
مرحله بعدی کار مرحله قالب ریزی مواد است که مواد مخلوط شده در داخل قالب هایی که هر کدام تقریبا ۳ متر معکب گنجایش دارند ریخته میشوند.
مخلوط متناسب از سیلیس، آهک، سیمان و آب که با شیوه ای هماهنگ در میکسرها عمل آوری شده است نیمی از حجم قالب ها را پر می کند. این مواد پس فعل و انفعالات شیمیایی در زمانی مشخص بصورت قالب های مورد نظر در می آیند این زمان حدود ۳.۵ ساعت به درازا می کشد. اینک زمان آن رسیده است تا قالب های تولیدی را به خط ریخته گری انتقال دهند. این قالب ها بوسیله شیفتر به خط ریخته گری کارخانه برده میشوند تا این مرحله از کار انجام شود.
قالب های تولیدی را بامازوت، اندود می کنند تا در مرحله ریختهگری چسبندگی ایجاد نشود.
بدلیل فعل و انفعالات شیمیایی در مرحله قالب ریزی، مواد اولیه حرارتی حدود ۷۰ درجه سانتی گراد تولید می کنند.
میزان حرارت موجود و آمادگی قالب ها برای خط برش بوسیله متخصصان کارخانه اندازه گیری میشود تا پس از اعلام آمادگی قالبها به خط برش منتقل شود.
بعلت تغییراتی که میتواند در مواد اولیه رخ دهد، این مواد پیش از ورود به خط، کنترل شده و آزمایش های شیمیایی روی آنها انجام میشود و پس از ورود به خط نیز بنا به کیفیتی که درون قالب ها دارد، تحت آزمایش و کنترل کیفی قرار می گیرند.
در این بخش از کارخانه سطح خارجی قالب ها برداشته میشود تا یک سطح هموار و مشخصی از تمام قالب ها نمایان گردد در این قسمت دیوارهای جانبی قالب ها جدا و از واگن ها جدا میشوند و آنگاه به بخش برش انتقال می یابند. در این بخش پس از دیواره برداری از قالب ها، ابتدا برش های عرضی به قالبها داده میشود و آنگاه با دستگاههای برش و با دقت و توجه خاص کارکنان و متخصصان ک
هبلکس چیست؟
هبلکس نام تجاری است که برای بتن هوادار اتوکلاوی (Autoclaved Aerated Concrete – AAC) تولید شده در اروپا قرارداده اند که همان بتن سبک، بتن گازی سبک یا متخلخل میباشد و در سال ۱۹۲۴ میلادی توسط یک مهندس آرشیتکت سوئدی اختراع و به جامعه مهندسی معرفی گردید.
این بتن هم اکنون در اروپا و آمریکا به نام های تجاری “YTONG” و یا “HEBELEX” ارایه میشود. ساخت این محصول به روش اختلاط و پخت مواد اولیه انجام می گیرد.
حدود ۶۰% وزنی مواد اولیه سنگدانه سیلیسی میکرونیزه شده با خلوص بالای ٨٠% میباشد و این میزان سیلیس غیر قابل جایگزینی با سایر سنگدانه های دیگر میباشد.
مصرف سیمان نیز کمتر از ١٠٠ کیلوگرم در هر مترمکعب میباشد.
پودر اکسید آلومینیوم مورد استفاده با دانه بندی تعریف شده و مخصوصی میباشد.
لازم بذکر است بکارگیری سیلیس از معادن و خردایش (خرد کردن) آنها تا حد زیادی تولید را غیر اقتصادی می نماید، در نتیجه کنترل کیفیت سیلیس در خط تولید نیاز به بررسی بیشتری دارد.
هبلکس مخلوطی از سیلیس، سیمان، آهک و پودر آلومینیوم درحرارت ۲۰۰ درجه سانتی گراد و فشار ۱۲ اتمسفر در اتوکلاوها پخته و به قطعات مورد نیاز ساختمانی بریده میشود.
این محصول امتیازات ویژه ای نیز نسبت به دیگر مصالح دارد از جمله این که عایق مناسب حرارتی و صدا میباشد، در برابر فشار مقاوم است، با ابزار معمولی به آسانی بریده میشود و میتوان آن را به هر شکل تراشید، سوراخ کرد و یا تغییر شکل داد.
در موقعیت کنونی بتن سبک یا هبلکس بهترین ماده برای ساخت ساختمان های کوچک و بزرگ مسکونی، خدماتی، صنعتی و کشاورزی بویژه در مناطق زلزله خیز میباشد.
روش تولید هبلکس (HEBELEX)
سیلیس از مهمترین مواد اولیه بتن سبک هبلکس میباشد و از معادن داخل کشور تهیه میشود، آهک نیز بصورت فرآوری شده و پخته شده به داخل کارخانه حمل می گردد.
در خط تولید بتن سبک یا هبلکس ۳ سیلوی نگهداری مواد اولیه وجود دارد که عبارتند از: سیلوی سیلیس، سیلوی آهک و سیلوی سیمان، که مواد اولیه پس از نگهداری در این سیلوها به تدریج وارد خط تولید میشوند. سیلیس، آهک و سیمان بوسیله الواتورهای مخصوص از سطح زیرین سیلوها به داخل آنها منتقل و درمدت زمان مشخص وارد خط تولید میشوند.
در نخستین مرحله از تولید بتن سبک، مواد اولیه شامل سیلیس و آب در آسیاب شماره ۱ بصورت دوغاب یا گل در آورده میشود و در آسیاب شماره ۲ مواد مورد مصرف شامل سیلیس، آهک و سیمان بصورت خشک پس از توزین مخلوط میشوند و در واقع دو آسیاب در این مرحله وجود دارد آسیاب شماره ۱ (آسیاب مواد تر) و آسیاب شماره ۲ (مواد خشک) که پس از مخلوط شدن و فرآوری، مواد به محل قالب ریزی انتقال داده میشوند.
پیش از آنکه مواد به قسمت قالب ریزی انتقال یابند بدقت توزین شده و در میکسرهای مخصوصی در مدت زمان لازم و مشخص مخلوط میشوند. در این بخش ۳ نوع مواد اولیه وجود دارد که توزین نهایی مواد در آنها انجام میشود. هر ۳ نوع مواد شامل آهک، سیمان و سیلیس در این بخش توزین شده و وارد آسیاب های خشک و تر میشوند
مرحله بعدی کار مرحله قالب ریزی مواد است که مواد مخلوط شده در داخل قالب هایی که هر کدام تقریبا ۳ متر معکب گنجایش دارند ریخته میشوند.
مخلوط متناسب از سیلیس، آهک، سیمان و آب که با شیوه ای هماهنگ در میکسرها عمل آوری شده است نیمی از حجم قالب ها را پر می کند. این مواد پس فعل و انفعالات شیمیایی در زمانی مشخص بصورت قالب های مورد نظر در می آیند این زمان حدود ۳.۵ ساعت به درازا می کشد. اینک زمان آن رسیده است تا قالب های تولیدی را به خط ریخته گری انتقال دهند. این قالب ها بوسیله شیفتر به خط ریخته گری کارخانه برده میشوند تا این مرحله از کار انجام شود.
قالب های تولیدی را بامازوت، اندود می کنند تا در مرحله ریختهگری چسبندگی ایجاد نشود.
بدلیل فعل و انفعالات شیمیایی در مرحله قالب ریزی، مواد اولیه حرارتی حدود ۷۰ درجه سانتی گراد تولید می کنند.
میزان حرارت موجود و آمادگی قالب ها برای خط برش بوسیله متخصصان کارخانه اندازه گیری میشود تا پس از اعلام آمادگی قالبها به خط برش منتقل شود.
بعلت تغییراتی که میتواند در مواد اولیه رخ دهد، این مواد پیش از ورود به خط، کنترل شده و آزمایش های شیمیایی روی آنها انجام میشود و پس از ورود به خط نیز بنا به کیفیتی که درون قالب ها دارد، تحت آزمایش و کنترل کیفی قرار می گیرند.
در این بخش از کارخانه سطح خارجی قالب ها برداشته میشود تا یک سطح هموار و مشخصی از تمام قالب ها نمایان گردد در این قسمت دیوارهای جانبی قالب ها جدا و از واگن ها جدا میشوند و آنگاه به بخش برش انتقال می یابند. در این بخش پس از دیواره برداری از قالب ها، ابتدا برش های عرضی به قالبها داده میشود و آنگاه با دستگاههای برش و با دقت و توجه خاص کارکنان و متخصصان ک
گروت چیست؟
گروت چیست؟ گروت از سیمان ، ماسه ،آب و یک سری افزودنی تشکیل شده است معمولا از گروت ها برای جاهایی که احتیاج به مقاومت بالا و ترمیم کردن ترک ها با عمق زیاد ، استفاده می شود.همچنین برای زیر سازی تجهیزات سنگین از گروت استفاده می شود. کاربرد گروت مشابه ملات می باشد. گروت برای زیر صفحه ستون ها، ریل ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها ، توصیه می شود.یکی از موادی که در گروت استفاده می شود باعث منبسط شدن شده ومکانی که در آن گروت ریخته شده و قابل دسترسی نیست را کامل پر می کند. گروت سیمانی انبساط کنترل شده ای دارد و هرگز منقبض نمی شود.زمان اجرای گروت آماده حداکثر 30 دقیقه است زیرا موجب کاهش انبساط آن می شود.یکی از دلایلی که باعث می شود که گروت مقاوت بالایی داشته باشد نسبت پایین اب به سیمان میباشد . یکی از خواص دیگر گروت،سخت شدن در مدت زمان کوتاه ورسیدن به مقاومت نهایی مطلوب میباشد.دانه بندی گروت می بایست طبق استاندارد بوده زیرا دانه بندی درشت باعث دوفازی شدن گروت و دانه بندی ریز باعث افت مقاومت گروت می شود.
گروت از سیمان ، ماسه ،آب و یک سری افزودنی تشکیل شده است معمولا از گروت ها برای جاهایی که احتیاج به مقاومت بالا و ترمیم کردن ترک ها با عمق زیاد ، استفاده می شود.همچنین برای زیر سازی تجهیزات سنگین از گروت استفاده می شود. کاربرد گروت مشابه ملات می باشد. گروت برای زیر صفحه ستون ها، ریل ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها ، توصیه می شود.یکی از موادی که در گروت استفاده می شود باعث منبسط شدن شده ومکانی که در آن گروت ریخته شده و قابل دسترسی نیست را کامل پر می کند. گروت سیمانی انبساط کنترل شده ای دارد و هرگز منقبض نمی شود.زمان اجرای گروت آماده حداکثر 30 دقیقه است زیرا موجب کاهش انبساط آن می شود.یکی از دلایلی که باعث می شود که گروت مقاوت بالایی داشته باشد نسبت پایین اب به سیمان میباشد . یکی از خواص دیگر گروت،سخت شدن در مدت زمان کوتاه ورسیدن به مقاومت نهایی مطلوب میباشد.دانه بندی گروت می بایست طبق استاندارد بوده زیرا دانه بندی درشت باعث دوفازی شدن گروت و دانه بندی ریز باعث افت مقاومت گروت می شود.
خواص گروت
انبساط کنترل شده ای دارد و هرگز منقبض نمی شود.
سهولت اختلاط با آب، سهولت استفاده و روانی مناسب در تزریق از قبیل اتصالات سازه های پیش ساخته
اجرای زیرسازی های فولادی و فونداسیون ماشین آلات سنگین
پر کردن زیر صفحه ستون ها، حفره ها، شکافها و ترک های عمیق کف و دیوار و فضا های آزاد بین اجزاء بتنی به منظور تقویت تحمل بارپذیری
مقاومت نهایی گروت (حداقل kg⁄〖cm〗^2 550 ) در حالت سیال
مقاومت نهایی گروت (حداقل kg⁄〖cm〗^2 700 ) در حالت خمیری
بدون نیاز به عمل آوری طولانی مدت (حداکثر زمان عمل آوری 3 روز )
جهت آب بندی مخازن در هنگام ترکیب با چسب بتن
ساخت ملات های بدون جمع شدگی
میزان مصرف گروت سیمانی: 2000 کیلوگرم پودر برای یک متر مکعب کافی است.
روش مصرف:
محل اجرای گروت باید عاری از هرگونه گرد و غبار و چربی باشد.
در صورت اجرای گروت در محل هایی که امکان جذب آب دارند، محل اجرا با آب شیرین، اشباع گردد.
مقدار مشخص و مورد نیاز پودر گروت را با توجه به حجم محل مصرف در مخلوط کن محتوی آب لازمه گروت ریخته و با همزن مکانیکی در ابتدا با دور کند، سپس با دور بالاتر به هم بزنید.
بلافاصله گروت آماده شده را در محل اجرا ریخته و از پر شدن محل اجرا اطمینان حاصل پیدا کنید.
پس از خشک شدن سطح گروت تا 3 روز سطوح بی حفاظ را آب پاشی نمائید.
مشخصات فنی گروت:
رنگ: خاکستری سیمانی
PH: 12
وزن مخصوص ظاهری ترکیب نهایی: gr⁄〖cm〗^3 35/1
حالت فیزیکی: پودر ( قابل اختلاط در آب )
یون کلر: ندارد
ملاحظات:
مدت و شرایط نگهداری: 6 ماه به دور از نور خورشید و رطوبت
دمای محیط در هنگام اجرا: 10+ الی 35+ درجه سانتی گراد
بسته بندی: کیسه 25 کیلوگرمی
به منظور سهولت در اجرا و کارایی حداکثر محصول، بلافاصله بعد از ترکیب، اجرا گردد.
انواع گروت
گروت منبسط شونده بر پایه سیمان.
گروت اپوکسی دوجزیی و یا سه جزیی
گروت اپوکسی چیست؟ : مخلوطی است 3 جزئی بر پایه رزینهای اصلاح شده اپوکسی که با دانه بندی مخصوص و مقاومت فشاری بسیار بالا که برای عملیات نصب ماشین آلات سنگین کاربرد دارد.
این محصول با استانداردهای ASTM C 723, ASTM C 658 مطابقت دارد.
خواص، اثرات و موارد کاربرد :
اجرای زیر سری های فولادی، زیر صفحه ستون ها و تراز کردن ماشین آلات بسیار سنگین
چسبنگی فوق العاده به سطوح فلزی و بتنی
پرکردن حفره ها و فضاهای خالی بین اجزا بتنی و فولادی
کف سازی سطوح مقاوم در برابر مواد شیمیایی و خورنده
مقاومت فشاری و سایشی به مراتب بالاتر از بتن و ملات گروت سیمانی است.
گروت اپوکسی پس از خشک شدن جمع نمی شود و ترک برنمی دارد.
مقاوم به ضربه و ارتعاش های شدید و مقاوم در برابر نفوذ آب و رطوبت
مقاومت نهایی در دمای 25 تا 40 درجه سانتی گراد، بین 800 تا 1000 kg⁄〖cm〗^3 متغیر می باشد.
میزان مصرف: 1700 کیلوگرم برای پوشش و اجرای یک متر مکعب کافی است.
روش مصرف:
محل اجرای گروت باید کاملاً خشک باشد و عاری از هر گونه گرد و غبار و چربی باشد.
جزء B را در داخل ظرف محتوی جزء A ریخته و پس از کمی هم زدن، جزء پودری C را روی مخلوط بریزید.
با همزن مکانیکی تا حصول اطمینان از یکنواخت شدن، ترکیب را به هم بزنید.
مخلوط گروت اپوکسی آماده شده را در حداقل زمان به محل مصرف انتقال دهید.
پس از اتمام گروت ریزی، ابزار کار را با حلال اپوکسی شسته و تمیز نمائید.
در فصل سرد سال و در دماهای حدود 5 درجه سانتی گراد قبل از اجرای گروت ریزی، خود محصول گروت و محل مصرف باید تا 30 الی 40 درجه سانتی گراد گرم شوند.
مشخصات فنی:
رنگ: خاکستری (پس از اختلاط)
PH: 7
وزن مخصوص(خمیر) : gr⁄〖cm〗^3 7/1
حالت فیزیکی: خمیری سیال (پس از اختلاط)
یون کلر: ندارد
ملاحظات:
مدت و شرایط نگهداری: دو سال دور از سرمای شدید و نور خورشید
دمای محیط در هنگام اجرا: 10+ الی 40+ درجه سانتی گراد
بسته بندی: ظرف 5 کیلوگرمی (مجموع 3 جزء)
هرگز برای رقیق کردن از حلال اپوکسی استفاده نــشود، زیرا کیفیت و مقاومت محصول را پائین می آورد.
هاردنر گروت اپوکسی چیست؟ جز دوم گروت اپوکسی بوده که باعث سخت شدن رزین اپوکسی می شود
گروت چیست وانواع گروت
گروت چیست و انواع گروت چیست؟
فروش گروت با مشخصات و خصوصیات متفاوتی انجام میگیرید. خرید و کابرد هرکدام متفاوت هست. برای مثال فروش گروت پایه سیمانی و گروت های اپوکسی دو و سه جزئی. قبل از خرید گروت باید به کاربرد و موارد مصرف توجه کرد. شما میتوانید قبل از خرید گروت با مهندسان و یا بخش فروش فابیر تماس بگیرید تا مشاوره رایگان دریافت نمایید.
اما گروت چیست و تعریف گروت
گروت تشکیل شده از آب ، سیمان ، ماسه و افزودنی های متداول دیگر می باشد. از گروت ها جهت پر کردن فضاهای خالی و ترک های بزرگ ، لایه لایه شدن و یا خرد شدن استفاده می شود.از این لحاظ کاربرد گروت مشابه ملات می باشد. گروت کاربردی در زیر صفحه ستون ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها، بلت ها، ریل ها، حایل ها دارند. مهم ترین مزایای گروت ها این است که مکانی که در آن گروت ریخته می شود را کامل پر می کند. چون گروت منبسط شونده خاصیت غیر انقباضی دارد از گروت آماده جهت مصارف مختلفی مثل، زیر صفحه ستون ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها، بلت ها، ریل ها، حایل ها و ...استفاده می شود.
گروت ها به گونه ای طراحی شده اند که توان جذب نیروهای وارد و انتقال آن ها را به بخش زیرکار داشته باشد برای مثال در هنگام نصب انواع ماشین آلات نیروهای وارده از آن ها توسط گروت یا ملات به فنداسیون بتنی منتقل می شود. ملات ها و گروت ها باعث مقاومت های مطلوب و مطمئن و همچنین اتصال پایدار بین ملات یا گروت و سازها قرار گیرد و بر روی آن گروت یا ملات قرارگیرد از یک طرف و سطح زیرکار از طرف دیگر می شود. بطور کلی دو روش ملات ریزی یا گروت ریزی در داخل حفرات در محل اتصال آنکرو وجود دارد.
گروت ریزی با گروت یا ملات خشک در روش اول گروت ریزی با گروت یا ملات خشک در روش اول در این روش گروت را با استفاده از نیروی تراکمی جایگذاری می شود. در زمان استفاده از گروت یا ملات سیال به علت روانی بودن این ماده در هنگام گروت ریزی خود به خود جایگذاری می شود. مصرف گروت یا ملات های نوع خشک کاملاً رضایت بخشی است و در عمل در کارهای ساختمانی استفاده می شود ولی این روش جایگذاری همیشه مناسبی نیست، به همین خاطر است که در عمل تمایل با استفاده از روش گروت سیال افزایش روز افزونی دارد. گروت ریزی با گروت سیال روش گروت سیال در محل هایی که حفرات تقریباً بسته و مسدود و غیر قابل دسترسی بوده استفاده می شود ولی بیرون از آن، گروت کاری براحتی امکان پذیراست.
عملکردهای گروت چیست؟
بتن خود تراکم ، شامل بازه گسترده ای از طرح های اختلاط می باشد که خواص بتن تازه و سخت شده لازم برای کاربری های خاص دارا می باشند . اگرچه مقاومت هم چنان معیار اصلی موفقیت این بتن می باشند اما ویژگی های بتن تازه آن ، بسیار گسترده تر از بتن معمولی و متراکم شده توسط لرزاننده ها می باشد . این خواص مطلوب باید در زمان ، محل و بتن ریزی حفظ شوند . بتن خود تراکم در مواردی که شبکه بندی آرماتور ها فشرده است ، گزینه ای مطلوب می باشد . هم چنین عدم نیاز به لرزاننده ،آلودگی صوتی محیط را به نحو قابل ملاحظه ای کاهش می دهد.علی رغم ویژگی های مطلوب، طرح اختلاط و اجرای این نوع بتن به عوامل متعددی از قبیل دانه بندی مصالح سنگی ، نوع مواد افزودنی و همچنین فیلرهای مورد استفاده بستگی دارد . در نظر گرفتن هر یک از معیارهای فوق ، کیفیت بتن سخت شده و کار پذیری بتن تازه را تحت تاثیر قرار میدهد .
زمان هزینه و کیفیت سه عامل مهم در اجرا می باشد که تاثیر مهمی در صنعت ساخت دارند . هر گونه پیشرفت و یا توسعه ای که باعث بهبود این سه عامل گردد ، همواره مورد علاقه مهندسان عمران خواهد بود . هرگاه این پیشرفت ها در صنعت ساخت و ساز تاثیر گذار باشد باید تحقیقات کافی بر روی فواید و مضرات آنها انجام گرفته و اقدامات لازم برای اجرایی ساختن آنها در صنعت ساخت و ساز صورت پذیرد . بتن خود تراکم با توجه به خصوصیات ویژه خود یکی از این توسعه هاست که می تواند تاثیر قابل توجهی بر صنعت ساخت داشته باشد .
برای سالیان متمادی دست یابی به بتنی با قابلیت خودترازی ( خود تراکمی ) بدون افت در مقاومت ، روانی و یا جداشدگی ، آرزوی مهندسین در کشورهای مختلف بوده است در اوایل قرن بیستم به دلیل خشک بودن مخلوط بتنی ، تراکم بتن تنها از طریق اعمال ضربه های سنگین در مقاطع وسیع و در دسترس ممکن بود . با شیوع استفاده از بتن های مسلح و آشکار شدن مشکلات اجرایی کاربرد مخلوطهای خشک ، گرایش به استفاده از مخلوطهای مرطوب تر گسترش یافت اما شناسایی تاثیر نسبت آب به سیمان در دهه 1920 نشان داد که افزایش این نسبت می تواند موجب افت در مقاومت بتن گردد . در سالهای بعد ، توجه به مسئله دوام بتن همچنین تاثیر مخرب افزایش نسبت آب به سیمان را به نفوذ پذیری و کاهش دوام بتن آشکار ساخت . این همه باعث گردید تا توجه ویژه ای بر خواص کارایی و رئولوژی بتن و نیز روشهای تراکم ، با هدف بهبود خواص مقاومت و دوام آن صورت گیرد . این تحقیقات در نهایت منجر به معرفی بتن خود متراکم در ژاپن گردید . بتنی با قابلیت جریان زیاد که می تواند تنها تحت تاثیر نیروی ثقل و بدون نیاز به انجام هرگونه فرآیند دیگری تمامی زوایای قالب را پر کرده و آرماتور ها دربرگیرد، بدون آنکه جداشدگی یا آب انداختن ایجاد گردد . بررسی رئولوژی و کارایی ، تاثیر بالایی بر تعیین خواص بتن خود تراکم را نشان می دهد ؛ لذا بر اساس روابط مایع لزج نیوتنی ، پارامترهای موثر در تعریف رفتار جریان بتن خود تراکم را معرفی می کند و آزمایش جی – رینگ آزمایش ساده و مناسبی برای اندازه گیری مقاومت بتن در مقابل جداشدگی سنگدانه ها است و چنانچه مقدار آب و خصوصا فوق روان کننده از یک حد معینی افزایش یابد مقاومت جداشدگی بتن کاهش می یابد و از آزمایش دو نقطه ایی می توان بدست آورد که ثابت های رئولوژی می توانند خواص رئولوژی ، خصوصا توانمندی بتن از نظر حرکت پذیری و پرشدگی را بخوبی تعیین نماید .
بتن خود تراکم نخست در سال 1986 توسط H.okamura در ژاپن پیشنهاد گردید و در سال 1988 این نوع بتن در کارگاه ساخته شد و نتایج قابل قبولی را از نظر خواص فیزیکی و مکانیکی بتن ارائه داد . مقالات متعددی در ارتباط با توسعه بتن خودتراکم در دنیا ارائه شد امروزه بتن خود تراکم همزمان با کشور ژاپن در مراکز دانشگاهی و تحقیقاتی کشورهای اروپایی ، کانادا و امریکا تحت عنوان self – consolidating concrete موضوع بحث، بررسی و اجرای سازه های بتنی است.
درایران نیز استفاده از بتن خود تراکم از چند سال قبل آغاز شده و از مزایای آن بهره گرفته شده است برای مثال می توان از مصرف بتن خود تراکم در تونل رسالت در تهران نام برد .
مبانی طراحی مخلوط بتن خود تراکم
سیال و پایدار بودن از مبانی طراحی مخلوط scc هست ، اما غیر از این خصوصیات، عوامل اقتصادی را نیز باید در طراحی در نظر گرفت . چالش مهم در طراحی مخلوط scc ، معادل بودن مشخصات مورد نیاز با مشخصات واقعی است. مواد مورد نیاز برای ساخت scc به شرح زیر است :
1 – سیمان : نوع و مقدار سیمان براساس خواص و دوام مورد نیاز تعیین می گردد . معمولا مقدار سیمان بین kg/m3 450- 350 است .
2 – سنگدانه درشت : تمام سنگدانه های درشت که برای بتن معمولی استفاده می شود ، قابل مصرف در scc است . اندازه حداکثر معمولا بین mm20-16 است. به طور کلی مقدار سنگدانه درشت در scc کمتر از بتن معمولی است زیرا سنگدانه درشت انرژی زیادی مصرف می کند که باعث کاهش جاری شدن بتن می شود و در هنگام عبور از موانع مانند آرماتور سبب مسدود شدن بتن می گردد .
3 - سنگدانه ریز : تمام سنگدانه های ریز که برای بتن معمولی استفاده می شود برای scc نیز مناسب است هر دو نوع ماسه شامل شکسته و گرد گوشه قابل استفاده میباشد هرچه مقدار ماسه در مخلوط بیشتر باشد ، مقاومت برشی مخلوط بیشتر است .
4 – مواد افزودنی معدنی : انواع مواد افزودنی معدنی یا پوزولان را میتوان در scc مصرف کرد این مواد برای بهبود خواص بتن تازه و یا بتن سخت شده و دوام مورد استفاده قرار می گیرد . از جمله این موارد می توان میکروسیلیس ، سرباره و روباره را نام برد .
5 – فوق کاهنده آب : فوق کاهنده آب یا فوق روان کننده ها از مواد بسیار مهم برای ساخت scc محسوب می شوند .
6 – مواد اصلاح کننده ویسکوزیته : مواد اصلاح کننده ویسکوزیته برای افزایش مقاومت جداشدگی در scc مصرف می شود .
7 – فیلرها : به دلیل الزامات رئولوژی خاص scc هردو مواد افزودنی فعال و خنثی برای بهبود کارایی و همچنین برای تعادل در مقدار مصرف سیمان مورد استفاده قرار می گیرد.
تنظیم طرح مخلوط
پس از ساخت مخلوط های آزمایشی ، اگر عملکرد آنها مطلوب نباشد ، باید طرح مخلوط مجددا انجام شود . بسته به مشکلاتی که در خواص بتن تازه ایجاد می شود ، ممکن است واکنش های زیر انجام گردد : - اضافه کردن فیلر یا استفاده از نوع دیگر فیلر – تجدید نظر در مقادیر شن وماسه – تغییر در مقدار فوق روان کننده یا ماده اصلاح کننده ویسکوزیته – تغییر در مقدار آب و نسبت آب به پودر – تغییر در نوع مواد اصلاح کننده ویسکوزیته یا فوق روان کننده
امروزه برای بتن خود تراکم مشخصات کلی زیر را پیشنهاد می کنند :
الف ) کارآیی
از نظر کارآیی یک بتن خود تراکم مناسب دارای خواص زیر خواهد بود :
در حالت معمولی دارای جریان اسلامپی بیش از 600 میلی متر و بدون جداشدگی ، حفظ روانی به مدت حداقل 90 دقیقه ، توانایی مقاومت در شیب 3 % در سطح افقی آزاد ، قابلیت پمپ شدن در لوله ها بطول حداقل 100 متر و به مدت 90 دقیقه ، مقاومت فشاری 28 روزه حدود 600-250 کیلوگرم بر سانتیمتر مربع ، مقاومت در مقابل خوردگی تهاجم سولفاتها و کلریدها و انجماد و ذوب مطابق استاندارد ، کاهش خطر ترکهای حرارتی در مقایسه با بتن معمولی لرزانده شده.
بتن خود تراکم مزایایی در اجرای موارد خاصی از سازه های بتنی دارد که به نمونه هایی از آنها اشاره میشود :
- سازه های بتنی معماری – هنری که نیاز به ظرافت خاص با میلگرد گذاری فشرده دارند .
- پل های با دهانه بزرگ که به دلیل طولانی بودن خط انتقال بتن اجرای آن ها با بتن معمولی امکان پذیر نمی باشد و در ضمن استفاده از بتن معمولی موجب قطور تر شدن اندازه پایه ها و نازیبایی سازه می گردد.
- تونل های شهری و آبی که در آنها مسافت طولانی انتقال بتن معمولی و حفظ کیفیت و تراکم آن از مشکلات اجرایی است.
- ساختمان های بلند و برج ها
- ستونها و دیوارهای بلند یا میلگردهای متراکم
- ستونهای بتن ریزی شده با پمپ
- بتن ریزی بلوک های بتنی
- بتن ریزی کف ها و سطوح افقی
- بتن ریزی در سازه های زیر آبی
مزایای چشمگیر بتن خود تراکم موجب گسترش سریع آن در دنیا شده است که بطور اجمال میتوان به مواردی از آنها اشاره نمود :
- توسعه سازه های بتنی در دنیا و نیاز به بتن های با خواص ویژه
- کمبود کارگران ماهر بتن ریزی بویژه کارگران ویبره زن
- افزایش سرعت اجرای سازه های بتنی در سهولت بتن ریزی
- امکان بهبود کیفیت مکانیکی بتن
- امکان اجرای سازه های بتنی ظریف و سنگین و انتخاب مقاطع کوچک یا میلگردهای فشرده
- توسعه صنایع پیش ساخته بتنی
- صرفه جویی اقتصادی با توجه به کاهش نیروی انسانی لازم و زمان ساخت
- توجه به سطوح تمام شده زیبا و مرغوب سازه های بتنی
- کاهش سر و صدا و آلودگی صوتی محیط کار بویژه در صنایع پیش ساخته بتنی
سازه های مختلفی با استفاده از بتن خود تراکم در دنیا اجرا شده اند که به نمونه هایی از آنها در سراسر دنیا اشاره می شود . قابل ذکر است که اجرای بعضی از این پروژه ها بدون استفاده از بتن خود تراکم امکان اجرا نداشته اند .
دیواره های مخازن عظیم LNG شرکت گاز Osaka در ژاپن
حجم بتن خود تراکم مصرفی = 12000 متر مکعب ( تکمیل بتن ریزی در سال 1998 )
صرفه جویی در تعداد کارگران = حدود 67 درصد در مقایسه با بتن معمولی
صرفه جویی در مدت زمان ساخت = حدود 18 درصد در مقایسه با بتن معمولی
صرفه جویی در
بتن خود تراکم ، شامل بازه گسترده ای از طرح های اختلاط می باشد که خواص بتن تازه و سخت شده لازم برای کاربری های خاص دارا می باشند . اگرچه مقاومت هم چنان معیار اصلی موفقیت این بتن می باشند اما ویژگی های بتن تازه آن ، بسیار گسترده تر از بتن معمولی و متراکم شده توسط لرزاننده ها می باشد . این خواص مطلوب باید در زمان ، محل و بتن ریزی حفظ شوند . بتن خود تراکم در مواردی که شبکه بندی آرماتور ها فشرده است ، گزینه ای مطلوب می باشد . هم چنین عدم نیاز به لرزاننده ،آلودگی صوتی محیط را به نحو قابل ملاحظه ای کاهش می دهد.علی رغم ویژگی های مطلوب، طرح اختلاط و اجرای این نوع بتن به عوامل متعددی از قبیل دانه بندی مصالح سنگی ، نوع مواد افزودنی و همچنین فیلرهای مورد استفاده بستگی دارد . در نظر گرفتن هر یک از معیارهای فوق ، کیفیت بتن سخت شده و کار پذیری بتن تازه را تحت تاثیر قرار میدهد .
زمان هزینه و کیفیت سه عامل مهم در اجرا می باشد که تاثیر مهمی در صنعت ساخت دارند . هر گونه پیشرفت و یا توسعه ای که باعث بهبود این سه عامل گردد ، همواره مورد علاقه مهندسان عمران خواهد بود . هرگاه این پیشرفت ها در صنعت ساخت و ساز تاثیر گذار باشد باید تحقیقات کافی بر روی فواید و مضرات آنها انجام گرفته و اقدامات لازم برای اجرایی ساختن آنها در صنعت ساخت و ساز صورت پذیرد . بتن خود تراکم با توجه به خصوصیات ویژه خود یکی از این توسعه هاست که می تواند تاثیر قابل توجهی بر صنعت ساخت داشته باشد .
برای سالیان متمادی دست یابی به بتنی با قابلیت خودترازی ( خود تراکمی ) بدون افت در مقاومت ، روانی و یا جداشدگی ، آرزوی مهندسین در کشورهای مختلف بوده است در اوایل قرن بیستم به دلیل خشک بودن مخلوط بتنی ، تراکم بتن تنها از طریق اعمال ضربه های سنگین در مقاطع وسیع و در دسترس ممکن بود . با شیوع استفاده از بتن های مسلح و آشکار شدن مشکلات اجرایی کاربرد مخلوطهای خشک ، گرایش به استفاده از مخلوطهای مرطوب تر گسترش یافت اما شناسایی تاثیر نسبت آب به سیمان در دهه 1920 نشان داد که افزایش این نسبت می تواند موجب افت در مقاومت بتن گردد . در سالهای بعد ، توجه به مسئله دوام بتن همچنین تاثیر مخرب افزایش نسبت آب به سیمان را به نفوذ پذیری و کاهش دوام بتن آشکار ساخت . این همه باعث گردید تا توجه ویژه ای بر خواص کارایی و رئولوژی بتن و نیز روشهای تراکم ، با هدف بهبود خواص مقاومت و دوام آن صورت گیرد . این تحقیقات در نهایت منجر به معرفی بتن خود متراکم در ژاپن گردید . بتنی با قابلیت جریان زیاد که می تواند تنها تحت تاثیر نیروی ثقل و بدون نیاز به انجام هرگونه فرآیند دیگری تمامی زوایای قالب را پر کرده و آرماتور ها دربرگیرد، بدون آنکه جداشدگی یا آب انداختن ایجاد گردد . بررسی رئولوژی و کارایی ، تاثیر بالایی بر تعیین خواص بتن خود تراکم را نشان می دهد ؛ لذا بر اساس روابط مایع لزج نیوتنی ، پارامترهای موثر در تعریف رفتار جریان بتن خود تراکم را معرفی می کند و آزمایش جی – رینگ آزمایش ساده و مناسبی برای اندازه گیری مقاومت بتن در مقابل جداشدگی سنگدانه ها است و چنانچه مقدار آب و خصوصا فوق روان کننده از یک حد معینی افزایش یابد مقاومت جداشدگی بتن کاهش می یابد و از آزمایش دو نقطه ایی می توان بدست آورد که ثابت های رئولوژی می توانند خواص رئولوژی ، خصوصا توانمندی بتن از نظر حرکت پذیری و پرشدگی را بخوبی تعیین نماید .
بتن خود تراکم نخست در سال 1986 توسط H.okamura در ژاپن پیشنهاد گردید و در سال 1988 این نوع بتن در کارگاه ساخته شد و نتایج قابل قبولی را از نظر خواص فیزیکی و مکانیکی بتن ارائه داد . مقالات متعددی در ارتباط با توسعه بتن خودتراکم در دنیا ارائه شد امروزه بتن خود تراکم همزمان با کشور ژاپن در مراکز دانشگاهی و تحقیقاتی کشورهای اروپایی ، کانادا و امریکا تحت عنوان self – consolidating concrete موضوع بحث، بررسی و اجرای سازه های بتنی است.
درایران نیز استفاده از بتن خود تراکم از چند سال قبل آغاز شده و از مزایای آن بهره گرفته شده است برای مثال می توان از مصرف بتن خود تراکم در تونل رسالت در تهران نام برد .
مبانی طراحی مخلوط بتن خود تراکم
سیال و پایدار بودن از مبانی طراحی مخلوط scc هست ، اما غیر از این خصوصیات، عوامل اقتصادی را نیز باید در طراحی در نظر گرفت . چالش مهم در طراحی مخلوط scc ، معادل بودن مشخصات مورد نیاز با مشخصات واقعی است. مواد مورد نیاز برای ساخت scc به شرح زیر است :
1 – سیمان : نوع و مقدار سیمان براساس خواص و دوام مورد نیاز تعیین می گردد . معمولا مقدار سیمان بین kg/m3 450- 350 است .
2 – سنگدانه درشت : تمام سنگدانه های درشت که برای بتن معمولی استفاده می شود ، قابل مصرف در scc است . اندازه حداکثر معمولا بین mm20-16 است. به طور کلی مقدار سنگدانه درشت در scc کمتر از بتن معمولی است زیرا سنگدانه درشت انرژی زیادی مصرف می کند که باعث کاهش جاری شدن بتن می شود و در هنگام عبور از موانع مانند آرماتور سبب مسدود شدن بتن می گردد .
3 - سنگدانه ریز : تمام سنگدانه های ریز که برای بتن معمولی استفاده می شود برای scc نیز مناسب است هر دو نوع ماسه شامل شکسته و گرد گوشه قابل استفاده میباشد هرچه مقدار ماسه در مخلوط بیشتر باشد ، مقاومت برشی مخلوط بیشتر است .
4 – مواد افزودنی معدنی : انواع مواد افزودنی معدنی یا پوزولان را میتوان در scc مصرف کرد این مواد برای بهبود خواص بتن تازه و یا بتن سخت شده و دوام مورد استفاده قرار می گیرد . از جمله این موارد می توان میکروسیلیس ، سرباره و روباره را نام برد .
5 – فوق کاهنده آب : فوق کاهنده آب یا فوق روان کننده ها از مواد بسیار مهم برای ساخت scc محسوب می شوند .
6 – مواد اصلاح کننده ویسکوزیته : مواد اصلاح کننده ویسکوزیته برای افزایش مقاومت جداشدگی در scc مصرف می شود .
7 – فیلرها : به دلیل الزامات رئولوژی خاص scc هردو مواد افزودنی فعال و خنثی برای بهبود کارایی و همچنین برای تعادل در مقدار مصرف سیمان مورد استفاده قرار می گیرد.
تنظیم طرح مخلوط
پس از ساخت مخلوط های آزمایشی ، اگر عملکرد آنها مطلوب نباشد ، باید طرح مخلوط مجددا انجام شود . بسته به مشکلاتی که در خواص بتن تازه ایجاد می شود ، ممکن است واکنش های زیر انجام گردد : - اضافه کردن فیلر یا استفاده از نوع دیگر فیلر – تجدید نظر در مقادیر شن وماسه – تغییر در مقدار فوق روان کننده یا ماده اصلاح کننده ویسکوزیته – تغییر در مقدار آب و نسبت آب به پودر – تغییر در نوع مواد اصلاح کننده ویسکوزیته یا فوق روان کننده
امروزه برای بتن خود تراکم مشخصات کلی زیر را پیشنهاد می کنند :
الف ) کارآیی
از نظر کارآیی یک بتن خود تراکم مناسب دارای خواص زیر خواهد بود :
در حالت معمولی دارای جریان اسلامپی بیش از 600 میلی متر و بدون جداشدگی ، حفظ روانی به مدت حداقل 90 دقیقه ، توانایی مقاومت در شیب 3 % در سطح افقی آزاد ، قابلیت پمپ شدن در لوله ها بطول حداقل 100 متر و به مدت 90 دقیقه ، مقاومت فشاری 28 روزه حدود 600-250 کیلوگرم بر سانتیمتر مربع ، مقاومت در مقابل خوردگی تهاجم سولفاتها و کلریدها و انجماد و ذوب مطابق استاندارد ، کاهش خطر ترکهای حرارتی در مقایسه با بتن معمولی لرزانده شده.
بتن خود تراکم مزایایی در اجرای موارد خاصی از سازه های بتنی دارد که به نمونه هایی از آنها اشاره میشود :
- سازه های بتنی معماری – هنری که نیاز به ظرافت خاص با میلگرد گذاری فشرده دارند .
- پل های با دهانه بزرگ که به دلیل طولانی بودن خط انتقال بتن اجرای آن ها با بتن معمولی امکان پذیر نمی باشد و در ضمن استفاده از بتن معمولی موجب قطور تر شدن اندازه پایه ها و نازیبایی سازه می گردد.
- تونل های شهری و آبی که در آنها مسافت طولانی انتقال بتن معمولی و حفظ کیفیت و تراکم آن از مشکلات اجرایی است.
- ساختمان های بلند و برج ها
- ستونها و دیوارهای بلند یا میلگردهای متراکم
- ستونهای بتن ریزی شده با پمپ
- بتن ریزی بلوک های بتنی
- بتن ریزی کف ها و سطوح افقی
- بتن ریزی در سازه های زیر آبی
مزایای چشمگیر بتن خود تراکم موجب گسترش سریع آن در دنیا شده است که بطور اجمال میتوان به مواردی از آنها اشاره نمود :
- توسعه سازه های بتنی در دنیا و نیاز به بتن های با خواص ویژه
- کمبود کارگران ماهر بتن ریزی بویژه کارگران ویبره زن
- افزایش سرعت اجرای سازه های بتنی در سهولت بتن ریزی
- امکان بهبود کیفیت مکانیکی بتن
- امکان اجرای سازه های بتنی ظریف و سنگین و انتخاب مقاطع کوچک یا میلگردهای فشرده
- توسعه صنایع پیش ساخته بتنی
- صرفه جویی اقتصادی با توجه به کاهش نیروی انسانی لازم و زمان ساخت
- توجه به سطوح تمام شده زیبا و مرغوب سازه های بتنی
- کاهش سر و صدا و آلودگی صوتی محیط کار بویژه در صنایع پیش ساخته بتنی
سازه های مختلفی با استفاده از بتن خود تراکم در دنیا اجرا شده اند که به نمونه هایی از آنها در سراسر دنیا اشاره می شود . قابل ذکر است که اجرای بعضی از این پروژه ها بدون استفاده از بتن خود تراکم امکان اجرا نداشته اند .
دیواره های مخازن عظیم LNG شرکت گاز Osaka در ژاپن
حجم بتن خود تراکم مصرفی = 12000 متر مکعب ( تکمیل بتن ریزی در سال 1998 )
صرفه جویی در تعداد کارگران = حدود 67 درصد در مقایسه با بتن معمولی
صرفه جویی در مدت زمان ساخت = حدود 18 درصد در مقایسه با بتن معمولی
صرفه جویی در
کاویتاسیون عبارتست از تشکیل حباب هایی از بخار سیال که معمولاً در نواحی کم فشار در داخل سیال تولید می شوند و متعاقب آن متلاشی شدن حباب ها پس از افزایش فشار سیال. این متلاشی شدن با تمرکز انرژی در یک نقطه خاص، آن هم بصورت یک جت سیال در کسری از ثانیه عمل کرده و باعث وارد آوردن ضربه ای شدید با دما و فشار نقطه ای بسیار بالا به سطوح داخلی پمپ (معمولاً پروانه) شده و در صورت تداوم آسیب های شدیدی شبیه به خوردگی pitting بر سطح باقی می گذارد.
کاویتاسیون پدیده ای است که در سرعتهای بالا باعث خرابی و ایجاد گودال در سطح می گردد . گاهی در یک سیستم هیدرولیکی به علت بالا رفتن سرعت‚فشار منطقه ای پائین می اید و ممکن است این فشار به حدی پائین بیاید که برابر فشار بخار سیال در آن شرایط باشد و یا در طول سرریز یا حوضچه خلاءزایی در اثر وجود ناصافیها و یا ناهمواریهای کف سرریز خطوط جریان از بستر خود جدا شده و بر اثر این جداشدگی فشار موضعی در منطقه جداشدگی کاهش یافته و ممکن است که به فشار بخار سیال(فشار بخار فشاری است که در ان مایع شروع به جوشیدن کرده و با بخار خود به حالت تعادل می رسد) برسد . در این صورت بر اثر این دوعامل بلافاصله مایعی که در آن قسمت از مایع در جریان است به حالت جوشش درامده و سیال به بخار تبدیل شده و حبابهایی از بخار بوجود میاید . این حبابها پس از طی مسیر کوتاهی به منطقه ای با فشار بیشتر رسیده و منفجر میشود و تولید سر وصدا می کند و امواج ضربه ای ایجاد می کند و به مرز بین سیال و سازه ضربه زده و پس از مدت کوتاهی روی مرز جامد ایجاد فرسایش و خوردگی میکند .(corrotion( تبدیل مجدد حبابها به مایع و فشار ناشی از انفجار آن گاهی به ١٠٠٠ مگا پاسکال میرسد . از انجایی که سطوح تماس این حبابها با بستر سرریز بسیار کوچک می باشند نیروی فوق العاده زیادی در اثر این انفجارها به بسترهای سرریز ها و حوضچه های آرامش وارد می کند . این عمل در یک مدت کوتاه و با تکرار زیاد انجام می شود که باعث خوردگی بستر سرریز می شود و به تدریج این خوردگیها تبدیل به حفره های بزرگ می شوند . این مرحله را : Cavitation erosion or cavitation pitting می نامند. در سرریز های بلند چون سرعت سیال فوق العاده زیاد می باشد ‚در نتیجه نا صا فیهای حتی در حد چند میلیمتر هم می تواند باعث ایجاد جدا شدگی جریان شود . هر نوع روزنه با برامدگی تعویض ناگهانی سطح مقطع هم می تواند باعث جدایی خطوط جریان شود . این پدیده معمولا در پایه های دریچه ها بر روی سرریز ها‚در قسمت زیر دریچه های کشویی و انتهای شوتها رخ دهد . شرایطی که موجب کاویتاسیون می گردد اغلب در جریانهای با سرعت بالا پدید می اید . بطور مثال سطح آبروی سریز که ۴٠ تا ۵٠ متر پایین تر از سطح تراز آب مخزن می باشد بطور حاد در معرض خطر کاویتاسیون قرار دارد . پدیده کاویتاسیون در جریانات فوق اشفته در پرش هیدرولیکی در مکانهایی مثل حوضچه های خلاءزایی مشکلات فراوانی ایجاد می کند . صدمه کاویتاسیون به سازه های طراهی شده برای سرعتهای بالا و در سد های بلند و سرریزهای بزرگ یک مشکل دائمی است . کمیت بدون یعدی را که بیانگر جوشش ناشی از جریان مایع باشد عدد کاویتاسیون می نامند:
کاویتاسیون چیست، cavitation،حبابزایی،پدیده کاویتاسیون،خوردگی،کاویتاسیون،حفرهسازی، خلازایی،انواع کاویتاسیون،راههای جلوگیری از کاویتاسیون،کاویتاسیون در پمپها،
==================================================================
فاکتورهای موثر در پدیده کاویتاسیون :
در طی حداقل ٢٠سال تجربه و بررسی عملکرد سرریزها ( شامل مدل و آزمایش بر روی پروتوتیپ ) این طور نتیجه گیری شده که کاویتاسیون در اثر عملکرد مجموعه ای از عوامل و شرایط است . معمولا یک عامل به تنهایی برای ایجاد مسئله کاویتاسیون کافی نیست ولی ترکیبی از عوامل هندسی و هیدرودینامیکی و فاکتورهای وابسته دیگر ممکن است منجر به خسارت کاویتاسیون گردد . از مهمترین عواملی که می توانند در این زمیه ممکن است دخیل باشند می توان به موارد زیر اشاره کرد :
۱٫عوامل هندسی : که شامل موارد زیر می شود .
ناهمواریهای سطحی سرریز‚خصوصا برامدگیها و فرورفتگیهای موضعی – شکافهای دریچه های کشویی و پایه های دریچه های قطاعی – ستونها piers – درزهای ساختمانی -جدا کننده جریان ودفلکتورها Flow splitter & deflector – دهانه مجاری و لوله Ports of ducts & pipe – تغیر در شکل عبور جریان Change of water passage shape – انحنا یا انحراف در مسیر جریان در آبراهه Misalignment of conduit 2.عوامل هیدرودینامیکی :
– دبی مخصوص – سرعت جریان – عملکرد دریچه – توسعه لایه مرزی
۳٫عوامل متفرقه :
– انتقال حرارت در طی فروریختن – درجه حرارت آب – تعداد واندازه حبابهای درون آب Diffusion of air – پراکندگی هوا
یکی از مثال های بارز و خطرناک کاویتاسیون در پره های توربین دیده می شود و به راحتی میتواند باعث تخریب پره گردد.از دیکر مثال هل برای این پدیده میتوان به کاویتاسیون در پروانه ی کشتی ها اشاره کرد.
حُفرهزایی (نامهای دیگر: حبابزایی، خوردگی، کاویتاسیون، حفرهسازی، خلاءزایی) (به انگلیسی: cavitation) پدیدهای است که در آن کاهش فشار باعث تبخیر موضعی مایع و ایجاد حبابهایی شود. این پدیده در پروانهٔ کشتیها، اژدرها و پمپهای سانتریفیوژ و سرریز سدها رخ میدهد.
در این پدیده که معمولاً در مایعات با حرکت متلاطم به دلیل اختلاف فشار در مایع رخ میدهد، فشار موضعی کمتر از فشار بخار مایع میشود. این امر باعث میشود تا مثلاً آب که در شرایط متعارف در ۱۰۰ درجه سانتیگراد شکل گازی پیدا میکند در دماهایی پایینتر زودتر به صورت گاز درآید.
حبابهای گازی ایجاد شده زمانی که دوباره به منطقه پرفشارتر وارد میشوند معمولاً منفجر میشوند. این ترکیدن حبابها شوکی موجمانند ایجاد میکند که صدادار است و میتواند از طریق خوردگی حبابی به پروانههای کشتی آسیب برساند. هر نوع کشتی و هر نوع پروانه صدای حفرهزایی ویژهٔ خود را تولید میکند و این باعث میشود تا خدمه زیردریاییها بتوانند نوع کشتیهای پیرامون خود را شناسایی کنند.
حفرهزایی انواع گوناگونی دارد:[۱]
گونههای حفرهزایی
توزیع فشار در پیرامون پرهٔ پروانه کشتی
p: فشار هیدرواستاتیک
pu: فشار منفی
po: فشار مثبت
pv: فشار تبخیر
Vac. : خلاء
حفرهزایی همچنین یکی از دلایل اولیه لرزش در پمپهای سانتریفوژ است. تولید حباب در پروانه پمپ وقتی رخ میدهد که طول مکش خالص مثبت مجاز (NPSHa) کمتر از عمق مکش درخواستی (NPSHr) پمپ شود. به این ترتیب به دلیل مکش موجود در محفظه پمپ، فشار مایع درون محفظه کاهش مییابد. طول مکش خالص مثبت (NPSH) عبارتی است که درباره شرایط مرتبط با پدیده حباب زایی پمپ توضیح می دهد.
چنانچه فشار محفظه پمپ از فشار بخار مایع در دمای عملیاتی کمتر شود، مایع درون محفظه پمپ تبخیر شده و بصورت حباب درمیآید. این حبابها در برخورد با پروانههای پمپ ترکیده و نه تنها باعث لرزش پمپ میشوند بلکه آسیبهای جدی از جمله خوردگی زیاد در لبه پروانهها و بدنه ایجاد میکنند که به مرور زمان باعث کاهش راندمان پمپ میگردد. وجود مانع در مسیر مکش، وجود زانویی در فاصله نزدیک ورودی پمپ و یا شرایط غیرعادی بهرهبرداری از عوامل این مسئله هستند.[۲]
عمدتاً پدیده کاویتاسیون در سرریز سدها در سرعتهای بالا رخ میدهد گاهی در یک سیستم هیدرولیکی به علت بالا رفتن سرعت فشار منطقهای کاسته شده و به حدی برسد که با فشار سیال در آن شرایط برابر شود، و یا در طول سرریز به دلیل ناصافیها خطوط جریان از بستر خود جدا شده و در اثر این جداشدگی فشار موضعی در محل جداشدگی کاسته شود، و به فشار بخار سیال برسد، که در اثر این عوامل مایعی که در آن قسمت وجود دارد بلافاصله به جوشش درآمده و حبابهایی بوجود میآید که سرریز یا کانال در اثر ترکیدن این حبابها دچار صدمه و آسیب میشود، بطور معمول در سرعتهای تقریباً ۲۰ متر بر ثانیه و بیشتر احتمال ایجاد پدیده کاویتاسیون وجود دارد، ولی کنترل این پدیده در سرعت ۱۵ متر بر ثانیه انجام میشود.
تونلهای حفرهزایی
در ایران، در دو دانشگاه تونل حفرهزایی وجود دارد:
حفره زایی اولتراسونیک
یکی از روشهایی که به طور گسترده برای تخریب سلول و همگن سازی استفاده میشود، استفاده از فراصوت است. هموژنایزر اولتراسونیک با ایجاد امواج شدید فشاری در یک محیط مایع، کار میکند. امواج فشاری باعث جریان در مایع شده و تحت شرایط مناسب موجب تشکیل سریع میکرو حباب میگردد که رشد و یکی شدن این حبابها تا رسیدن به اندازه بیشینه و در نهایت ترکیدن آنها حرارت شدیدی ایجاد مینماید. به این پدیده کاویتاسیون گفته میشود. انفجار حبابها تولید موج ضربهای با انرژی کافی برای شکستن پیوند کووالانسی میکند. نیروی برشی حاصل از انفجار حباب و همچنین از جریانهای اغتشاشی ناشی از ارتعاش صوتی برای همگن سازی و تخریب سلول استفاده میشود. این فرایند میتواند به پاشش مایع با سرعتی در حدود ۴۲۰ کیلومتر در ساعت، ایجاد فشاری معادل ۲۰۰ بار و یا دمای بالای نقطهای ۴۵۰۰ درجه سانتیگرادی در آن شود.[۳
هر گاه دمای مایع، در فشار ثابت افزایش و یا فشار آن در دمای ثابت، کاهش یابد، در نهایت حالت مایع شروع به تغییر کرده و حبابهای پر شده از بخار آب و یا گاز تولید میگردند. این حبابها را میتوان به عنوان فضاهای خالی در مایع در نظر گرفت (در زبان انگلیسی کاویتی Cavity نام دارند).
بنابراین هم بوسیله افزایش دما در فشار ثابت و هم کاهش فشار دینامیکی در دمای ثابت، حباب در مایع بوجود میآید. نخستین روش جوشیدن (Boiling) و دومین روش کاویتاسیون نام دارد .
کاویتاسیون باعث ایجاد حباب در یک مایع در اثر کاهش فشار آن مایع میگردد. آب یا هر مایع دیگری، در هر درجه حرارتی به ازای فشار معینی تبخیر میشود.
هرگاه در حین جریان مایع، فشار مایع در نقطهای از فشار تبخیر مایع در درجه حرارت مربوطه کمتر شود،
حبابهای بخار یا گازی در فاز مایع به وجود میآیند که به همراه مایع به نقطهای دیگر با فشار بالاتر
حرکت مینمایند.
شاید برای برخی سوال باشد که تفاوت کاویتاسیون با فرایند تبخیر چیست، این تفاوت رامی توان از تعاریفی که از هر یک از آنها میشود جستجو کرد. تبخیر به صورت زیر بیان میشود:اگر تبدیل مایع به گاز ناشی از افزایش دما باشد آن را تبخیر می گوینددر حالی که تعریف تحت لفظی کاویتاسیون در زیر آمده است:
اگر تبدیل مایع به گاز ناشی از کاهش
سالهاست که واژه” الکترونیک” به طور مکرر در میان مردم استفاده می شود به طوریکه هر شخصی برداشت انفرادی خود را از این علم ویا موارد کاربردی آن مطرح می کند ، اما به صورت کلی عمدتا تعاریف و برداشتهایی که از این واژه عنوان می شود کامل نبوده و برداشتهای ظاهری عملا نمی تواند اهمیت و نفوذ روز افزون الکترونیک را در ارتباط باصنایع گوناگون بیان کند.
“الکترونیک” به طیف گسترده ای از الکتریسیته اطلاق می شود که با حرکت الکترونها در انواع مدارات نیمه هادی سر و کار دارد . اختراع ICها سبب آن شده است که دگر گونی های فراوانی در این علم پدیدار گشته و سیستمهای مدرن الکترونیکی از جمله مدارهای کنترل از راه دور ، ماهواره های فضایی ، رباتها و … را پدید آورد.
در حال حاضر الکترونیک کلید فتح شگفتیهای جهان است و با تمام علوم و فنون موجود به نحوی پیوند خورده است . از وسائل ساده خانگی تا پیچیده ترین تکنیک های فضایی همه جا صحبت از تکنولوژی فراگیر الکترونیکی است و امروز صنعت مدرن بدون الکترونیک و تکنولوژی های وابسته به آن عملا مطرود و از کار افتاده است .
پیشرفت علم الکترونیک و وسعت حوزه عملکرد آن امروز بر همگان روشن است. علاوه بر وسائل الکترونیکی از جمله دستگاههای مخابراتی مثل رادیو ،تلویزیون ، ضبط صوت و تصویر ،انواع وسائل پزشکی ، صنعتی ،نظامی ، در دیگر وسائل غیر الکترونیکی هم ، کمتر وسیله ای را می توان یافت که الکترونیک در آن دخالتی نکرده باشد. از جمله در اتومبیل و صنایع حمل و نقل ، وسائل خانگی مثل ماشین لباسشوئی ،جاروبرقی و امثال آن نقش الکترونیک بسیار فعال و جالب توجه شده است.
با توجه به این مختصر می توان نتیجه گرفت که امروزه ، دیگر الکترونیک علم و یا تخصص ویژه افرا تحصیلکرده دانشگاهی و متخصصین این رشته نیست و بر همه افرادی که به نحوی با امور فنی درگیرند لازم است بفراخور حرفه خویش از این رشته اطلاعی داشته باشند.
مهندسان الکترونیک با خلق وعملکرد سیستمهای بسیار متنوعی سر وکار دارند که به منظور برآوردن نیازها و خواسته های جامعه طراحی می شوند. مهندسان الکترونیک در ایجاد ماشینهایی که تواناییهای بشر را در زمینه جسمی یاری و در زمینه محاسباتی افزایش می دهند نقش مهمی دارند . بخشی از طراحی و ایجاد سیستمهای الکترونیکی به توانایی ساخت مدلهای ریاضی اجزا و مدارهای الکتریکی بستگی دارد .برخی از مباحث پایه الکترونیک عبارتند از :
مدار های الکتریکی:
۵٫ دیود
۶٫ ترانزیستور
۷٫ IC
8. تقویت کننده های عملیاتی
۹٫ مبدلها
اِلِکترونیک مطالعه و استفاده از وسائل الکتریکی ای میباشد که با کنترل جریان الکترونها یا ذرات باردار الکتریکی دیگر در اسبابی مانند لامپ خلاء و نیمهرساناها کار میکنند. مطالعه محض چنین وسائلی، شاخهای از فیزیک است، حال آن که طراحی و ساخت مدارهای الکتریکی جزئی از رشتههای مهندسی برق، الکترونیک و رایانه میباشد.
سالهاست که واژه “الکترونیک” به طور مکرر در میان مردم استفاده میشود به طوریکه هر شخصی برداشت انفرادی خود را از این علم و یا موارد کاربردی آن مطرح میکند، اما به صورت کلی عمدتاً تعاریف و برداشتهایی که از این واژه عنوان میشود کامل نبوده و برداشتهای ظاهری عملا نمیتواند اهمیت و نفوذ روزافزون الکترونیک را در ارتباط باصنایع گوناگون بیان کند.
“الکترونیک” به طیف گستردهای از الکتریسیته اطلاق میشود که با حرکت الکترونها در انواع مدارات نیمه هادی سر و کار دارد. اختراع آیسی (IC)ها سبب آن شده است که دگرگونیهای فراوانی در این علم پدیدار گشته و سیستمهای مدرن الکترونیکی از جمله مدارهای کنترل از راه دور، ماهوارههای فضایی، رباتها و … را پدید آورد.
امروزه الکترونیک کلید فتح شگفتیهای جهان است و با تمام علوم و فنون موجود به نحوی پیوند خورده است. از وسائل ساده خانگی تا پیچیدهترین تکنیکهای فضایی همه جا صحبت از فناوری فراگیر الکترونیکی است و امروز صنعت نوین بدون الکترونیک و فناوریهای وابسته به آن عملا مطرود و از کار افتاده است .
پیشرفت علم الکترونیک و وسعت حوزه عملکرد آن امروز بر همگان روشن است. علاوه بر وسائل الکترونیکی از جمله دستگاههای مخابراتی مثل رادیو، تلویزیون، ضبط صوت و تصویر، انواع وسائل پزشکی، صنعتی، نظامی، در دیگر وسائل غیرالکترونیکی هم، کمتر وسیلهای را میتوان یافت که الکترونیک در آن دخالتی نکرده باشد. از جمله در خودرو و صنایع ترابری، وسائل خانگی مثل ماشین رختشوئی، جاروی برقی و امثال آن نقش الکترونیک بسیار فعال و جالب توجه شده است. با توجه به این مختصر میتوان نتیجه گرفت که امروزه، دیگر الکترونیک دانش و یا تخصص ویژه افراد تحصیلکرده دانشگاهی و متخصصان این رشته نیست و بر همه افرادی که به نحوی با امور فنی درگیرند لازم است بفراخور حرفه خویش از این رشته اطلاعی داشته باشند.
مهندسان الکترونیک با خلق وعملکرد سیستمهای بسیار متنوعی سر وکار دارند که به منظور برآوردن نیازها و خواستههای جامعه طراحی میشوند. مهندسان الکترونیک در ایجاد ماشینهایی که تواناییهای بشر را در زمینه جسمی یاری و در زمینه محاسباتی افزایش میدهند نقش مهمی دارند. بخشی از طراحی و ایجاد سیستمهای الکترونیکی به توانایی ساخت مدلهای ریاضی اجزاء و مدارهای الکتریکی بستگی دارد.
دیجیتال
یک تابع دیجیتال تابعی است که هم از نظر زمان و هم از نظر مقدار محدود شده باشد.
تبدیل فوریه نشان میدهد که اگر از یک سیگنال در زمان های کوچک تر از نصف عکس بیشترین فرکانس آن نمونه بردای شود میتوان آن سیگنال را دوباره بصورت دقیق باز سازی کرد. به این توابع توابع گسسته میگویند. از آنجا که دستگاههای کنونی قدرت تشخیص صد در صد یک سیگنال و ذخیره سازی آن را ندارند مقدار آن سیگنال گسسته را به چند مقدار خاص محدود میکنند.به اینگونه سیگنال ها سیگنالهای دیجیتال گفته میشود که حجم کمتر و دقت کمتری نسبت به سیگنال های گسسته و پیوسته اشغال میکنند. تکنولوژی دیجیتال سهم بسزایی در پیشرفت علم ذخیره ساری و پردازش سیگنال داشته اند.
تراشه یا مدارات مجتمع یا آی سی
دید کلی
درست همانطور که ترانزیستور با ارائه انعطاف پذیری ، سادگی و اطمینان پذیری بیشتر نسبت به لامپ خلا انقلابی در الکترونیک ایجاد کرد مدارهای مجتمع نیز کاربردهای تازهای برای الکترونیک بوجود آوردهاند که بوسیله قطعات مجزا امکان پذیر نموده است مجتمع سازی این امکان را فراهم ساخته که میتوان مدارهای پیچیده شامل هزاران ترانزیستور ، دیود ، مقاومت و خازن را روی یک تراشه نیمه رسانای جای داد.
انواع مدارهای مجتمع برحسب کاربرد
مدار مجتمع خطی
یک IC خطی عمل تقویت یا سایر اعمال اساسا خطی را روی سیکنالها انجام میدهد نمونهای از این مدارهای خطی عبارتند از: تقویت کنندههای ساده ، تقویت کنندههای عملیاتی و مدارهای مخابراتی قیاسی
مدار مجتمع دیجیتالی
شامل مدارهای منطقی و حافظه برای کاربرد در کامپیوترها ، حسابگرها ، زیرپرندازهها ، امثال آن میباشند تا به حال بیشترین حجم ICها مربوط به حوزه دیجیتالی و به دلیل نیاز زیاد به این مدارها بوده است. از آنجایی که مدارهای دیجیتالی معمولا فقط به عملکرد «قطع و وصل» ترانزیستورها نیاز دارند شرایط طراحی مدارهای دیجیتالی مجتمع اغلب سادهتر از مدارهای خطی است.
انواع مدارهای مجتمع برحسب ساخت
مدارهای یکپارچه
مدارهای مجتمعی که بطور کامل روی یک تراشه نیمه رسانا (معمولا سیلسیوم) قرار میگیرند مدارهای یکپارچه نامیده میشود واژه یکپارچه از لحاظ ادبی به معنای «تک سنگی» بوده و به مفهوم آن است که کل مدار در یک قطعه واحد از نیمه رسانا جا داده میشود. مدارهای یکپارچه دارای این مزیت هستند که تمام عناصر در یک ساختار منفرد و محکم و با امکان تولید گروهی قرار میگیرند یعنی صدها مدار مشابه را میتوان بطور همزمان روی یک پولک: S ساخت.
مدارهای آمیخته
هر گونه الحاقاتی به نمونه نیمه رسان مانند لایههای عایق کننده و الگوهای فلز کاری در سطح تراشه انجام میپذیرد. یک مدار آمیخته میتواند دارای یک یا چند مدار یکپارچه یا ترانزیستورهای جداگانه باشد که به همراه اتصالات داخلی مناسب به یک بستر با مقاومتها ، خازنها ، و سایر عناصر مداری پیوند شده باشند. مدارهای آمیخته با داشتن عایق عالی بین عناصر امکان استفاده از مقاومتها و خازنهای دقیق را فراهم میسازند.
تکنولوژی مورد استفاده در هنگام ساخت مقاومت و… بیرون تراشه SI
فرآیند لایه نازک
تکنولوژی لایه نازک از دقت و کوچک سازی بیشتری برخورد بوده و عموما در جایی که فضا اهمیت دارد ترجیح داده میشود الگوهای اتصال بندی و مقاومتهای لایه – نازک را میتوان به روش خلا روی یک بستر سرامیکی شیشهای یا لعابی نشاند. ساخت خازنها در روشهای لایه – نازک از طریق نشاندن یک لایه عایق بین دو لایه فلزی بین دو لایه فلزی یا با اکسید کردن سطح یک لایه و سپس نشاندن لایه دوم روی آن صورت میگیرد.
فرآیند لایه ضخیم
عملکرد کلی انسان بصورت مدل یک سیستم پردازش اطلاعات از چهار زیر سیستم تشکیل می شود:
آنتروپومتری از دو کلمه یونانی آنترو بمعنی انسان و متریک بمعنی اندازه گیری تشکیل شده و تعریف آن اندازه گیری سیستماتیک بدن با استفاده از وسایل اندازه گیری می باشد.
آنتروپومتری در دو مورد کاربرد دارد، اول متناسب ساختن طراحیها با ابعاد بدن انسان جهت راحتی بیشتر و دوم استاندارد نمودن ابزارها، ماشین آلات و غیره.
آنتروپومتری Anthropometry کلمه یونانی است که از دو واژه Anthropo به معنی انسان (گونه انسان) و metry به معنی سنجش، تشکیل شده است.
به طور کلی اندازه گیری ابعاد بدن در دو وضعیت صورت می گیرد:
1. وضعیت ساکن (Static anthropometry)
2. وضعیت متحرک (Dynamic Anthropometry)
در وضعیت ثابت اندازه گیری بدن در حالتی صورت می گیرد که بدن هیچ گونه حرکتی نداشته باشد و این اندازه گیری را اصطلاحاً آنتروپومتری استاتیک می گویند. در وضعیت متحرک اندازه گیری ابعاد بدن در حالتی که بدن در حالت حرکت می باشد، صورت خواهد گرفت. این اندازه گیری آنتروپومتری دینامیک گفته می شود.
به طور کلی آنتروپومتری شامل اندازه گیری اندازه های مختلفی از طول بدن، وزن و حجم اندام ها، فضای حرکتی و زوایای حرکتی هر یک از این اندازه ها بوده و در نهایت تهیه آمار و اطلاعات منتج از آن در تعیین شکل و اندازه ابزار و وسایلی است که در محیط کار مورد استفاده این افراد قرار می گیرد.
آنتروپومتری Anthropometery کلمه ای یونانی است که از دو واژه Anthropo به معنی انسان – گونه انسان و metery به معنی اندازه گیری یا سنجش تشکیل شده است.
علمی است که به اندازه های بدن شامل ابعاد قسمت های مختلف، میدان حرکت و قدرت عضلات بدن می پردازد . معمولا ابعاد اختصاصی فردی مانند: ارتفاع ها، پهناها، عمق ها، فاصله ها، محیط ها و انحنا ها اندازه گرفته می شوند.