بر این حقیقت واقفیم که بیوگاز به عنوان صورت پاک و تجدیدپذیر انرژی (به ویژه در بخش روستایی)، به خوبی میتواند جایگزین منابع متعارف انرژی مانند سوختهای فسیلی شود. اما در عین وجود مزایای متعدد، پتانسیل فنآوری بیوگاز با محدودیتهای خاصی نیز همراه بوده است. در این میان شایعترین محدودیتهای ممکن عبارتند از: زمان ماند هیدرولیکی طولانی 50-30 روز، کاهش تولید گاز در زمستان، نوسانات شدید دمای شبانه روزی هاضم و غیره. برای غلبه بر این مشکلات، محققان کوشیدهاند تا این محدودیتها را به منظور مورد پسند واقع کردن این فنآوری وافزایش تولید گاز بر طرف کنند. از زمانی که علم بیوگاز پا به عرصه وجود گذاشته است؛ تاکنون راهکارهای بیشماری برای بهینه کردن تولید بیوگاز ارائه گردیده، تا با ایجاد روشهای مناسب علاوه بر به حداقل رساندن فرآیند هضم بیهوازی، بتوان میزان تولید بیوگاز را به حداکثر ممکن رساند. این مقاله به بررسی تکنیکهای مختلفی میپردازد که میتواند به منظور افزایش میزان تولید گاز از بسترهای جامد به کار رود.
کلید واژهها: بیوگاز، راهکارها، زمان ماند هیدرولیکی، سرعت هضم.
1- مقدمه:
در سبک زندگی انرژی خواه امروزه نیاز برای جستجو و کشف منابع جدید انرژی که قابل تجدید هستند یک الزام است(مرتضی الماسی، 1384). در مناطق روستایی کشورهای در حال توسعه، بیومس سلولزی متنوع ( کود حیوانی، زائدات کشاورزی و غیره) به مقدار فراوان در دسترس میباشد؛ که تنوع پتانسیل خوبی برای انرژی رساندن به مطالبه انرژی، مخصوصاً در بخش خانگی دارند (آیلی، 1991، 14-19؛ آتار، 1998، 11-15). در هند به تنهایی 250 میلیون دام وجود دارد که اگر تنها یک سوم کود تولیدی سالیانه را به بیوگاز تبدیل کند، میتوان بیشتر از 12 میلیون دستگاه بیوگاز نصب کرد (آتار، 1998، 11-15). تکنولوژی بیوگاز یک مسیر خیلی جذاب برای استفاده مطمئن از گروههای بیومس به منظور تأمین نیازهای انرژی جزئی دارد (چاندار، 1997، 19-23). در واقع عملکرد مناسب سیستم بیوگاز میتواند به منظور حفظ منابع و حفاظت از محیط زیست، مزایای متعددی به کاربران و جامعه ارائه دهد(آیلی، 1991، 14-19؛ آنگلایداکی، 1994، 560-564). بیوگاز محصول تجزیه بیهوازی از بسترهای آلی است، که برای درمان ضایعات صنعتی و تثبیت لجن یکی از قدیمیترین فرآیندهای مورد استفاده است. از آنجا که این عمل توسط مشارکت میکروارگانیسمها انجام میگیرد و وابسته به عوامل مختلفی مثل PH ، دما، زمان ماند هیدرولیکی (HRT)، نسبت C/N و غیره میباشد، یک فرآیند بالنسبه آهسته است. از طرفی عدم ثبات روند، نرخ بارگذاری کم، کم کردن سرعت بهبود پس از تجزیه و شکست و الزامات خاص برای ترکیب زباله، برخی از محدودیتهای دیگر است که با آن مرتبط است (باردیا، 1994). تخمیر بیهوازی یک فرآیند آهسته با یک HRT بزرگ از 50-30 روز است که در دستگاههای بیوگاز متداول انجام میگیرد و این باعث نیاز به حجم زیاد دستگاه هضم و هزینه بالای سیستم میگردد (انگلایداکی، 1994، 560-564). کاهش تولید گاز در طول فصل زمستان گزارش شده است که یک مشکل جدی در کاربرد عملی این فنآوری می باشد. اصولاً تولید بیوگاز از 1700 لیتر در روز در ماه می - ژوئیه به حدود 991 لیتر در روز، در ماه ژانویه - فوریه کاهش مییابد(آتار، 1998). تمام این عوامل باعث کاهش محبوبیت فن آوری بیوگاز در مناطق روستایی شده است. بنابراین نیاز به بهبود بازده کلی فرآیند هضم بیهوازی در دستگاههای بیوگاز میباشد. این ممکن است با استفاده از روشهای مختلف انجام شود از جمله: بهینه سازیهای متنوع پارامترهای عملکردی، رضایت بخش کردن الزامات تغذیه میکروبها (بابی، 1994، 16-19؛ بایر، 1997، 137-143؛ دسیا، 1994، 337-340) با استفاده از اختلاف بیولوژیکی، مواد افزودنی شیمیایی، با دستکاری کردن نسبت خوراک، باگردش و دوران دوغاب هضم (شسته و ساییده شدن میکروب) بازگشت به راکتور، اصلاح و تغییر در طراحی دستگاه بیوگاز موجود (بارنت، 1987، 51)، برخی از راههای دیگر بهبود تولید گاز در جاذبهای بیوگاز هستند، به تازگی تلاشها بر آن است که یا HRT را کاهش دهند و یا بیوگاز تولیدی را با همان HRT بوسیله مخلوط کردن لایه میکروبی ثابت در راکتور که به حفظ میکروبها در راکتور کمک میکند، افزایش دهند. این مقاله یک دیدگاه کلی از روشهای متنوع که میتواند برای استفاده به عنوان افزایش نرخ تولید گاز از بسترهای جامد به کار رود ارائه میدهد (برامملر،1992، 301-310؛ چندرا، 1997، 19-23)
2- روشها و فرآیندهای تولید بیو متان
مواد آلی که در دستگاه بیوگاز به کار گرفته میشوند، میتوانند از هر منبعی سرچشمه بگیرند؛ مشروط بر آنکه شرایط شیمیایی و فیزیکی لازمه برای رشد باکتریهای متانزا فراهم شود (مرتضی الماسی، 1361). مواد زائد و فضولات حیوانی که حاوی بخشی از مواد لیگنو سلولزی هضم نشده و بخشی از مواد لیگنو سلولزی هضم شده میباشند، میتوانند در اثر هیدرولیز آنزیمی به کروهیدراتها تبدیل شوند (محمود ثقفی، 1372؛ غلامرضا علی زاده، 1364). این کربوهیدراتهای تولید شده به کمک میکروارگانیزمهای اسیدوژنیک به اسیدهای آلی تبدیل شده و سپس این اسیدهای آلی در فرآیند تخمیری متانوژنیک توسط باکتریهای مولد متان به گاز متان، گاز کربنیک و به میزان اندکی گازهای دیگر از قبیل نیتروژن، اکسیژن، هیدروژن سولفید و غیره تبدیل میشوند (مرتضی الماسی، 1361). فرآیند هضم بیهوازی و تولید بیوگاز مانند سایر واکنشهای بیو شیمیایی تحت تأثیر عوامل شیمیایی و فیزیکی متنوعی است که مهمترین آنها عبارتند از: زمان ماند هیدرولیکی، نسبتC/N ، دما،PH ، میزان حضور عوامل سمی، میزان مواد
کد متلب مقایسه کنترل کننده فازی و کنترل کننده PI برای کنترل سرعت موتور الکتریکی
در این شبیه سازی که کاملا به صورت کدنویسی انجام شده است، نتایج کنترل سرعت یک موتور الکتریکی با استفاده از دو کنترل کننده فازی و PI با هم مقایسه می شوند.
کنترل کننده فازی دارای دو ورودی است که هرکدام دارای سه تابع عضویت است و یک خروجی که دارای پنج تابع عضویت است.
خط های برنامه حاوی توضیحات لازم به صورت کامنت هستند.
برای مشاهده نتایج کافیست کد را در نرم افزار متلب Run نمایید.
شبیه سازی کنترل سرعت موتور DC بدون جاروبک (BLDC) در نرم افزار متلب
شبیه سازی با تمامی جزیئات و به صورت کامل انجام شده است.
برای مشاهده نتایج کافیست مسیر متلب را در مسیر فایل ها قرار دهید و شبیه سازی را اجرا نمایید.
شبیه سازی کنترل سرعت موتور القایی با استفاده از ماتریس کانورتر در سیمولینک متلب
شبیه سازی به صورت دقیق و با جزییات کامل انجام شده است.
برای نمایش نتایج خروجی کافیست شبیه سازی را در محیط نرم افزار متلب اجرا نمایید.
کد متلب کنترل سرعت موتور القایی با استفاده از تغییر تعداد قطب های موتور
کد متلب حاضر منحنی های گشتاور بر حسب سرعت را به ازای مقادیر مختلف تعداد قطب (2 تا 10 قطب) در یک شکل رسم می کند.
خط های کد برنامه حاوی توضیحات لازم به صورت کامنت هستند.
برای اجرای بازی کافیست برنامه را در محیط نرم افزار متلب اجرا نمایید.
کد متلب تخمین مکان هندسی جسم دارای سرعت ثابت در سه بعد با استفاده از فیلتر کالمن توسعه یافته
برای مشاهده خروجی های برنامه کافیست کد را در نرم افزار MATLAB اجرا نمایید.