جزییات سازه استخرها:
شیب کف استخرها:کف استخرها باید به صورت شیبدار ساخته شود.شیب کف استخرها باید به سمت دریچه تخلیه باشد،به طوری که در صورت لزوم امکان تخلیه آب استخر به راحتی وجود داشته باشد.
به طور تقریبی می توان گفت که شیب کف استخر باید به اندازه ای باشد که نیروی بویانسی تاثیر گذار بر وضعیت تعادل شخص تقریبا به اندازه هفتاد و پنج درصد قد شناگر باشد.اگر شیب کف استخر بیش از این محدوده در نظر گرفته شود،شناگر زودتر تعادل خود را از دست خواهد داد.ازآنجا که نقطه بر هم خوردن تعادل افراد در داخل آب به قد آنها بستگی دارد،توصیه می شود حداکثر شیب کف استخر برای کودکان و شناگرات مبتدی در هر متر حداکثر یک به چهل (بیست و پنج میلی متر در هر یک متر طول )باشد.
شیب کف استخر باید بین دو منطقه علامتی که مشخص کننده عمق استخر هستند به صورت کاملا یکنواخت افزایش یابد.برای افزایش ضریب ایمنی شناگران نیز در کف استخر حتی الامکان باید از کاشی های غیر لغزنده استفاده شود.
لبه بر آمده بر روی جداره استخر
برای تمامی استخرهایی که عمق آنها بیش از m(3.9ft)1.2است برای استراحت شناگران در داخل استخر باید لبه های برآمده ای بر روی جداره داخلی استخرها ایجاد شود.
لبه های برآمده
در مواردی که استخرها اکثرا برای مسابقات و آموزش های قهرمانی مورد استفاده قرار می گیرند،لبه استخرها در تمامی حاشیه ها باید به صورت بر آمده ساخته شود بهطوریکه شناگر قاادر باشد دست خود را به آنها بگیرد.
عایقکاری حرارتی استخر
گاهی برای به حداقل رساندن تلفات حرارتی ،پوسته استخرهای شنا را عایق کاری می کنند.اما حقیقت امر آن است که تلفات گرمایی سطح آزاد آب استخر در مقایسه با تلفات گرمایی ناشی از جداره ها و کف استخر در مقایسه با تلفات گرمایی ناشی از جداره ها و کف کاسه استخر به اندازه ای زیاد است که عملا می توان از تلفات جداره و کف استخر صرفنظر کرد. البته در پروژه هایی که سطح آب زیر زمینی بالاست،مقدار تبادل حرارت آب از طریق جداره ها و کف استخر نیز افزایش می یابد.با این حال در کمتر پروژه ای این کار صورت می گیرد. چرا که با تحلیل اقتصادی پروژه مشخص خواهد شد هزینه ای که باید برای عایقکاری استخر پرداخت شود به مراتب بیشتر از هزینه مقدار ناچیز انرژی تلف شده از این طریق،حتی دردوره چندین ساله است.
کانال های آب حاشیه استخر
برای جمع آوری آبی که از داخل به حاشیه کاسه استخر می ریزد،کانالهای آبی در حاشیه کاسه استخر در نظر گرفته می شود.در نظر گرفتن این کانال ها در استخرهای سرپوشیده از آن جهت اهمیت دارد که در صورت عدم وجود این مجرا،احتمال نفوذ آب به ساختمان و کانال های هوایی که معمولا بر روی کف و دور تا دورکاسه استخر امتداد می یابند افزایش می یابد.
گیره نگهدارنده طناب جداکننده خطوط شنا
این گیره ها برای ثابت نگه داشتن پایه خطوط بر رو سطح آب استخر مورد استفاده قرار می گیرند و معمولا در قسمت پشت لبه بر آمده کانالهای حاشیه استخر تعبیه می شوند.
ساخت استخرها
صرف نظر از کاربری استخرهای شنا،سرپوشیده یا سرباز بودن آنها و سایر عواملی که تا به حال صحبت کردیم،انواع استخرها از نظر جنس سازه را می توان در موارد زیر دسته بندی کرد:
استخرهای بتنی
استخرهای آب بندی شده با وینیل
استخرهای فایبر گلاس
استخرهای فلزی
استخرهای چوبی
پرسش های مهمی که باید در هنگام طراحی سازه استخر مورد توجه قرار گیرد عبارتند از:
-ضرورت و نیاز به تعمیر و نگهداری سازه استخر
-زمان مورد نیاز بین ساخت،بهره برداری،بازسازی و انجام تعمیرات
-عمر مفید سازه پیش از آن که بخش یا تمام سازه آسیب ببیند.
استخرهای بتنی
از میان انواع مختلف استخرها ،استخرهای بتنی از بیشترین انعطاف پذیری برخوردار هستند.به طوری که شکل و طرح اجرا شده در محوطه استخر را می توان با آرماتور بندی مناسب اجرا کرد.
اولین مرحله برای اجرای یک استخر بتنی،تهیه پلانهای مهندسی است.
گودبرداری،آرماتوربندی و ساخت فونداسیون در مرحله بعد و با توجه به پلانهای مهندسی انجام می گیرد.برای آرماتوربندی استخرهای بتنی از میلگردهای فولادی استفاده می شود.قالبهای بتنی استاندارد معمولا از جنس چوب،فایبر گلاس یا فولاد ساخته می شوند.در واقع نوع قالب بندی است که نمای سطح بتن را پس از برداشتن قالب ها تعیین می کنند .پس از پایان آرماتور بندی نیز عملیات بتن ریزی انجام می شود.
پس از عمل آوری بتن که زمان آن متناسب با شرایط آب و هوایی منطقه و ضخامت لایه بتن متغیر است ،نمای سطح با استفاده از روش ها و مواد مختلف شکل می گیرد.
استخرهای بتنی از لحاظ شیوه استفاده از بتن خود به زیر گروههای مختلفی تقسیم بندی می شوند.
اولین گروه از این استخرها،استخرهای ساخته شده با بتن قالب گیری شده هستند.بسته به نوع قالب های بتنی مورد استفاده ،استخرهای قالب گیری شده نیز به دو گروه یکپارچه و چند تکه طبقه بندی می شوند.
گروه دیگری از از استخرهای بتنی،استخرهایی هستند که با استفاده از بتن خود به زیر گروههای مختلفی تقسیم بندی می شوند.
اولین گروه از این استخرها،استخرهای ساخته شده با بتن قالب گیری شده هستند.بسته به نوع قالب های یتنی مورد استفاده،استخرهای قالب گیری شده نیز به دو گروه یکپارچه و چند تکه طبقه بندی می شوند.
گروه دیگری از استخرهای بتنی،استخرهایی هستند که با استفاده از بتن پاشیدنی ساخته می شوند.در این روش،بتن با استفاده از بتن پاش در میان آرماتورهای استخر پاشیده می شود.
بتن پاشیدنی نیز به روش خشک و مرطوب قابل استفاده است.گروه سومن از استخرهای بتنی،استخرهایی هستند که با بتن خشک کوبیده شده ساخته می شوند.گروه چهار نیز استخرهای ساخته شده با بلوک بتنی هستند.
به طور کلی استخرهای بتنی از بتن مسلح ساخته می شوند. از آنجا که بتون ماده ای متخلخل است و آب به راحتی در آن نفوذ می کند،پوسته این استخرها معمولا به همراه یک روکش مقاوم در برابر آب روکش می شوند.
روش های ساخت استخربتنی
1- استفاده از بتن مسلح تحت فشار به منظور کسب اطمینان از این که دیوارها و کف استخر به صورت دائمی در حالت فشاری باقی خواهند ماند.البته از این روش می توان برای معابر پیرامون کاسه استخر و کف مناطق مرطوب نیز استفاده کرد که البته این بستگی به شیوه طراحی دارد.
2- استفاده از بتن مسلح به صورت ساندویچی که این روش موجب افزایش شدید بار مرده سازه می شود.
3- استفاده از بتن مسلح با روکش های pvc2 ،روکش های مشابه یا روکش های ضد آب تزیینی به صورت پاششی
نکته دیگری که باید برای فضای خالی سازه ای مورد توجه قرار گیرد آن است که اندازه آن باید طوری باشد که یک فردبالغ قادر به عبوراز میان آن برای بازدید از سازه و در صورت لزوم انجام تعمیرات لازم باشد.این بخش از سازه باید مجهز به تاسیسات روشنایی دائمی و پریز برق باشد.
ساخت استخرهای شنا با بتن پاشیدنی
انجمن بتن آمریکا بتن پاشیدنی را ملاط یا بتونی تعریف می کند که به صورت پنوماتیکی و با سرعت بالا بر روی سطوح پوشیده می شود.در کشور انگلستان گاهی از اصطلاحات (گونیت)به جای بتن پاششی استفاده می کنند.مزایای بتن پاششی را می توان در موارد زیر خلاصه کرد:
1-با این روش دیگر نیازی به استفاده از قالب های بتنی که هزینه بالایی دارند نخواهند بود.
2-بدون تحمیل هزینه ی سرسام آور به پروژه می توان استخر را به هر شکل دلخواهی ساخت.
3- با این روش می توان سرعت ساخت را افزایش داد.
4-با استفاده از بتن پاششی می توان استخر را در سایت های شلوغ که دسترسی به مواد و تجهیزات با محدودیت های با محدودیت های بسیاری همراه است به کار گرفت.مزیت این روش آن است که برای بتن ریزی در میان آرماتورها با استفاده از یک دستگاه بتن پاش مجهز به لوله خرطومی می توان حداقل تا فاصلهft)8 32) m100عملیات بتن ریزی را انجام داد.
البته در کنار مزایای یاد شده این روش معایبی هم دارد:
1-در این مورد مشکل نفوذ آب به زیر پوسته استخر و معلق شدن آن که می تواند موجب آسیب رساندن به سازه استخر شود بسیار جدی است.حتما باید بررسی های لازم در این زمین انجام شود.
2-برای کسب اطمینان از این که بتون ریزی در تمامی آرماتوربندی به خوبی انجام گرفته است،متصدی دستگاه بتون پاش باید از تجربه و مهارت کافی برخوردار باشد.رعایت این نکته به ویژه در محل تلاقی دیوارها و کف از اهمیت بیشتری برخوردار است.
3-در این روش به دلیل عدم استفاده از قالب های بتنی،آسیب پذیری سازه بتنی در مرحله ساخت نسبت به دماهای بسیار پایین در فصل زمستان بیشتر است.
حهحترین معیاری که در این روش بر نتیجه نهایی تاثیر گذار است تجربه و مهارت فردی است که با دستگاه کار می کند.
استخرهای آب بندی شده با وینیل
این استخرها با استفاده از چارچوب های پلیمری یا فلزی و در برخی از موارد با استفاده از بلوک های بنایی یا چوب های فشرده بر روی زمین و یا پس از گود برداری در داخل زمین ساخته می شوند.بر روی این قاب ها،صفحات پیش ساخته و نصب ساده تر آنها در مقایسه با استخرهای بتنی کمتر است.
این دسته از استخرها در ابعاد کوچک گاهی به صورت یک مجموعه یکپارچه نیز در اختیار مشتریان قرار می گیرد و کاربر قادر است آن را بر مبنای دستورالعمل ارائه شده در مکان مورد نظر مستقر سازد.جنس چهارچوب این استخرها معمولا تحت تاثیر عواملی مانند نیاز مصرف کننده،موقعیت قرار گیری استخر و بودجه در نظر گرفته شده تعیین می شود.
صفحاتی که پوسته استخر را تشکیل می دهند معمولا از جنس فولاد،آلومینیوم یا انواع پلیمرها ساخته می شود.
صفحات فولادی تقویت شده با میلگرد های افقی و عمودی به قطعات کوچکتری برش داده می شوند و در کنار یکدیگر شکل نهایی استخر را ایجاد می کنند.در این استخرها به منظور جلوگیری از مشکلاتی مانند زنگ زدن،صفحات و تقویتی های آنها از جنس گالوانیزه ساخته شده یا بر روی آنها از روکش های محافظ استفاده میشود.
صفحات پلیمری نسبت به سایر گزینه ها بیشترین هزینه را به همراه دارند.وزن آنها بسیار کم و مقاومت آنها در برابر خوردگی بسیار زیاد است.صفحات پلیمر به همراه تقویتی های مربوطه به شکل های مورد نظر قالب گیری می شوند.
استخرهای فایبر گلاس
استخرهای فایبر گلاس گروه دیگری از استخرها هستند که از یک پوسته فایبر گلاس یا اکریلیک ساخته می شوند.متناسب با نوع طراحی می توان این استخرها را به صورت یک واحد یکپارچه یا قالب های مجزا ساخت.
این نوع استخرها به ویژه به عنوان استخرهای روزمینی بسیار مناسب بوده و از نطر اقتصادی نیز مقرون به صرفه است.در این نوع استخرها پوسته فایبر گلاس به صورت بر روی یک قاب نگه دارنده فلزی پلیمری قرار می گیرد.
از معایب استخر فایبر گلاس این است که پوسته استخر بعد از ساخت باید به صورت یکپارچه تا محل بهره برداری حمل شده و در نهایت بر روی فونداسیون مربوطه قرار گیرد.گاهی اوقات فقدان فضای کافی برای عبور پوسته از در خروجی مجموعه تا محل کاسه استخر موجب مختل شدن پروژه می شود.همچنین متناسب با اندازه استخر،اغلب استفاده از جرثقیل برای حمل پوسته برای حمل پوسته و قرار دادن آن در محل کاسه استخر ضروری است.
استخرهای چوبی
بعضی از استخرها با انواع مختلف چوبهای سکویا ،سرو،ساج،ماهون و غیره ساخته می شوند.البته این دسته از استخرها را از هرنوع چوبی می توان ساخت،ولی انواع یاد شده در گروه مقاوم ترین و بهترین ها هستند.
روکش ها و روش های آب بند کردن سازه استخرها
پس از اجرای سازه استخرها نوبت به آن میرسد که نمای سطح کاسه استخر ،شامل کف و جداره آن آببندی و روکش شود.استفاده از روکش بر روزی نمای سطح کاسه استخر هم به جهت افزایش عمر مفید سازه و هم به جهت زیبایی ظاهری مورد توجه قرار می گیرد.
روش های مختلفی که به منظور آب بندی کردن سازه و ایجاد نمایی دلپذیر و زیبا در استخرها مورد استفاده قرار می گیرندرا می توان در گروههای زیر تقسیم بندی کرد:
1-اندودکاری
2-کاشی کاری
3-رنگ ها و روکش ها
4-روکش های فایبر گلاس
5- روکش های pvc
6-شن و ماسه و سنگدانه ها
اندودکاری
اندود کاری در واقع یکی ازاصلی ترین و قدیمی ترین روش های آب بندی کردن جداره خارجی کاسه استخر به شمار می رود.با استفاده از این روش می توان نمای کاسه استخر را به رنگ سفید یا رنگ های دیگر تغییر داد.
در این روش مخلوطی از گچ یا آهک به همراه ماسه و آب که حاصل از گچ یا آهک به همراه ماسه وآب که حاصل آن یک ماده خمیری شکل است با استفاده از ماله بر روی سطح خارجی سطح استخر کشیده می شود به این ترتیب با تبخیر آب مخلوط یاد شده،سطح سخت و همواری ایجاد می شود که مقاومت بالایی در برابر نفوذ آب دارد.گاهی اوقات علاوه بر اندود کاری داخل کاسه استخر،در حاشیه ها،هم تراز با سطح آزاد آب و درست در قسمت زیرین قرنیز حاشیه،از یک ردیف کاشی نیز استفاده می شود.
در استخرهای اندودکاری شده ممکن است پس از مدتی در برخی از قسمتها لکه هایی ایجاد شود که برای از بین بردن آنها می توان از محصولات لکه بر مختلفی که در بازار موجود است استفاده کرد.
اما در مواردی که لکه های ایجاد شده در نتیجه مواد شیمیایی،رسوب کردن مواد معدنی،آلودگی یا غیره باشد،زمان اسید شویی سطح استخر فرا رسیده است.آنچه در هنگام اسید شویی اتفاق می افتد آن است که لایه نازکی از اندودکاری سطح به واسطه اسیدها برداشته شده و سطح تمیز و هموار زیرین آن باقی می ماند.بنابراین تنها در مواقعی که ضرورت داشته باشد،باید از روش اسیدشویی استفاده کرد.چرا که اسید شویی بی دلیل تنها عمر مفید نمای سطح را کاهش می دهد.
لازم به ذکر است به دلیل خطراتی که کارکردن با اسیدها به همراه دارد و گازهای سمی تولید شده در هنگام اسیدشویی،این کار فقط باید توسط تکنیسین های مجرب انجام شود.
کاشی کاری
در مواردی که مسائل اقتصادی برای کارفرما اهمیت چندانی ندارد و بودجه کافی برای اجرای پروژه موجود است،کاشی کاری یکی از بهترین انتخاب ها برای پوشاندن نمای سطح کاسه استخر به شمار می رود.
از میان تمام روش های یاد شده کاشی کاری پرهزینه ترین روش به شمار می رود.
اولین مزیت کاشی کاری این است که تمیز کردن کاسه استخر به سادگی امکان پذیر خواهد بود.به لحاظ چشم انداز ظاهری نیز با استفاده از کاشی کاری می توان نمای بسیار زیبایی را در استخر ایجاد کرد.
حتی در مواردی که به دلیل ملاحظات اقتصادی کارفرما قصد کاشی تمام قسمت های کاسه استخر را نداشته باشد،می توان ابتدا تمام کاسه استخر را اندودکاری کرد و در پایان قسمت های منتهی به پلکانقسمت های فوقانی دیوارها و بخش هایی از کف را با انواع مختلف کاشی ها و موزاییک ها تزئین کرد.
رنگ ها و روکش ها
در مواردی که به دلیل محدودیت بودجه امکان استفاده از کاشی ها یا موزاییک ها وجود نداشته باشد،به عنوان نمای سطح کاسه استخر می توان از رنگ ها یا روکش های مناسبی که به این منظور تولید می شوند استفاده کرد.
استفاده از رنگ ارزان قیمت ترین روش برای پوشاندن نمای سطح کاسه استخر به شمار می رود.البته این ارزان بودن به قیمت کاهش عمر مفید نمای سطح استخر تمام می شود.چرا که رنگ ها در میان سایر روش ها کوتاهترین طول عمر را دارند.
در مناطقی که سطح آب های زیر زمینی بالاست،استفاده از رنگ به عنوان نمای سطح کاسه استخر جندان توصیه نمی شود.چرا که این استخرها هرچند سال یکبار باید به طور کامل از آب تخلیه و مجددا رنگ شوند.
بنابراین اگر سطح آب زیر زمینی در محل س
جزییات سازه استخرها:
شیب کف استخرها:کف استخرها باید به صورت شیبدار ساخته شود.شیب کف استخرها باید به سمت دریچه تخلیه باشد،به طوری که در صورت لزوم امکان تخلیه آب استخر به راحتی وجود داشته باشد.
به طور تقریبی می توان گفت که شیب کف استخر باید به اندازه ای باشد که نیروی بویانسی تاثیر گذار بر وضعیت تعادل شخص تقریبا به اندازه هفتاد و پنج درصد قد شناگر باشد.اگر شیب کف استخر بیش از این محدوده در نظر گرفته شود،شناگر زودتر تعادل خود را از دست خواهد داد.ازآنجا که نقطه بر هم خوردن تعادل افراد در داخل آب به قد آنها بستگی دارد،توصیه می شود حداکثر شیب کف استخر برای کودکان و شناگرات مبتدی در هر متر حداکثر یک به چهل (بیست و پنج میلی متر در هر یک متر طول )باشد.
شیب کف استخر باید بین دو منطقه علامتی که مشخص کننده عمق استخر هستند به صورت کاملا یکنواخت افزایش یابد.برای افزایش ضریب ایمنی شناگران نیز در کف استخر حتی الامکان باید از کاشی های غیر لغزنده استفاده شود.
لبه بر آمده بر روی جداره استخر
برای تمامی استخرهایی که عمق آنها بیش از m(3.9ft)1.2است برای استراحت شناگران در داخل استخر باید لبه های برآمده ای بر روی جداره داخلی استخرها ایجاد شود.
لبه های برآمده
در مواردی که استخرها اکثرا برای مسابقات و آموزش های قهرمانی مورد استفاده قرار می گیرند،لبه استخرها در تمامی حاشیه ها باید به صورت بر آمده ساخته شود بهطوریکه شناگر قاادر باشد دست خود را به آنها بگیرد.
عایقکاری حرارتی استخر
گاهی برای به حداقل رساندن تلفات حرارتی ،پوسته استخرهای شنا را عایق کاری می کنند.اما حقیقت امر آن است که تلفات گرمایی سطح آزاد آب استخر در مقایسه با تلفات گرمایی ناشی از جداره ها و کف استخر در مقایسه با تلفات گرمایی ناشی از جداره ها و کف کاسه استخر به اندازه ای زیاد است که عملا می توان از تلفات جداره و کف استخر صرفنظر کرد. البته در پروژه هایی که سطح آب زیر زمینی بالاست،مقدار تبادل حرارت آب از طریق جداره ها و کف استخر نیز افزایش می یابد.با این حال در کمتر پروژه ای این کار صورت می گیرد. چرا که با تحلیل اقتصادی پروژه مشخص خواهد شد هزینه ای که باید برای عایقکاری استخر پرداخت شود به مراتب بیشتر از هزینه مقدار ناچیز انرژی تلف شده از این طریق،حتی دردوره چندین ساله است.
کانال های آب حاشیه استخر
برای جمع آوری آبی که از داخل به حاشیه کاسه استخر می ریزد،کانالهای آبی در حاشیه کاسه استخر در نظر گرفته می شود.در نظر گرفتن این کانال ها در استخرهای سرپوشیده از آن جهت اهمیت دارد که در صورت عدم وجود این مجرا،احتمال نفوذ آب به ساختمان و کانال های هوایی که معمولا بر روی کف و دور تا دورکاسه استخر امتداد می یابند افزایش می یابد.
گیره نگهدارنده طناب جداکننده خطوط شنا
این گیره ها برای ثابت نگه داشتن پایه خطوط بر رو سطح آب استخر مورد استفاده قرار می گیرند و معمولا در قسمت پشت لبه بر آمده کانالهای حاشیه استخر تعبیه می شوند.
ساخت استخرها
صرف نظر از کاربری استخرهای شنا،سرپوشیده یا سرباز بودن آنها و سایر عواملی که تا به حال صحبت کردیم،انواع استخرها از نظر جنس سازه را می توان در موارد زیر دسته بندی کرد:
استخرهای بتنی
استخرهای آب بندی شده با وینیل
استخرهای فایبر گلاس
استخرهای فلزی
استخرهای چوبی
پرسش های مهمی که باید در هنگام طراحی سازه استخر مورد توجه قرار گیرد عبارتند از:
-ضرورت و نیاز به تعمیر و نگهداری سازه استخر
-زمان مورد نیاز بین ساخت،بهره برداری،بازسازی و انجام تعمیرات
-عمر مفید سازه پیش از آن که بخش یا تمام سازه آسیب ببیند.
استخرهای بتنی
از میان انواع مختلف استخرها ،استخرهای بتنی از بیشترین انعطاف پذیری برخوردار هستند.به طوری که شکل و طرح اجرا شده در محوطه استخر را می توان با آرماتور بندی مناسب اجرا کرد.
اولین مرحله برای اجرای یک استخر بتنی،تهیه پلانهای مهندسی است.
گودبرداری،آرماتوربندی و ساخت فونداسیون در مرحله بعد و با توجه به پلانهای مهندسی انجام می گیرد.برای آرماتوربندی استخرهای بتنی از میلگردهای فولادی استفاده می شود.قالبهای بتنی استاندارد معمولا از جنس چوب،فایبر گلاس یا فولاد ساخته می شوند.در واقع نوع قالب بندی است که نمای سطح بتن را پس از برداشتن قالب ها تعیین می کنند .پس از پایان آرماتور بندی نیز عملیات بتن ریزی انجام می شود.
پس از عمل آوری بتن که زمان آن متناسب با شرایط آب و هوایی منطقه و ضخامت لایه بتن متغیر است ،نمای سطح با استفاده از روش ها و مواد مختلف شکل می گیرد.
استخرهای بتنی از لحاظ شیوه استفاده از بتن خود به زیر گروههای مختلفی تقسیم بندی می شوند.
اولین گروه از این استخرها،استخرهای ساخته شده با بتن قالب گیری شده هستند.بسته به نوع قالب های بتنی مورد استفاده ،استخرهای قالب گیری شده نیز به دو گروه یکپارچه و چند تکه طبقه بندی می شوند.
گروه دیگری از از استخرهای بتنی،استخرهایی هستند که با استفاده از بتن خود به زیر گروههای مختلفی تقسیم بندی می شوند.
اولین گروه از این استخرها،استخرهای ساخته شده با بتن قالب گیری شده هستند.بسته به نوع قالب های یتنی مورد استفاده،استخرهای قالب گیری شده نیز به دو گروه یکپارچه و چند تکه طبقه بندی می شوند.
گروه دیگری از استخرهای بتنی،استخرهایی هستند که با استفاده از بتن پاشیدنی ساخته می شوند.در این روش،بتن با استفاده از بتن پاش در میان آرماتورهای استخر پاشیده می شود.
بتن پاشیدنی نیز به روش خشک و مرطوب قابل استفاده است.گروه سومن از استخرهای بتنی،استخرهایی هستند که با بتن خشک کوبیده شده ساخته می شوند.گروه چهار نیز استخرهای ساخته شده با بلوک بتنی هستند.
به طور کلی استخرهای بتنی از بتن مسلح ساخته می شوند. از آنجا که بتون ماده ای متخلخل است و آب به راحتی در آن نفوذ می کند،پوسته این استخرها معمولا به همراه یک روکش مقاوم در برابر آب روکش می شوند.
روش های ساخت استخربتنی
1- استفاده از بتن مسلح تحت فشار به منظور کسب اطمینان از این که دیوارها و کف استخر به صورت دائمی در حالت فشاری باقی خواهند ماند.البته از این روش می توان برای معابر پیرامون کاسه استخر و کف مناطق مرطوب نیز استفاده کرد که البته این بستگی به شیوه طراحی دارد.
2- استفاده از بتن مسلح به صورت ساندویچی که این روش موجب افزایش شدید بار مرده سازه می شود.
3- استفاده از بتن مسلح با روکش های pvc2 ،روکش های مشابه یا روکش های ضد آب تزیینی به صورت پاششی
نکته دیگری که باید برای فضای خالی سازه ای مورد توجه قرار گیرد آن است که اندازه آن باید طوری باشد که یک فردبالغ قادر به عبوراز میان آن برای بازدید از سازه و در صورت لزوم انجام تعمیرات لازم باشد.این بخش از سازه باید مجهز به تاسیسات روشنایی دائمی و پریز برق باشد.
ساخت استخرهای شنا با بتن پاشیدنی
انجمن بتن آمریکا بتن پاشیدنی را ملاط یا بتونی تعریف می کند که به صورت پنوماتیکی و با سرعت بالا بر روی سطوح پوشیده می شود.در کشور انگلستان گاهی از اصطلاحات (گونیت)به جای بتن پاششی استفاده می کنند.مزایای بتن پاششی را می توان در موارد زیر خلاصه کرد:
1-با این روش دیگر نیازی به استفاده از قالب های بتنی که هزینه بالایی دارند نخواهند بود.
2-بدون تحمیل هزینه ی سرسام آور به پروژه می توان استخر را به هر شکل دلخواهی ساخت.
3- با این روش می توان سرعت ساخت را افزایش داد.
4-با استفاده از بتن پاششی می توان استخر را در سایت های شلوغ که دسترسی به مواد و تجهیزات با محدودیت های با محدودیت های بسیاری همراه است به کار گرفت.مزیت این روش آن است که برای بتن ریزی در میان آرماتورها با استفاده از یک دستگاه بتن پاش مجهز به لوله خرطومی می توان حداقل تا فاصلهft)8 32) m100عملیات بتن ریزی را انجام داد.
البته در کنار مزایای یاد شده این روش معایبی هم دارد:
1-در این مورد مشکل نفوذ آب به زیر پوسته استخر و معلق شدن آن که می تواند موجب آسیب رساندن به سازه استخر شود بسیار جدی است.حتما باید بررسی های لازم در این زمین انجام شود.
2-برای کسب اطمینان از این که بتون ریزی در تمامی آرماتوربندی به خوبی انجام گرفته است،متصدی دستگاه بتون پاش باید از تجربه و مهارت کافی برخوردار باشد.رعایت این نکته به ویژه در محل تلاقی دیوارها و کف از اهمیت بیشتری برخوردار است.
3-در این روش به دلیل عدم استفاده از قالب های بتنی،آسیب پذیری سازه بتنی در مرحله ساخت نسبت به دماهای بسیار پایین در فصل زمستان بیشتر است.
حهحترین معیاری که در این روش بر نتیجه نهایی تاثیر گذار است تجربه و مهارت فردی است که با دستگاه کار می کند.
استخرهای آب بندی شده با وینیل
این استخرها با استفاده از چارچوب های پلیمری یا فلزی و در برخی از موارد با استفاده از بلوک های بنایی یا چوب های فشرده بر روی زمین و یا پس از گود برداری در داخل زمین ساخته می شوند.بر روی این قاب ها،صفحات پیش ساخته و نصب ساده تر آنها در مقایسه با استخرهای بتنی کمتر است.
این دسته از استخرها در ابعاد کوچک گاهی به صورت یک مجموعه یکپارچه نیز در اختیار مشتریان قرار می گیرد و کاربر قادر است آن را بر مبنای دستورالعمل ارائه شده در مکان مورد نظر مستقر سازد.جنس چهارچوب این استخرها معمولا تحت تاثیر عواملی مانند نیاز مصرف کننده،موقعیت قرار گیری استخر و بودجه در نظر گرفته شده تعیین می شود.
صفحاتی که پوسته استخر را تشکیل می دهند معمولا از جنس فولاد،آلومینیوم یا انواع پلیمرها ساخته می شود.
صفحات فولادی تقویت شده با میلگرد های افقی و عمودی به قطعات کوچکتری برش داده می شوند و در کنار یکدیگر شکل نهایی استخر را ایجاد می کنند.در این استخرها به منظور جلوگیری از مشکلاتی مانند زنگ زدن،صفحات و تقویتی های آنها از جنس گالوانیزه ساخته شده یا بر روی آنها از روکش های محافظ استفاده میشود.
صفحات پلیمری نسبت به سایر گزینه ها بیشترین هزینه را به همراه دارند.وزن آنها بسیار کم و مقاومت آنها در برابر خوردگی بسیار زیاد است.صفحات پلیمر به همراه تقویتی های مربوطه به شکل های مورد نظر قالب گیری می شوند.
استخرهای فایبر گلاس
استخرهای فایبر گلاس گروه دیگری از استخرها هستند که از یک پوسته فایبر گلاس یا اکریلیک ساخته می شوند.متناسب با نوع طراحی می توان این استخرها را به صورت یک واحد یکپارچه یا قالب های مجزا ساخت.
این نوع استخرها به ویژه به عنوان استخرهای روزمینی بسیار مناسب بوده و از نطر اقتصادی نیز مقرون به صرفه است.در این نوع استخرها پوسته فایبر گلاس به صورت بر روی یک قاب نگه دارنده فلزی پلیمری قرار می گیرد.
از معایب استخر فایبر گلاس این است که پوسته استخر بعد از ساخت باید به صورت یکپارچه تا محل بهره برداری حمل شده و در نهایت بر روی فونداسیون مربوطه قرار گیرد.گاهی اوقات فقدان فضای کافی برای عبور پوسته از در خروجی مجموعه تا محل کاسه استخر موجب مختل شدن پروژه می شود.همچنین متناسب با اندازه استخر،اغلب استفاده از جرثقیل برای حمل پوسته برای حمل پوسته و قرار دادن آن در محل کاسه استخر ضروری است.
استخرهای چوبی
بعضی از استخرها با انواع مختلف چوبهای سکویا ،سرو،ساج،ماهون و غیره ساخته می شوند.البته این دسته از استخرها را از هرنوع چوبی می توان ساخت،ولی انواع یاد شده در گروه مقاوم ترین و بهترین ها هستند.
روکش ها و روش های آب بند کردن سازه استخرها
پس از اجرای سازه استخرها نوبت به آن میرسد که نمای سطح کاسه استخر ،شامل کف و جداره آن آببندی و روکش شود.استفاده از روکش بر روزی نمای سطح کاسه استخر هم به جهت افزایش عمر مفید سازه و هم به جهت زیبایی ظاهری مورد توجه قرار می گیرد.
روش های مختلفی که به منظور آب بندی کردن سازه و ایجاد نمایی دلپذیر و زیبا در استخرها مورد استفاده قرار می گیرندرا می توان در گروههای زیر تقسیم بندی کرد:
1-اندودکاری
2-کاشی کاری
3-رنگ ها و روکش ها
4-روکش های فایبر گلاس
5- روکش های pvc
6-شن و ماسه و سنگدانه ها
اندودکاری
اندود کاری در واقع یکی ازاصلی ترین و قدیمی ترین روش های آب بندی کردن جداره خارجی کاسه استخر به شمار می رود.با استفاده از این روش می توان نمای کاسه استخر را به رنگ سفید یا رنگ های دیگر تغییر داد.
در این روش مخلوطی از گچ یا آهک به همراه ماسه و آب که حاصل از گچ یا آهک به همراه ماسه وآب که حاصل آن یک ماده خمیری شکل است با استفاده از ماله بر روی سطح خارجی سطح استخر کشیده می شود به این ترتیب با تبخیر آب مخلوط یاد شده،سطح سخت و همواری ایجاد می شود که مقاومت بالایی در برابر نفوذ آب دارد.گاهی اوقات علاوه بر اندود کاری داخل کاسه استخر،در حاشیه ها،هم تراز با سطح آزاد آب و درست در قسمت زیرین قرنیز حاشیه،از یک ردیف کاشی نیز استفاده می شود.
در استخرهای اندودکاری شده ممکن است پس از مدتی در برخی از قسمتها لکه هایی ایجاد شود که برای از بین بردن آنها می توان از محصولات لکه بر مختلفی که در بازار موجود است استفاده کرد.
اما در مواردی که لکه های ایجاد شده در نتیجه مواد شیمیایی،رسوب کردن مواد معدنی،آلودگی یا غیره باشد،زمان اسید شویی سطح استخر فرا رسیده است.آنچه در هنگام اسید شویی اتفاق می افتد آن است که لایه نازکی از اندودکاری سطح به واسطه اسیدها برداشته شده و سطح تمیز و هموار زیرین آن باقی می ماند.بنابراین تنها در مواقعی که ضرورت داشته باشد،باید از روش اسیدشویی استفاده کرد.چرا که اسید شویی بی دلیل تنها عمر مفید نمای سطح را کاهش می دهد.
لازم به ذکر است به دلیل خطراتی که کارکردن با اسیدها به همراه دارد و گازهای سمی تولید شده در هنگام اسیدشویی،این کار فقط باید توسط تکنیسین های مجرب انجام شود.
کاشی کاری
در مواردی که مسائل اقتصادی برای کارفرما اهمیت چندانی ندارد و بودجه کافی برای اجرای پروژه موجود است،کاشی کاری یکی از بهترین انتخاب ها برای پوشاندن نمای سطح کاسه استخر به شمار می رود.
از میان تمام روش های یاد شده کاشی کاری پرهزینه ترین روش به شمار می رود.
اولین مزیت کاشی کاری این است که تمیز کردن کاسه استخر به سادگی امکان پذیر خواهد بود.به لحاظ چشم انداز ظاهری نیز با استفاده از کاشی کاری می توان نمای بسیار زیبایی را در استخر ایجاد کرد.
حتی در مواردی که به دلیل ملاحظات اقتصادی کارفرما قصد کاشی تمام قسمت های کاسه استخر را نداشته باشد،می توان ابتدا تمام کاسه استخر را اندودکاری کرد و در پایان قسمت های منتهی به پلکانقسمت های فوقانی دیوارها و بخش هایی از کف را با انواع مختلف کاشی ها و موزاییک ها تزئین کرد.
رنگ ها و روکش ها
در مواردی که به دلیل محدودیت بودجه امکان استفاده از کاشی ها یا موزاییک ها وجود نداشته باشد،به عنوان نمای سطح کاسه استخر می توان از رنگ ها یا روکش های مناسبی که به این منظور تولید می شوند استفاده کرد.
استفاده از رنگ ارزان قیمت ترین روش برای پوشاندن نمای سطح کاسه استخر به شمار می رود.البته این ارزان بودن به قیمت کاهش عمر مفید نمای سطح استخر تمام می شود.چرا که رنگ ها در میان سایر روش ها کوتاهترین طول عمر را دارند.
در مناطقی که سطح آب های زیر زمینی بالاست،استفاده از رنگ به عنوان نمای سطح کاسه استخر جندان توصیه نمی شود.چرا که این استخرها هرچند سال یکبار باید به طور کامل از آب تخلیه و مجددا رنگ شوند.
بنابراین اگر سطح آب زیر زمینی در محل س
در عین حال یادآور می شود که توجه به شرایط عملکردی و محیطی مخزن ( اعم از قرار گرفتن در سرویسهای خطرساز و یا آتش گیر ) میتواند در نحوه طراحی، ساخت ، آزمایشات و نهایتا کیفیت کاری مورد نیاز جهت تعیین عملکرد مخزن در سرویسهای خاص بهره برداری تاثیر به سزائی داشته باشد .
فشار و دمای کاری : فشار و دمایی است که مخزن تحت آنها به عملکرد عادی خود می پردازد .
فشار طراحی ( UG-21 ) : فشاری است که جهت تعیین حداقل ضخامت مجاز برای اجزاء مختلف مخزن تحت فشار در نظر گرفته می شود و معمولا 10% و یا 30 psi ( هر کدام که بزرگتر باشد) بیشتر از فشار عملیاتی آن می بشد . چنانچه مخزن دارای ارتفاع قابل توجهی باشد ( بیشتر از 10 متر ) لازم است که فشار استاتیکی ناشی از وزن سیال نیز به رقم مزبور اشافه گردد . در مورد مخازنی که بطور معمول در شرایط خلاء کار می کنند و یا اینکه امکان خلاء برای آنها محتمل است باید طراحی با در نظر گرفتن پدیده خلاء کامل صورت پذیرد .
درجه حرارت طراحی ( UG-20) : این پارامتر نقش مهمی در طراحی یک مخزن تحت فشار ایفا می کند چرا که مستقیما با مقدار تنش مجاز فلز بکار رفته در ساخت مخزن ارتباط دارد . به عنوان یک پیشنهاد می توان برای مخازنی که فعالیت آنها در محدوده قرار دارد بر اساس RATING فلنجهای بکار رفته در آنها اقدام به تعیین درجه حرارت طراحی نمود چرا که حداکثر تنش مجاز برای فولادهای کربنی و کم آلیاژ در محدوده فوق عمدتا ثابت است . برای مخازن با فولاد کربنی که شرایط دمائی بهره برداری از آنها نزدیک به محیط اطراف می باشد تعیین حداقل درجه حرارت شکست ترد همواره وجود خواهد داشت . یادآوری میشود که آیین نامه در هیچ حالتی اجازه استفاده از درجه حرارت بالاتر از 1000 برای فولادهای کربنی و 1200 برای فولادهای کم آلیاژ را نمی دهد .
حداکثر فشار کاری مجاز[1] (UG-98 ) : فشاری است که تحت آن فشار ، ضعیفترین عضو مجموعه به نقطه نهائی تنش تسلیم خود می رسد و این در حالی است که مخزن در شرایط ذیل قرار داشته باشد :
خوردگی ، دمای طراحی ، وضعیت جغرافیائی طبیعی ، تاثیر بار گذارهای گوناگون از قبیل باد ، فشار خارجی و فشار هیدرواستاتیک .
معمولا سازندگان مخازن تحت فشار مقدار M.A.W.P را با توجه به مقاومت عدسی و یا پوسته مخزن تخمین می زنند و اجزاء کوچک مثل فلنج یا دریچه ها را مبنای محاسبه قرار نمی دهند .
عبارت MAWP (new & cold) یکی از رایج ترین اصطلاحات در این زمینه بوده و اشاره به شرایط ذیل دارد :
بنابراین با توجه به تعریف اصلی MAWP خواهیم داشت :
MAWP < MAWP
فشار تست هیدرواستاتیک ( UG-99) : فشار این تست 5/1 برابر فشار طراحی و یا مساوی با MAWP در نظر گرفته میشود . البته با احراز شرایط Addenda 99 میتوان فشار مورد نظر را 3/1 برابر فشار طراحی نیز در نظر گرفت :
ماکزیمم تنش مجاز ( UG-23) : مقدار این کمیت بستگی به جنس ماده بکار رفته در ساخت مخزن داشته و مستقیما با خواص مکانیکی ماده تشکیل دهنده مخزن در ارتباط است . به عنوان مثال ، کمیت مورد نظر برای ماده SA 516 Gr. 70 بابر با 17500 psi ( psi 20000 با توجه به شرایط Addenda 99 ) می باشد .
استحکام اتصالات ( UW-12) : مقداراین پارامتر (E) بستگی به نحوه اتصالات و درصد رادیوگرافی آنها دارد . در مورد مخزنی که قرار است بطور کامل[2] رادیوگرافی شود ( فشار طراحی بالاتر از 50 psi برای بویلر بخار، حاوی مواد سمی و یا ضخامت بیشتر از برای C.S و برای S.S) ، لازم است تا کلیه خطوط A و D بصورت صد در صد و خطوط C و B ( به شرط اینکه از لوله 10in و یا ضخامت فراتر رفته باشد ) رادیوگرافی شوند . اما اگر قرار باشد که مخزنی بصورت موضعی[3] رادیوگرافی شود ، آنگاه محلهای اتصال خطوط B و C با خطوط دسته A ( شامل نازلهای با قطر بیش از از 10 in و ضخامت 1in ) و محل تماس مقاطع بدون درز مخزن یا عدسی ها وقتیکه طراحی جوشهای A و D بر مبنای استحکام 1.00 یا 0.9 صورت میپذیرد ، باید بطور موضعی رادیوگرافی شوند . ( شکل 1)
چنانچه مخزنی فاقد هرگونه رادیوگرافی طراحی شده باشد آنگاه باید حائز یکی از شرایط زیر باشد :
الف – تنها فشار خارجی وجود داشته باشد .
ب- طراحی اتصالات بدون در نظر گرفتن تست رادیوگرافی صورت پذیرفته باشد .
شکل ( 1) نام گذاری انواع جوشهای طولی و عرضی بر روی یک مخزن
در اینجا لازم است تا با انواع بارگذاریهای ممکن بر روی یک مخزن تحت فشار آشنا شده و از این راه اهداف طراحی و چگونگی آن جهت نیل به مقاصد اصلی را شناسائی کنیم . خلاصه ای از انواع بارگذاریهائی که میتواند بر مخزن تحت فشار اعمال شود در زیر مشاهده میگردد :
معمولا در فرآیند طراحی یک مخزن تحت فشار ، چنانچه مخزن درشرایط خاصی قرار نداشته باشد میتوان برای راحتی کار ، اثرات بارهای استاتیکی ، دینامیکی، ضربه ای و همچنین پدیده خزش را نادیده گرفته و بدین ترتیب فقط تنش ناشی از فشار داخلی ( یا خارجی و نیز وزن مخزن به همراه اثرات باد و زمین لرزه در طراحی یک مخزن تحت فشار نقش اساسی ایفا می کنند .
با توجه به گوناگونی شرایط بارگذاری و همچنین فرآیندهای تولید ورق و دیگر اجزاء مورد نیاز یک مخزن تحت فشار ، تنشهای ایجاد شده را میتوان به 3 گروه عمده دسته بندی نمود :
[1] - maximum allowable working pressure (M.A.W.P)
[2] - Full Radiography
[3]- Spot Radiography
[4]- Water Hamer
[5] - Creep
سازههای پوستهای
در بیشتر موارد با استفاده از بتن مسلح ساخته میشوند به همین دلیل سازههای بتن پوستهای نیز نامیده میشوند.ضمن آن که پوستهها در طبیعت از متنوع ترین فرمهایی هستند که در دنیای فیزیکی اطراف ما یافت میشوند. واژهٔ پوسته تداعی کنندهٔ اشکال موجود در طبیعت مانند تخم پرندگان، پوستهٔ نرم تنان میباشد. این لغت یک نمود ذهنی با دو ویژگی ویژه را مجسم میسازد:
عملکرد کلی پوستهها
پوسته،سازه ای نازک با سطح منحنی می باشد که بارها را بصورت کشش، فشار و برش به تکیه گاه ها منتقل می نماید.سازه های پوسته ای مشابه طاقهای سنتی
می باشد با این تفاوت که سازه ی پوسته ای در برابر نیروهای کششی مقاوم می باشد.اغلب پوسته ها ی معماری از بتن مسلح ساخته شده اند همچنین از تخته ی چند لایی ،فلز پلاستیک های شیشه ای مسلح هم استفاده می شود.پوسته ها به علت شکل منحنی خود مقاومت خوبی در برابر بارهای گسترده ی یکنواخت در سازه هایی مانند سقف دارند اما مقاومت این نوع سازه به علت نازک بودن،در برابر خمش های ناحیه ای که ازطریق بارهای متمرکزتولید شده قابل توجه نمی باشد.
انواع پوسته
پوستهها بر اساس:
طبقه بندی میشوند. در این تقسیم بندی هدف ارائه رفتار و عکس العملهای یکسان در گروههای مختلف پوسته هاست.
۱)تقسیم بندی از نظر نوع شکل گیری
پوستهها از نظر شکل گیری به پوستههای دورانی((چرخش (فیزیک))) و پوستههای انتقالی((Transational)) تقسیم میشوند. در پوستههای دورانی، شکل گیری پوسته ناشی از دوران یک منحنی حول یک محور و در پوستههای انتقالی ناشی از انتقال یک منحنی در طول یک خط یا یک منحنی است.
۲)تقسیم بندی از نظر فرم
پوستهها از نظر نوع انحنای پوسته به دو گروه پوستههای سین کلاستیک و پوستههای آنتی کلاستیک تقسیم میشوند. پوستههای سین کلاستیک دو منحنی دارند و خطوط انحنا در هر جهت آنها یکسان است. پوستههای آنتی کلاستیک((زین اسبی))انحنای مضاعف و خطوط انحنا در جهتهای مخالف دارند.
۳)تقسیم بندی از نظر هندسه
به
تقسیم میشوند
۳-۱)پوستههای قابل توسعه
پوستههایی هستند که بتوان سطح هندسی آنها را بدون ایجاد بریدگی، تنش یا تغییر شکل به شکل صفحهٔ مستوی در آورد. مانند پوستههای استوانهای.
پوستههای گهوارهای که فقط در یک جهت انحنا دارند و از دوران یک منحنی در طول مسیر مستقیم شکل میگیرند، پوستههای قابل توسعهاند. در این پوستهها اغلب از اشکال نیم دایره و سهمی استفاده میشود و تکیه گاهها فقط در گو شهها هستندو در جهت طولی و در جهت انحنا دهانه را میپوشانند.[۴]
پوستههای قابل توسعه خود به چند بخش تقسیم میشوند:
الف) پوستههای استوانهای
که این خود به
تقسیم میشود
ب) پوستههای متقاطع
که این خود به
تقسیم میشود.
الف-۱-۳)پوستههای استوانهای
در طبیعت به ندرت یافت میشود. میتوان به فرم لولهای ساقهٔ گیاهانی مانند بامبو اشاره کرد. جز اصلی تشکیل دهندهٔ استوانه، شکل کلی پوسته است. یک ورقهٔ کاغذ به طور طبیعی تقریباً قادر به هیچ گونه مقاومتی در مقابل خمش نیست، اما با لوله کردن مقاومت آن بیشتر میشود.
۱-الف-۱-۳)پوستههای استوانهای کوتاه
این نوع پوستهها اغلب در گوشهها دارای تکیه گاه هستند و در یکی از دو جهت یا ترکیبی از هر دو جهت عمل میکنند. اولین مورد استفاده از این نوع پوستهها، عملکرد پوسته به عنوان دال است که فاصلهٔ بین قوسها را می پو شاند، در این حالت هر انتها را میتوان به وسیلهٔ یک قوس سخت و مقاوم کرد. دومین روش برای آن که لبهٔ طولی پایینتر به وسیلهٔ یک تیر سخت شود، آن است مه از پوستههای نازک تر که مانند مجموعهای از قوسهای مجاور هم رفتار میکنند و فاصلهٔ بین تیرهای کناری را می پو شانند، استفاده کرد.
پوسته های استوانهای کوتاه که به عنوان:(الف)فاصله بین قوسها با دال پوشانده شده است،(ب)مجموعهای از قوسهای مجاور هم که فاصله ی بین تیرها ی کناری را پوشانده اند.مقایسه این دو با (ج)طاق استوانه ای که باید در طول پایه،تکیه گاه ممتد داشته باشد،رفتار کند
۲-الف-۱-۳)پوستههای استوانهای بلند
این نوع پوستهها اغلب در گوشهها دارای تکیه گاه هستند و مانند تیرهای بزرگ در جهت طولی عمل میکنند، در نتیجه تنشها در این گونه پوستهها مشابه تنشهای خمشی در یک تیر است. بخش بالایی در سر تا سر طول پوسته تحت فشار است در حالی که بخش پایینی تحت کشش میباشد.
پوسته ی استوانه ای بلند مانند تیری که فاصله ی بین دو تکیه گاه را می پوشاند رفتار می کند.افزایش تنش فشاری در بالا و تنش کششی پوسته در پایین پوسته اتفاق می افتد.
نسبت دهانه به ارتفاع در پوسته های استوانه ای بر روی مقدار تنش تاثیر داشته و آن را افزایش میدهد. همچنین افزایش این نسبتها میزان پوشش در دهانه ی بزرگ را افزایش می دهد.اگر ارتفاع از دهانه در این پوسته بیشتر باشد ارتفاع فشار تحتانی کاهش پیدا کرده و نیروی کششی در بالا امکان ایجاد پوسته ی با ضخامت کمتر را فراهم می کند. در تئوری بهترین نسبت دهانه به ارتفاع در حدود 2 می باشد،که حداقل حجم بتن و فولاد مصرفی را نیاز دارد.در عمل از نسبت های 6 تا 10به سبب ملاحظات فنی و حداقل ضخامت مورد نیاز و با توجه به قوانین ساختمانی یا ساختمانهای ساخته شده،معمول تر است.
شرایط لبه ها
سختی پوسته در دو انتهای و لبه ی طولی با مقاومت در برابر رانش بیرونی در نظر گرفته می شود.
نمودار تنش برای پوسته های استوانه ای بلند،همانطور که مشاهده می کنید تنشهای فشاری و کششی بر هم عمودند فاصله ی بین خطوط تنش اشاره به تمرکز تنش در آن ناحیه دارند
۱-ب-۱-۳)پوستههای متقاطع دو بخشی
تقاطع راست گوشهٔ پوستههای دو بخشی با مقطع دایرهای شکل نوعی تاق پهار بخشی را ایجاد میکند که قسمت مقعر ایجاد شده میان بخشهای متقاطع با یک منحنی تا خورده قابل مقایسه است.
۲-ب-۱-۳)پوستههای متقاطع چند بخشی
چندین تقاطع با بخشهای بیشتراست. اگر تعداد بر آمدگی ها (خط الراسها) از خط القعرها بیشتر باشد، نتیجه، ساختار گنبدی شکل خواهد بود.
۳-ب-۱-۳)مخروطها و شبه مخروطها
سطوح مخروطی با حرکت یک خط صاف بر روی خط صاف دیگر و یک منحنی به دست میآیند. این حقیقت که مخروطها انحنای دوگانه دارند و با استفاده از خطوط صاف ساخته میشوند به طور طبیعی آنها را برای طراحی پوستهها مناسب میسازد.
۳-۲) پوستههای غیر قابل توسعه
مانند پوستههای کروی
سقف های پوسته ای
سقف های هستنند منحی وممکن است در یک و یا دو جهت انحنا داشته باشند با ترکیب این سقف ها میتوان حجم زیبای را خلق نمودوازطرفی این سقف ها قادر به تحمل بارهای سنگین هستنند بنابراین امکان پوشش دهنه های بزرگ وجود داردبا توجه به خمیری بودن آنها میتوان فرم دلخواه را طراحی واجرا نمود امروزه با پیشرفت تکنولوژی در تمام علوم وبوجودآمدن نرم افزارهای کامپیوتری قادریم طراحی ومحاسبات این سقف ها را بدقت انجام دهیم از طرفی امکان شبیه سازی این سقف ها قبل از ساخت وجود داردفرودگاه بین المللی جان اف کندی که بین سالهای 1956و1962 ساخته شد یکی از کارهای موفق ارو سارینن است این سقف پوسته ای یکی از شاهکارهایمعماری است که درنوع خود بی نظیر است حجم تندیس گونه این فرودگاه نتنها مورد استقبال بازدید کنندگان قرار گرفت بلکه موردتحسین صاحبنظران واقع گردید.
یکی از بنیان گذاران سقف های پوسته ای هاینس ایسلراست این مهندس که در سوئیس متولد شده اولین فرم پوسته رابوجودآورد این مهندس مبتکر پارچه ها را به شکل منحنی خم میکرد وسپس این پارچه های خم شده را مرطوب نموده و آنرا درفصل زمستان آویزان میکرد تا کاملا یخ بزنند وبا وارونه کردن آنها توانست مطالعاتی در مورد سقف های پوسته ای انجام دهدوی باین نتیجه رسیداشکالی که از هندسه ساده تشکیل شده باشند نسبت به اشکال غیر هندسیمقاوم ترند
نمونه کارهای هاینس ایسلر
Precast Reinforced Concrete Shells
سیستم ها در یک تقسیمبندی کلی در گروه سازههای سه بعدی قرار میگیرند. سازههای سهبعدی با مواد و مصالح مختلف مانند فولاد، آلومینیوم، چوب، بتن، کامپوزیتهای مسلح فیبری و یا ترکیبی از این مواد را شامل میشود.این سازهها به سه گروه تقسیم میشوند:
الف- سازههای سه بعدی پیوسته که شامل اجزای
سازه های چادری
سازههای غشایی که سازه چادری یا سازه پارچهای نیز نامیده میشود، زیرمجموعهای از سازههای فضایی هستند و به دلیل سبکی، شفافیت و انعطاف در خلق فرمهای زیبا و بدیع، گسترش روزافزونی در ساخت بناهایی با عملکردهای مختلف تجاری، اداری، ورزشی و... و یا به شکل سایه بان در فضاهای عمومی و شهری داشتهاند.
ویژگیهای مذکور ارتباط مستقیم با خواص مواد سازنده غشاهای این نوع سازهها دارد. ساخت و تولید مواد کامپوزیت از الیاف و پلیمرها با طیف وسیعی از خواص فیزیکی، مکانیکی و سازهای امکانات متعددی را پیش روی طراحان قرار داده است. این مواد دارای تفاوتهایی در اندازه، وزن و خواصی نظیر مقاومت گسیختگی، مقاومت در برابر ترک خمشی، انتشار آتش، گسترش پارگی و همینطور درجه شفافیت، دوام و ضمانتی که کارخانه سازنده میدهد، میباشند؛ بنابر این شناخت این ویژگیها و تفاوتها جهت انتخاب ماده مناسب از سوی طراحان و مهندسین، امری ضروری مینماید
تعریف سازههای چادری
غشا ورقهای نازک ازماده است که تنها دربرابر کشش مقاومت دارد و دربرابر فشاروخمش هیچ مقاومتی ندارد، پارچه را میتوان بهترین نمونه ازغشاهاوسازه چادری نام برد. سازه چادری از دو جزء تشکیل شده است؛
تاریخچه سازه چادری
اولین بنای واقعی معماری با این نوع سازه توسط ولادیمر شوخوف طراحی شدکه وی تمامی محاسبات کاربردی تنشها وتغییر شکلهای حاصل از تنشها راتوسعه داد وپس از آن آنتونیوگائودی با معکوس کردن یک ساختار فشاری یک ساختار معلق کششی به دستآورد که درکلیسای ساگرافمیلیا ازآن استفاده کرد. وپس ازآن فرای اتو ازاین سازه در سقف استادیوم المپیک مونیخ۱۹۷۲ استفاده کرد
طراحی سازههای چادری
طراحی ساختمان با سازه چادری باطراحی ساختمانهای ساده بسیار متفاوت میباشد درطراحی این سازهها نمیتوان ابتدا پلان بنارا کشید وسپس آن را اجرا کرد. دراین نوع سازهها، ادرگام اول طرح اولیهای متناسب با عملکرد ارائه میشود، درگام بعدی با ساخت ماکتی شکل کلی آن را پیدا میکنند وسپس به تحلیل کلی سازه میپردازند ودرنهایت تمامی جزئیات سازه را طراحی میکنند
مزایای سازههای غشایی
رفتارسازهای
سازه چادری ازجمله سازههایی است که فرم سازه دقیقاً منطبق با عملکرد سازه میباشد. با طراحی این سازهها به صورت یک سازه کابلی با انحنای مضاعف توانایی باربری وطول عمر این سازه هابسیار بالا میرود
تکیه گاه ها
درحالت کلی دراین نوع سازهها غالباً چادرتوسط ستون مرکزی نگاه داشته میشود.(در این حالت برای جلوگیری از پارگی درپارچه ستون بصورت قارچی اجرا میشود). درحالتهای دیگر از قوسها، کابلهای زنجیرواره، ترکیب سیستم فشاری وکابلهای زنجیرواره نیز دیده میشود.
ترمینال حجاج جده
طراحان هتگام بازدید ازاین منطقه به این مسئله پی بردند که انسانهای بدوی ساکن دراین منطقه آموخته بودند که زندگی درزیر سایه چتر درگرمای عربستان بهترازماندن در ساختمانی محصور وداغ میباشد وهمچنین به عقیده طراحان تهویه مکانیکی هوا ونورپردازی ساختمان موردنیاز ترمینال باتوجه به اوج استفاده دریک دوره کوتاه بسیارگرانقیمت میباشد. تمامی این دلایل معماران رابرآن داشت تا ازیک سقف پارچهای نیمه شفاف وپخش کننده نور برای ترمینال استفاده کنند. این فرم طبیعی چادر، در شب باعث انعکاس نورها به بالا میشود ومانع از ایجاد خیره گی درشب میشود و فرم وارتفاع چادرهاازجریان طبیعی هوا برای ایجادسرما ازطریق تهویه بیرون ودرون از طریق بازشوهای مرکزی درتابستان بهره میبرند. این چادرها سطحی بیش از ۴۳۰هزارمترمربع راپوشش میدهند. مدول اصلی یک پوسته چادری مربع شکل به ضلع ۳۹٫۴مترمی باشد
سازه های پارچه ای نوعی جدیدی از سازه به شمار می آیند که در آنها با استفاده از پوسته های پارچه ای و صنعتی کاملا سبک ، سقفهایی با دهانه های بزرگ و به صرفه ایجاد می شود و بسته به موقتی یا دائمی بودن آنها ،به سازه های مختلفی تقسیم می گردند که خود این دسته ها نیز به به زیر شاخه هایی تقسیم می شوند. وزن سبک پارچه باعث می شود تا ما به پروفیل های فلزی سبکتری نیاز پیدا کنیم و همچنین به علت پیش ساخته بودن کل سیستم سقف ، کل زمان اجرای پروژه به طور قابل توجهی کاهش پیدا می کند . استفاده از این نوع سازه محدودیت زیادی ندارد و می تواند با توجه به شرایط محیطی مختلف ، نوع پوسته مصرفی را تطبیق داد . نوع خاصی از این سازه ، سازه های بادی یا هوانشین هستند که اصطلاحا air-support نامیده می شوند و امکان ساخت ورزشگاه های بزرگ را بدون نیاز به تیرو ستون فراهم ساخته اند. این سازه ها مصرف انرژی را کاهش داده و از مزایای دیگر استفاده از آن ها ، عدم آسیب پذیری سازه در مقابل آتش و زمین لرزه است که هر ساله تلفات زیادی را بر جوامع بشری وارد می سازند
گروه تولیدی کاوشکام در سال 1384 با محوریت تولید سازه های فلزی تاسیس شد. پس از تجربه ای درخشان در صنایع فلزی و بتن پیش ساخته با حسن شهرت کسب شده در صنعت برق، مخابرات و پتروشیمی ، در داخل و خارج از کشور، با راه اندازی بخش جدید سازه چادری کاوشکام قدم به عرصه ای نوین گذاشته است. سازه چادری کاوشکام با استفاده از ظرفیت بالای صنایع فلزی کاوشکام در ساخت انواع سازه های فلزی با جمع آوری گروهی از مهندسین مجرب و متخصص در طراحی و اجراء سازه های چادری-کششی اعم از سایبان پارچه ای (سایبان چادری ) سقف پارچه ای ، سقف پارکینک پارچه ای ، آلاچیق ساحلی ، آلاچیق پارک ، (آلاچیق پارچه ای ) (آلاچیق چادری ) تولید سازه های چادری ( سازه های پارچه ای ) را در ابعاد گسترده آغاز کرده است
سازه های غشایی در سال 1960 توسط فرانک اوتو رواج دوباره ای گرفت. دو طرح پیشنهادی او عبارتند از:
شبکه سیمی آویخته که در نمایشگاه مونترال و همچنین ورزشگاه المپیک مونیخ استفاده شد که هر دو، جزءعظیم ترین و پیچیده ترین سازه های غشایی هستند.
امروزه با پیشرفت فناوری ها سازه های غشایی به کلی دگرگون و متحول شده اند،هر چند بهبود مصالح موجب بهبودعمکرد پوشش های غشایی شده است، ولی روش های نوین طراحی عامل اصلی بهره وری این سازه ها می باشد .
ویژگی های این سازه ها:
1- ریشه در سنت کهن چادر سازی دارند.
2- به لحاظ ارزانی مصالح، سهولت اجراو سرعت برپایی بسیار جذاب می باشند.
از اولین کاربرد های این نوع چادر ها در سالن های نمایشی و سیرک ها و چادر های ارتش می باشد پیشرفت فن آوری های امروز باعث شده است تا:
1) دوام و طول عمر مصالح بیشتر شود.
2) مقاومت در برابر آتش سوزی بیشتر شود.
3) گسترش حریق و دودهای ساطعه کاهش می یابد.
4) انرژی کمتری برای تنظیم شرایط محیط حاصل می شود.
مثلا در مناطق گرمسیر با استفاده از این غشاء ها می توان مقدار زیادی از نور خورشید را منعکس کرده و دمای ساختمان را با صرف انرژی کمتری تنظیم نمود و در مناطق سردسیر با بهره گیری از لایه های عایق حرارتی که منعطف و مات می شوند با انژری کمتری شرایط مطبوع حاصل می شود.
ویژگی محصولات
درصد اشتعال پایین
دارای عالی ترین خواص فیزیکی
دارای پرداخت صیقلی بالا و براق
استفاده از تارپولین وزن متوسط
دارای خاصیت ضد قارچ یا ضد کپک زدگی
قابلیت جوش ، با تکنوژی هوای گرم و فرکانس بالا
مقاومت بسیار بالا در برابر اشعه های مضر آفتاب (UV)
استفاده از رنگدانه های با کیفیت بالا (ثبات و دوام بالای رنگ)
عدم فرسایش در شرایط مختلف آب و هوایی و طول عمر بسیار بالا
دارای رنگ لاکی (لاک و الکل) اکریلیک و پوشش PVC در هر دو سمت
کلیه سازه ها دارای دفترچه محاسباتی فنی و مهندسی بوده و تمام مراحل طراحی تولید و اجرا زیرنظر مهندسی ناظر صورت می پذیرد.
مقایسه سازه های بیمارستان صحرایی
اسکلت بندی این نوع چادرها لوله های فلزی اکثراً از آلیاژهای آلومینیوم و سبک می باشد و در دو نوع اسکلت داخل و یا اسکلت خارج ساخته میشود.
معایب
محاسن
زمان نصب طولانی تر – بیش از یک ساعت
حجم جمع شده بیشتر
وزن زیادتر نسبت به چادر بادی
عدم امکان تراز بندی کف سازه در زمین شیبدار
مقاوم و ساده
دوام و طول عمر بیشتر نسبت به چادر بادی
قیمت ارزان
اسکلت بندی این نوع چادرها لوله های لاستیکی ضخیم و سبک می باشد که با پمپ هوا باد میشود .
معایب
محاسن
قیمت بالاتر به نسبت چادر اسکلت فلزی
مقاوم و ساده
زمان نصب بسیار کوتاه در حد چند دقیقه
کمترین حجم جمع شده و وزن کم
کانکس( 3 متری، 6 متری، 12 متری )
کانکس ها اتاق های با دیواره های دو جداره با عایق پشم شیشه ( جدار خارجی فلزی و جدار داخلی چوب،MDF یا فوم پلاستیکی ) هستند . عرض تمام این سازه ها به دلیل ضوابط ترافیکی در تمام دنیا 4/2 متر است بطور معمول در سه طول 3 ، 6 و 12 متر ساخته میشوند.
محاسن عمومی : - کانکس ها را به جک های تنظیم ارتفاع مجهز مینمایند تا ترازبندی کف سازه امکان پذیر باشد
- امکان نصب ثابت تجهیزات در داخل کانکس که سرعت عمل شروع بکار گیری را بالا میبرد
- تنظیم دمای داخل آن ساده تر است
کانکس 3 متری (10 فوتی)
کانکس 6 متری (20 فوتی)
کانکس 12 متری (40 فوتی)
کاربرد:
اتاق تزریقات و پانسمان
سرویسهای بهداشتی، آشپزخانه،آزمایشگاه،داروخانه،رادیولوژی، انبار ، رخشوی خانه
سرویسهای بهداشتی، آشپزخانه،آزمایشگاه،داروخانه،رادیولوژی، انبار ، اتاق عمل، ریکاوری ، CSR، رخشوی خانه
معایب
محاسن
معایب
محاسن
معایب
محاسن
اندازه کوچک
وزن کم و
سهولت حمل
قابلیت حمل با هواپیما و بالگرد
عدم قابلیت حمل با بالگرد
- فضای بیشتر برای بکارگیری به عنوان دو واحد جداگانه
کانکس با قابلیت گسترش دو برابر /سه برابر
این کانکس ها اتاق های با دیواره های دو جداره با عایق پشم شیشه هستند . عرض تمام این سازه ها به دلیل ضوابط ترافیکی در تمام دنیا 4/2 متر است. ولی با ایجاد یک یا دو قسمت باز شونده از طرفین عرض این سازه ها به ترتیب به 7/4 متر و 6 متر افزایش میابد بطور معمول در سه طول 3 ، 6 و 12 متر ساخته میشوند.
محاسن عمومی : - فضای داخلی وسیعتری ایجاد میکنند
- کانکس ها را به جک های تنظیم ارتفاع مجهز مینمایند تا ترازبندی کف سازه امکان پذیر باشد
- امکان نصب ثابت تجهیزات در داخل کانکس که سرعت عمل شروع بکار گیری را بالا میبرد
- تنظیم دمای داخل آن ساده تر است
کانکس 3 متری (10 فوتی)
کانکس 6 متری (20 فوتی)
کانکس 12 متری (40 فوتی)
کاربرد: اتاق تزریقات و پانسمان ،
اتاق ایزوله
اتاق عمل، ریکاوری ، ICU
اتاق عمل، ریکاوری ، ICU
این خودرو ها از یک شاسی خودرو با کابین راننده دارای دو صندلی در جلو و یک کابین مجزا در عقب با ابعاد 4/2 عرض و طول از 3 تا 5/4 متر تشکیل شده است . میتوانند بنزینی و یا گازوئیلی باشند . همچنین میتوان انواع شاسی بلند و شاسی کوتاه آن را تهیه نمود.
کاربرد عمومی این خودروها برای اتاق ارتباطات و فرماندهی است.
معایب
محاسن
کف کابین عقب از زمین فاصله زیادی دارد
فضای داخلی کوچک
عدم نیاز به وسیله حمل مجزا
امکان نصب ثابت تجهیزات در داخل کابین
سرعت عمل شروع بکار گیری
امکان بکارگیری تجهیزات حتی در حال حرکت
معماری طبیعی نوعی معماری آمیخته با رنگ است که در اوایل قرن بیستم به عرصه ظهور رسید. معمارانی چون فرانک لوید رایت، آنتونی گادی و رادولف استینر که هر کدام با الهام از طبیعت شیوه ای از این معماری را بنیان گذاشتند. این شیوه معماری به معنای تقلید صرف از طبیعت نیست بلکه در آن خواسته های بشر بعنوان موجودی خلاق و زنده در نظر گرفته می شود، به انسان فردیت می بخشد و به سازگاری انسان با طبیعت پیرامون و مشخصه های فرهنگی وی کمک می کند
معماری طبیعی از توجه صرف به ابعاد فرهنگی و اجتماعی پا را فراتر گذاشته و جنبه های فیزیکی، روحی و روانی بشر و ارتباط وی با دنیای پیرامون را مد نظر قرار می دهد و در زمانی که معماری روز شدیداْ وابسته به اقتصاد، تکنیک و مقررات است معماری طبیعی این موارد را با ابعاد زیستی، فرهنگی و روحی بشر گره می زند.
فری اتو
از چادرهای بزرگ که برروی شبکه های کابلی پیچیده یا دیرکهای عمودی یا مایل فشاری قرار دارند برای ساخت غرفه های نمایشگاهی دائم یا موقت استفاده می شود. یکی از بزرگ ترین این چادرها سطحی به وسعت 7500 متر را در بازیهای المپیک 1972 آلمان می پوشاند.
سقف بالنی (سازه های هوایی یا بادی)
وقتی که غشا ها یک حجم با تعدادی از احجام را کاملا احاطه می کند می تواند به وسیله فشار داخلی خود پیش تنیده شوند. نمونه این سازه غشا یی که شامل یک حجم بسته است در قایقهای پلاستیکی میتوان مشاهده کرد. مو رانا غرفه فوجی را در نمایشگاه بین المللی اوزاکا در 1970 طراحی کرد که با استفاده از لوله های پلاستیکی باد شده است. بالنهای از جنس بافته پلاستیکی که از استخرهای شنا- زمینهای تنیس و سایر تاسیسات موقتی را می پوشاند استادیوم گنبد نقره ای در پونیتاک میشیگان طراحی شده است.
سازه های چادری
چادر یک نوع پوسته کششی یکپارچه نازک است که به وسیله یک ستون یا قوس فشاری نگه داشته می شود.چادر نوع متفاوتی از سازه های کابلی است. در سازه های چادری فرم معماری و عملکردسازه ای یکی هستند. چادر ها معمولا برای استفاده در سازه های موقتی در نظر گرفته می شوند زیرا پارچه مقاومت کمی در برابر خورشید داشته وبه سرعت از بین می رود. پیشرفت اخیر استفاده از قایبر گلاس یا پوششهایی که کمترین فرسایش را در برابر خورشید دارد(تفلون) افزایش داده است. عمر مفید بیش از 20 سال .
ترمینال حج: فرودگاه بین المللی سلطان عبدالعزیز
معمار: اونینگز-اسکید مور- مرپل مهندس سازه:گایگربرگردر1985 به گنجایش 950 هزار نفر زائر خانه خدا طراحی شد.
طراحان هنگام بازدید از منطقه دریافتند که قبایل بدوی آموخته بودند ماندن در زیر سایه یک چتر بر ماندن در یک ساختمان داغ ترجیه دارد. همچنین تهویه و نور پردازی ساختمان بسیار هزینه بر بود پس به یک پارچه نیم شفاف و پخش کننده نورکه در روز نور کافی داشته در شب نورها را منعکس کند احتیاج داشتند. بطور کلی سیستم چادرها تیرک و آسانسور همه به وسیله کابل پایدار گشته اند.کابل ها به پی ساخته شده در زیر آب و بر آمده از آن متصل شده اند.
سازه های کابلی
مشابه بادبان هایی است که در قایق ها و برای حفظ تعادل آن به کار می رود.
مانند مرکزنمایشگاهی دارلینگ – هر دهانه دارای چهار دکل مرکب است-تکیه گاه عمودی اصلی- که هر کدام از چهار ستون فولادی لوله ای تشکیل میشوند. میله ی قطری در بالای دکل ها دو انتهای خرپاهای فضا یی را به صورت معلق نگه می دارند.
پل آ لامیلو
1992 مهندس سازه کالاتروا برای نمایشگاه جهانی اکسپسو 92 ساخته شد که بخش سواره رو این پل دهانه 200 متر را می پوشاند و بوسیله کابل های قطری موازی که همه آن ها از یک طرف به دکل بلندی به ارتفاع 142 متر آویزان هستند نگه داشته می شود.
معماری با الهام از طبیعت
اصل و مبدا معماری طبیعی
با خلق شیوه های نوین معماری بسیاری از معماران بر آن شدند که با تلفیق تکنیک های ساختمان سازی و الهام از طبیعت زندگی بشر امروز، معماری طبیعی را بنیان گذاری کنند.
لوئیس سالیوان (1856_1924): اولین فردی که به تجزیه و تحلیل مفاهیم معماری طبیعی پرداخت. وی در مورد طبیعت تحقیقات بسیاری انجام داد که نتیجه آن اصول نقشه کشی این شیوه معماری بود. او همچنین معمار بنای هندسی (شکل مقابل) است.
فرانک لوید رایت (1869_1956): وی مفاهیم را در جهت تصریح روابط میان طبیعت و معماری گسترش داد و به وضع دستور العمل هایی در خصوص چگونگی ساخت فضاهای داخلی و خارجی بنا و استفاده از مصالح ساختمانی سازگار با طبیعت پیرامون پرداخت
آنتونی گادی (1852_1926): اولین فردی که طرح این شیوه ساخت و ساز را با ارائه صورت ساخته شده بنا بیان کرد و بر چگونگی ساختمان سازی بدین شیوه تاکید داشت . وی در اواخر عمرش معماری هندسی طبیعی را با ساخت دو فضای قوس دار در کلیسای "سگرادا فامیلی متحول ساخت
رادولف استینر (1861_1925): وی اصول این سبک متحول شده معماری را بیان کرد. این اصول شامل طبیعت ، فرهنگ و شعور بشر است
دگرگونی مدرنیسم
معماری طبیعی در اواخر قرن بیستم رو به افول نهاد، چندین نفر از پایه گذاران این سبک مردند و در اروپا رکود اقتصادی و شروع جنگ جهانی دوم باعث کساد بازار ساخت و ساز شد. اگرچه در دهه پنجم وششم قرن بیستم این سبک معماری دوباره رواج پیدا کرد. این حیات دوباره معماری طبیعی مدیون تلاش های بنیانگذاران مدرنیسم بود. آنها صورت های تئوری معماری هندسی را عملی کردند. نام برخی ازاین افراد همراه با آثارشان در ذیل آورده شده است
کاخ اعیانی نوتری
معمار: لی کوربوسیر
شهر رونچمپ فرانسه 1950-1955
تالار فنلاند
معمار: آلورآلتو
شهر هلسینکی فنلاند، 1962-1975
سالن کنسرت سمفونی
معمار: هانز شارون
شهر برلین آلمان 1956-1963
با احیای دوباره معماری طبیعی، بسیاری از معماران با الهام از یافته های پیشگامانی چون رایت و استینر و استفاده از تکنیک ها و خلاقیت های فنی اقدام به ساخت و ساز کردند. اما هنوز این شیوه معماری جهانی نشده بود. چند سال بعد در نمایشگاهی 50 آرشیو و پوستر از این پروژه ها در معرض دید عموم قرار گرفت و بدین نحو معماری طبیعی شهرت جهانی یافت .این ساختمانها علاوه بر برخورداری از استحکام و ایمنی نشانگر هویت ملی و فرهنگی مردم یک منطقه بود و بدلیل داشتن رنگ آمیزی ، روشنایی و طرح جذاب بازدیدکنندگان را بر آن می داشت تا این شیوه را شخصا تجربه کنند.
ساختمانی همخوان با باد... یا به سوی یک معماری رندوم:
مایکل یانتسن Michael Jantzen که به با معماری های عجیبش، مثل M-House، شهرت دارد این بار بنایی را در اسپانیا طراحی کرده که با باد می چرخد!احجام منحنی روی هم چیده شده در جهات مختلف و به صورتی رندوم قابلیت حرکت حول یک محور را دارند و نتیجه بنایی است که با وزش باد و البته متاثر از وزن کم سازه اش، پیوسته تغییر شکل می دهد
Wind Shaped Pavilion آنچنان که از نامش برمی اید در جستجوی هویتی بادگونه است؛ جالب است که حرکت قسمت های 6 گانه بنا فرصت تامین انرژی شامگاهی ساختمان را نیز فراهم می کنند.
این عکس ها متعلق به ماکت استخر می باشد که از طرح صدف الهام گرفته است
خانه جنگل هانگی، نماد طبیعت دوستی «شیگرو بان» معمار ژاپنی:
انسان بدون معماری نمی تواند در این کره خاکی به راحتی زندگی کند. محیط زیست طبیعی و محیط زیست مصنوعی (ساختمان) هر دو محیط زیست هستند و هر دو لازم برای زندگی بشری. ولی وقتی به رابطه میان این دو محیط زیست توجه کنیم متوجه می شویم که معمولا معماری در نقطه مقابل حفاظت محیط زیست طبیعی قرار دارد.
سایت این پروژه باغی است با درختان سر به فلک کشیده. هر روز در دهها نقطه از دنیا در زمینهایی با شرایط مشابه معماران بدون هیچ شکی درختان را قطع می کنند تا ساختمان مورد نظر خود را بنا کنند. ولی «بان» در این پروژه درختان را قطع نمی کند بلکه ساختمان را در مابین درختان می سازد و یک هم زیستی مسالمت آمیز میان درختان (زیست طبیعی) و ساختمان (محیط زیست مصنوعی) ایجاد می کند که کمتر می توان مانند آن را در دیگر آثار معماری دید. «بان» با این کار خود نه تنها درختان را از سرنوشت تلخ قطع شدن نجات می دهد بلکه فضاهای بسیار غنی معماری را نیز می آفریند.
سالن های چادری شرکت تولیدی مشمع آذرآبادگان از دو بخش اصلی تشکیل شده است :
الف) اسکلت سالن:
این بخش از پروفیل آهن محکم ساخته می شود که درهنگام نصب با پیچ ومهره به یکدیگر متصل می شوند.
ب) پوشش سقف
1) پوشش یک لایه: از جنس پارچه پلی استر وروکش پی.وی.سی جهت کاربریهای گوناگون نظیر انبار،پارکینگ و....
2) پوشش سه لایه(عایق حرارتی): لایه رویه از جنس پارچه پلی استر(تارپولین) و روکش پی.وی.سی، لایه دوم پشم پلی استر ولایه سوم (لایه داخلی) که از جنس لایه اول می باشد و امکان نصب سیستم های گرمایشی،سرمایشی وبخار وامکانات نورپردازی وروشنایی وتهویه را دارد.
از مزایای پوشش های سه لایه ای می توان به موارد زیر اشاره نمود:
a عایق بودن در برابرگرما، سرما،رطوبت، آفتاب ،باران وبرف ؛
a عدم شعله ور شدن(ضد حریق)
a تنوع رنگی وطرحهای گوناگون در داخل و خارج جداره سالن با توجه به نیاز مشتری .
برخی از مزایای این سالنها عبارتند از:
a مقرون به صرفه بودن ازلحاظ اقتصادی در مقایسه با احداث سوله بتونی؛
a سهولت جابجایی و نصب مجدد؛
a ضد آب، زلزله ؛
a امکان طراحی در طول و عرض های مختلف بدون محدودیت ؛
a امکان افزایش طول سوله به اندازه دلخواه بعد از بهره برداری اولیه .
انواع کاربریهای این نوع سالنها عبارتند از:
جلوگیری از خروج گاز های آلوده کننده محیط زیست در استخرهای پساب پتروشیمی؛
سایه بان (پارکینگ های اتومبیل،کالا ها در فضای باز؛
سالن های اجتماعات(نماز خانه،غذاخوری،مراسم ها) ؛
سالن های انبار؛
سالن های ورزشی؛
سالن های نمایشگاهی؛
استخرهای روباز و.....
اختراع سازه جایگزین چادر و کانکس برای اسکان موقت بازماندگان حوادث طبیعی توسط ایران
کیفیت بالا، سرعت در نصب و احساس امنیت و آسایش مطلوب برای بازماندگان حوادثی چون زلزله در استفاده از این سازه مسکونی دغدغه اصلی مرکز تحقیقات ساختمان و مسکن در طراحی و ساخت این طرح بوده است.
شاسا. گروه فناوری ساختمانی.
به گزارش شبکه اطلاع رسانی ساختمان ایران شاسا، مشاور طرح "سیستم مسکن موقت سریعالاحداث" که به عنوان اولین اختراع مرکز تحقیقات ساختمان و مسکن به ثبت رسیده است گفت هرچند ساخت مسکن موقت موضوع جدیدی نیست ولی سعی ما در ساخت این سیستم بر آن بوده تا با بالا بردن احساس رضایتمندی، شرایط مناسبی را برای بازماندگان از زلزله که اصلیترین استفادهکنندگان از این سیستم هستند، فراهم کنیم.
وی با اشاره به تجربه اسکان موقت پس از زلزله بم و بررسیهای صورت گرفته جهت ساخت سیستم مسکن موقت سریعالاحداث افزود: تجربه نشان داده است که افرادی که در چادر و یا کانکس اسکان مییابند، به دلیل محدود بودن فضا و ارتفاع پایین آنها، همواره با نوعی احساس ناامنی و عدم آسایش درگیر هستند.
بر اساس این شواهد، در طراحی این سازه جدید سعی شده تا پیش از هر چیز با ایجاد ارتفاع مناسب، زمینه ایجاد آرامش فکری و روحی را در استفادهکنندگان آتی از این مسکن فراهم شود. وی در ادامه افزود: شکل ظاهری این سیستم هم طوری طراحی شده تا در همان نگاه اول تصویری از یک خانه واقعی را به فرد بدهد. داشتن اتاق خواب مجزا و آشپزخانه و سالن در نظر گرفته شده این مزیت را فراهم کرده است.
مهندس بیگلری در تشریح دیگر ویژگیهای برجسته این مسکن موقت خاطرنشان ساخت اتصال اجزای این سازه نیاز به تخصص خاصی ندارد و سهولت در اجرا یک ویژگی مهم در این طرح به حساب میآید. در واقع اجزای این اختراع می تواند به صورت بستههای آماده همراه با دفترچه های راهنما جهت راهاندازی ارائه شود تا در زمان حادثه به سرعت مورد استفاده قرار گیرد.
این کارشناس در خصوص انطباق این نوع سازه برای نقاط مختلف آب و هوایی کشورمان نیز گفت: پیشبینیهای لازم برای استفاده از این خانه برای همه نقاط ایران به عمل آمده است و برای مثال اگر نیاز به استفاده از این سیستم در مناطق سردسیر باشد در عایقبندی و پوششهای آن تغییراتی ایجاد خواهیم کرد ولی اسکلت سازه به همین صورت خواهد بود.
به گزارش شاسا مهندس بیگلری با اشاره به این موضوع که تا به حال در خصوص تولید انبوه این سیستم کاری صورت نگرفته است، ابراز امید واری کرد که مرکز تحقیقات ساختمان و مسکن با حمایت صحیح و ارتباط مناسب با صنعت ساختمان زمینه بهرهگیری مناسب از این سیستم را فراهم کند.
وی با اشاره به ضرورت ارتقاء مسکن موقت سریعالاحداث گفت: این سیستم یک طرح پایه است که میتواند با ایجاد تغییرات به صورت کاملتری ارائه شود. در حال حاضر نیز در خصوص امکان استفاده از آن در کاربریهای مختلف نظرات و پیشنهادات گوناگونی ارایه شده است از جمله سازمان نوسازی و توسعه و تجهیز مدارس کشور خواستار استفاده از این طرح به عنوان مدرسه عشایری شده است. استفاده از سیستم مسکن موقت سریعالاحداث به عنوان غرفههای نمایشگاهی، استفاده برای افراد عادی، برپایی درمانگاه یا بیمارستان صحرایی و... از جمله دیگر کاربریها می باشد.
منابع:
Belda, E.F. 2003) Constructine Problems in Deployable Structure of Emilio Perez pinero. Transactions on the Built Environment, 21, 141-142.
Buhl, Thomas, Jensen, Frank V. & Pellegrino, S (2004) Shape optimization of cover plates for retractable roof structures. Computers and Structures, 82, 1227-1236.
Chilton, John (2003) Environmental aspects. IN LORENS, J., Textile roof 2003 - Eigth international workshop, Berlin.
Jensen, Frank V. (2005) Concepts for Retractable Roof Structures, Ph.D. Dissertation, University of Cambridge
Melin, Nicholas O'brien (2004) Application of Bennett Mechanisms to Long-Span Shelters, PhD Dissertation, University of Oxford
Mollaert, Marijke (2003) A classification for the application of technical textiles and lightweight structures. IN LORENS, J., Textile roof 2003 - Eigth international workshop, Berlin.
Walter, Vortrag Von Matthias (2006) Convertible Roofs. Ferienakademie.
ایرانی بهبهانی, هما (1382) شاخص ها و ویژگی های باغسازی دوران قاجار در تهران. محیط شناسی ضمیمه 31, 99-81.
چیلتون, جان (1386) سازههای مشبک فضایی, تهران, دانشگاه تهران.
مشایخ فریدنی, سعید (1377) سازههای باز و بسته شونده. صفه
غشا ورقهای نازک ازماده است که تنها دربرابر کشش مقاومت دارد و دربرابر فشاروخمش هیچ مقاومتی ندارد، پارچه را میتوان بهترین نمونه ازغشاهاوسازه چادری نام برد. سازه چادری از دو جزء تشکیل شده است؛
تاریخچه سازه چادری
اولین بنای واقعی معماری با این نوع سازه توسط ولادیمر شوخوف طراحی شدکه وی تمامی محاسبات کاربردی تنشها وتغییر شکلهای حاصل از تنشها راتوسعه داد وپس از آن آنتونیوگائودی با معکوس کردن یک ساختار فشاری یک ساختار معلق کششی به دستآورد که درکلیسای ساگرافمیلیا ازآن استفاده کرد. وپس ازآن فرای اتو ازاین سازه در سقف استادیوم المپیک مونیخ۱۹۷۲ استفاده کرد
طراحی سازههای چادری
طراحی ساختمان با سازه چادری باطراحی ساختمانهای ساده بسیار متفاوت میباشد درطراحی این سازهها نمیتوان ابتدا پلان بنارا کشید وسپس آن را اجرا کرد. دراین نوع سازهها، ادرگام اول طرح اولیهای متناسب با عملکرد ارائه میشود، درگام بعدی با ساخت ماکتی شکل کلی آن را پیدا میکنند وسپس به تحلیل کلی سازه میپردازند ودرنهایت تمامی جزئیات سازه را طراحی میکنند
مزایای سازههای غشایی
رفتارسازهای
سازه چادری ازجمله سازههایی است که فرم سازه دقیقاً منطبق با عملکرد سازه میباشد. با طراحی این سازهها به صورت یک سازه کابلی با انحنای مضاعف توانایی باربری وطول عمر این سازه هابسیار بالا میرود
تکیه گاه ها
درحالت کلی دراین نوع سازهها غالباً چادرتوسط ستون مرکزی نگاه داشته میشود.(در این حالت برای جلوگیری از پارگی درپارچه ستون بصورت قارچی اجرا میشود). درحالتهای دیگر از قوسها، کابلهای زنجیرواره، ترکیب سیستم فشاری وکابلهای زنجیرواره نیز دیده میشود.
ترمینال حجاج جده
طراحان هتگام بازدید ازاین منطقه به این مسئله پی بردند که انسانهای بدوی ساکن دراین منطقه آموخته بودند که زندگی درزیر سایه چتر درگرمای عربستان بهترازماندن در ساختمانی محصور وداغ میباشد وهمچنین به عقیده طراحان تهویه مکانیکی هوا ونورپردازی ساختمان موردنیاز ترمینال باتوجه به اوج استفاده دریک دوره کوتاه بسیارگرانقیمت میباشد. تمامی این دلایل معماران رابرآن داشت تا ازیک سقف پارچهای نیمه شفاف وپخش کننده نور برای ترمینال استفاده کنند. این فرم طبیعی چادر، در شب باعث انعکاس نورها به بالا میشود ومانع از ایجاد خیره گی درشب میشود و فرم وارتفاع چادرهاازجریان طبیعی هوا برای ایجادسرما ازطریق تهویه بیرون ودرون از طریق بازشوهای مرکزی درتابستان بهره میبرند. این چادرها سطحی بیش از ۴۳۰هزارمترمربع راپوشش میدهند. مدول اصلی یک پوسته چادری مربع شکل به ضلع ۳۹٫۴مترمی باشد
سازه های پارچه ای نوعی جدیدی از سازه به شمار می آیند که در آنها با استفاده از پوسته های پارچه ای و صنعتی کاملا سبک ، سقفهایی با دهانه های بزرگ و به صرفه ایجاد می شود و بسته به موقتی یا دائمی بودن آنها ،به سازه های مختلفی تقسیم می گردند که خود این دسته ها نیز به به زیر شاخه هایی تقسیم می شوند. وزن سبک پارچه باعث می شود تا ما به پروفیل های فلزی سبکتری نیاز پیدا کنیم و همچنین به علت پیش ساخته بودن کل سیستم سقف ، کل زمان اجرای پروژه به طور قابل توجهی کاهش پیدا می کند . استفاده از این نوع سازه محدودیت زیادی ندارد و می تواند با توجه به شرایط محیطی مختلف ، نوع پوسته مصرفی را تطبیق داد . نوع خاصی از این سازه ، سازه های بادی یا هوانشین هستند که اصطلاحا air-support نامیده می شوند و امکان ساخت ورزشگاه های بزرگ را بدون نیاز به تیرو ستون فراهم ساخته اند. این سازه ها مصرف انرژی را کاهش داده و از مزایای دیگر استفاده از آن ها ، عدم آسیب پذیری سازه در مقابل آتش و زمین لرزه است که هر ساله تلفات زیادی را بر جوامع بشری وارد می سازند
گروه تولیدی کاوشکام در سال 1384 با محوریت تولید سازه های فلزی تاسیس شد. پس از تجربه ای درخشان در صنایع فلزی و بتن پیش ساخته با حسن شهرت کسب شده در صنعت برق، مخابرات و پتروشیمی ، در داخل و خارج از کشور، با راه اندازی بخش جدید سازه چادری کاوشکام قدم به عرصه ای نوین گذاشته است. سازه چادری کاوشکام با استفاده از ظرفیت بالای صنایع فلزی کاوشکام در ساخت انواع سازه های فلزی با جمع آوری گروهی از مهندسین مجرب و متخصص در طراحی و اجراء سازه های چادری-کششی اعم از سایبان پارچه ای (سایبان چادری ) سقف پارچه ای ، سقف پارکینک پارچه ای ، آلاچیق ساحلی ، آلاچیق پارک ، (آلاچیق پارچه ای ) (آلاچیق چادری ) تولید سازه های چادری ( سازه های پارچه ای ) را در ابعاد گسترده آغاز کرده است
سازه های غشایی در سال 1960 توسط فرانک اوتو رواج دوباره ای گرفت. دو طرح پیشنهادی او عبارتند از:
شبکه سیمی آویخته که در نمایشگاه مونترال و همچنین ورزشگاه المپیک مونیخ استفاده شد که هر دو، جزءعظیم ترین و پیچیده ترین سازه های غشایی هستند.
امروزه با پیشرفت فناوری ها سازه های غشایی به کلی دگرگون و متحول شده اند،هر چند بهبود مصالح موجب بهبودعمکرد پوشش های غشایی شده است، ولی روش های نوین طراحی عامل اصلی بهره وری این سازه ها می باشد .
ویژگی های این سازه ها:
1- ریشه در سنت کهن چادر سازی دارند.
2- به لحاظ ارزانی مصالح، سهولت اجراو سرعت برپایی بسیار جذاب می باشند.
از اولین کاربرد های این نوع چادر ها در سالن های نمایشی و سیرک ها و چادر های ارتش می باشد پیشرفت فن آوری های امروز باعث شده است تا:
1) دوام و طول عمر مصالح بیشتر شود.
2) مقاومت در برابر آتش سوزی بیشتر شود.
3) گسترش حریق و دودهای ساطعه کاهش می یابد.
4) انرژی کمتری برای تنظیم شرایط محیط حاصل می شود.
مثلا در مناطق گرمسیر با استفاده از این غشاء ها می توان مقدار زیادی از نور خورشید را منعکس کرده و دمای ساختمان را با صرف انرژی کمتری تنظیم نمود و در مناطق سردسیر با بهره گیری از لایه های عایق حرارتی که منعطف و مات می شوند با انژری کمتری شرایط مطبوع حاصل می شود.
ویژگی محصولات
درصد اشتعال پایین
دارای عالی ترین خواص فیزیکی
دارای پرداخت صیقلی بالا و براق
استفاده از تارپولین وزن متوسط
دارای خاصیت ضد قارچ یا ضد کپک زدگی
قابلیت جوش ، با تکنوژی هوای گرم و فرکانس بالا
مقاومت بسیار بالا در برابر اشعه های مضر آفتاب (UV)
استفاده از رنگدانه های با کیفیت بالا (ثبات و دوام بالای رنگ)
عدم فرسایش در شرایط مختلف آب و هوایی و طول عمر بسیار بالا
دارای رنگ لاکی (لاک و الکل) اکریلیک و پوشش PVC در هر دو سمت
کلیه سازه ها دارای دفترچه محاسباتی فنی و مهندسی بوده و تمام مراحل طراحی تولید و اجرا زیرنظر مهندسی ناظر صورت می پذیرد.
مقایسه سازه های بیمارستان صحرایی
سازههای پوستهای
در بیشتر موارد با استفاده از بتن مسلح ساخته میشوند به همین دلیل سازههای بتن پوستهای نیز نامیده میشوند.ضمن آن که پوستهها در طبیعت از متنوع ترین فرمهایی هستند که در دنیای فیزیکی اطراف ما یافت میشوند. واژهٔ پوسته تداعی کنندهٔ اشکال موجود در طبیعت مانند تخم پرندگان، پوستهٔ نرم تنان میباشد. این لغت یک نمود ذهنی با دو ویژگی ویژه را مجسم میسازد:
عملکرد کلی پوستهها
پوسته،سازه ای نازک با سطح منحنی می باشد که بارها را بصورت کشش، فشار و برش به تکیه گاه ها منتقل می نماید.سازه های پوسته ای مشابه طاقهای سنتی
می باشد با این تفاوت که سازه ی پوسته ای در برابر نیروهای کششی مقاوم می باشد.اغلب پوسته ها ی معماری از بتن مسلح ساخته شده اند همچنین از تخته ی چند لایی ،فلز پلاستیک های شیشه ای مسلح هم استفاده می شود.پوسته ها به علت شکل منحنی خود مقاومت خوبی در برابر بارهای گسترده ی یکنواخت در سازه هایی مانند سقف دارند اما مقاومت این نوع سازه به علت نازک بودن،در برابر خمش های ناحیه ای که ازطریق بارهای متمرکزتولید شده قابل توجه نمی باشد.
انواع پوسته
پوستهها بر اساس:
طبقه بندی میشوند. در این تقسیم بندی هدف ارائه رفتار و عکس العملهای یکسان در گروههای مختلف پوسته هاست.
۱)تقسیم بندی از نظر نوع شکل گیری
پوستهها از نظر شکل گیری به پوستههای دورانی((چرخش (فیزیک))) و پوستههای انتقالی((Transational)) تقسیم میشوند. در پوستههای دورانی، شکل گیری پوسته ناشی از دوران یک منحنی حول یک محور و در پوستههای انتقالی ناشی از انتقال یک منحنی در طول یک خط یا یک منحنی است.
۲)تقسیم بندی از نظر فرم
پوستهها از نظر نوع انحنای پوسته به دو گروه پوستههای سین کلاستیک و پوستههای آنتی کلاستیک تقسیم میشوند. پوستههای سین کلاستیک دو منحنی دارند و خطوط انحنا در هر جهت آنها یکسان است. پوستههای آنتی کلاستیک((زین اسبی))انحنای مضاعف و خطوط انحنا در جهتهای مخالف دارند.
۳)تقسیم بندی از نظر هندسه
به
تقسیم میشوند
۳-۱)پوستههای قابل توسعه
پوستههایی هستند که بتوان سطح هندسی آنها را بدون ایجاد بریدگی، تنش یا تغییر شکل به شکل صفحهٔ مستوی در آورد. مانند پوستههای استوانهای.
پوستههای گهوارهای که فقط در یک جهت انحنا دارند و از دوران یک منحنی در طول مسیر مستقیم شکل میگیرند، پوستههای قابل توسعهاند. در این پوستهها اغلب از اشکال نیم دایره و سهمی استفاده میشود و تکیه گاهها فقط در گو شهها هستندو در جهت طولی و در جهت انحنا دهانه را میپوشانند.[۴]
پوستههای قابل توسعه خود به چند بخش تقسیم میشوند:
الف) پوستههای استوانهای
که این خود به
تقسیم میشود
ب) پوستههای متقاطع
که این خود به
تقسیم میشود.
الف-۱-۳)پوستههای استوانهای
در طبیعت به ندرت یافت میشود. میتوان به فرم لولهای ساقهٔ گیاهانی مانند بامبو اشاره کرد. جز اصلی تشکیل دهندهٔ استوانه، شکل کلی پوسته است. یک ورقهٔ کاغذ به طور طبیعی تقریباً قادر به هیچ گونه مقاومتی در مقابل خمش نیست، اما با لوله کردن مقاومت آن بیشتر میشود.
۱-الف-۱-۳)پوستههای استوانهای کوتاه
این نوع پوستهها اغلب در گوشهها دارای تکیه گاه هستند و در یکی از دو جهت یا ترکیبی از هر دو جهت عمل میکنند. اولین مورد استفاده از این نوع پوستهها، عملکرد پوسته به عنوان دال است که فاصلهٔ بین قوسها را می پو شاند، در این حالت هر انتها را میتوان به وسیلهٔ یک قوس سخت و مقاوم کرد. دومین روش برای آن که لبهٔ طولی پایینتر به وسیلهٔ یک تیر سخت شود، آن است مه از پوستههای نازک تر که مانند مجموعهای از قوسهای مجاور هم رفتار میکنند و فاصلهٔ بین تیرهای کناری را می پو شانند، استفاده کرد.
پوسته های استوانهای کوتاه که به عنوان:(الف)فاصله بین قوسها با دال پوشانده شده است،(ب)مجموعهای از قوسهای مجاور هم که فاصله ی بین تیرها ی کناری را پوشانده اند.مقایسه این دو با (ج)طاق استوانه ای که باید در طول پایه،تکیه گاه ممتد داشته باشد،رفتار کند
۲-الف-۱-۳)پوستههای استوانهای بلند
این نوع پوستهها اغلب در گوشهها دارای تکیه گاه هستند و مانند تیرهای بزرگ در جهت طولی عمل میکنند، در نتیجه تنشها در این گونه پوستهها مشابه تنشهای خمشی در یک تیر است. بخش بالایی در سر تا سر طول پوسته تحت فشار است در حالی که بخش پایینی تحت کشش میباشد.
پوسته ی استوانه ای بلند مانند تیری که فاصله ی بین دو تکیه گاه را می پوشاند رفتار می کند.افزایش تنش فشاری در بالا و تنش کششی پوسته در پایین پوسته اتفاق می افتد.
نسبت دهانه به ارتفاع در پوسته های استوانه ای بر روی مقدار تنش تاثیر داشته و آن را افزایش میدهد. همچنین افزایش این نسبتها میزان پوشش در دهانه ی بزرگ را افزایش می دهد.اگر ارتفاع از دهانه در این پوسته بیشتر باشد ارتفاع فشار تحتانی کاهش پیدا کرده و نیروی کششی در بالا امکان ایجاد پوسته ی با ضخامت کمتر را فراهم می کند. در تئوری بهترین نسبت دهانه به ارتفاع در حدود 2 می باشد،که حداقل حجم بتن و فولاد مصرفی را نیاز دارد.در عمل از نسبت های 6 تا 10به سبب ملاحظات فنی و حداقل ضخامت مورد نیاز و با توجه به قوانین ساختمانی یا ساختمانهای ساخته شده،معمول تر است.
شرایط لبه ها
سختی پوسته در دو انتهای و لبه ی طولی با مقاومت در برابر رانش بیرونی در نظر گرفته می شود.
نمودار تنش برای پوسته های استوانه ای بلند،همانطور که مشاهده می کنید تنشهای فشاری و کششی بر هم عمودند فاصله ی بین خطوط تنش اشاره به تمرکز تنش در آن ناحیه دارند
بیشتر پیشرفتهائی که در زمینة صنایع و مهندسی صنایع در جهان صورت گرفته و یا می گیرد که جزو لاینفک قرن حاضر می باشند بدون وجود برینگ ها که تا حد زیادی بر نیروی اصطکاک موجود در تمامی ماشین آلات و صنایع ماشین سازی و الکتریکی و خانگی و در صنایع خودروسازی غلبه می کند ، امکان پذیر نبوده و با پیشرفت روز افزون در صنایع ماشین سازی و خودروسازی روز بروز بر اهمیت وجود برینگ ها افزوده می شود .
ازنظرتاریخی زمان اختراع برینگ ها بطور دقیق مشخص نیست اما با وجود کشفیات و شواهد تاریخی می توان گفت که ساخت برینگ به دوران روم باستان بر می گردد که پیشروان صنعت برینگ در آن زمان زندگی می کرده اند ، زیرا هنگامی که در سال 1928 دریاچة "نمی " (Nemi) خشک شد بر روی یکی از دو کشتی پاروئی که از زمان امپراطور بزرگ روم کالیگولا باقی مانده بود بلبرینگی یافت شد که تکیه گاههای آن از چوب ساخته شده بود و دارای ساچمه های برنزی بود ، که از نظر شکل نیز شبیه بلبرینگ های امروزی بوده است . احتمالاً این بلبرینگ در زیر مجسمة بسیار بزرگی برای حمل و یا چرخش آن قرار داده شده بود .
1500 سال بعد لئوناردو داوینچی فیلسوف و ریاضیدان ایتالیائی در دوران حیات خود محاسباتی بر روی یاتاقانهای غلطشی انجام داد که بر حسب آن محاسبات بلبرینگ بصورت ابتدائی ساخته شد و می توان گفت که تا حدود اواخر قرن نوزدهم و تا زمان اختراع دوچرخه و چرخ خیاطی ، ماشین بخار ، ماشین آلات نساجی و غیره اقدامات چندانی در تکمیل و ساخت برینگ ها صورت نگرفته بود .
در اواخر قرن نوزدهم با گسترش صنعت دوچرخه سازی اولین تقاضا برای یاتاقانهای بدون اصطکاک بود لذا در همین عرصه کارخانه هائی درانگلستان و آلمان شروع به ساختن ساچمه های فولادی کردند که تقریباً در همین زمان نیز بلبرینگ به نسبت خیلی کم برای کارهای مهندسی در امریکا ساخته می شد . با اینکه دانش بشر در زمینة برینگ ها در سطح ابتدائی بود اما نیاز به وجود اجسامی که بتواند خصوصیات مربوطه را داشته باشند و به مقدار بسیار زیادی بر نیروی اصطکاک فائق آید بیشتر احساس می شد . بعدها دانشمندی بنام Robert stribeck تحقیقات اساسی در مورد مهندسی برینگ انجام داد در همین زمان بود که گسترش صنعت اتومبیل سازی بهترین زمینة تقاضا برای این محصول بود . بنابراین در عرض ده سال یعنی از سال 1902 الی 1912 بیش از هفت نوع برینگ که امروزه نیز مورد استفاده قرار میگیرد ساخته شد .
با ایجاد تحول اساسی در تکنولوژی طی سده های نوزدهم و بیستم به جهت گسترش نیازهای بشری و پیشرفت سریع تکنولوژی در عرصه های صنایع ماشین های ابزار و افزار ، صنایع خودروسازی ، وسایل خانگی ، سازه های فضائی و بسیاری از صنایع دیگر این محصول نیز روزبروز تکامل یافته تر شد . چرا که این محصول رابطة تنگاتنگی با کارآئی دستگاهها و خودروهای ساخته شده و ارتباط قریبی با ارتقاء سطح تکنولوژی بشری دارد .
البته تولید برینگ ها بصورت انبوه ، مدرن و استاندارد به سال 1907 بر می گردد.
در این سال مهندسی در یک کارخانه نساجی به سبب بروز مشکلاتی که از شکستن برینگها در اثر خمش شفت متوجه خط تولید می شد به فکر ساخت برینگی افتاد که بتواند خود را با خمش شفت مطابقت دهد که این شخص Dr. Sven Wingquist دکتر سوان وینکوئیست بنیانگذار شرکت –- بلبـرینـگ SKF سوئـد بوده که به اخـتراع بلبرینـگ های خود تنـظیم دســت یافـت Self aligning ball bearing . امروزه برینگها در انواع متنوع و مختلف در ابعاد بسیار وسیعی در سراسر دنیا توسط شرکتهای SKF تولید می شود .
تضمین کیفیت و کارآئی مناسب برینگها تحت دورها و شرایط پیچیدة بارهای اعمال شده و شرایط استثنائی نظیر کار در درجه حرارتهای بحرانی ، خلاء و محیطهای خورنده و غیره از دلائل عمده ای است که تأکید بر گسترش دامنة مطالعات و تحقیقات و پیشرفت روز افزون در تکنولوژی ساخت برینگها در این عرصه از صنعت را دارد .
شرکت بلبرینگ ایران
شرکت بلبرینگ ایران (IBC ) در بیست و پنچم سپتامبر 1969 با مشارکت جهانی SKF سوئد تأسیس شده است . این شرکت ، بلبرینگ و رولر برینگ های مخروطی را بر اساس مشخصات ارائه شده ISO ( سازمان استاندارد جهانی ) تولید می کند .
کارخانه مدرن شرکت درشهرتبریزواقع شده وبالغ بر 3/6 میلیون عدد از بلبرینگ ورولر برینگ مخروطی و همچنین بالغ بر 12 میلیون عدد انواع ساچمه در سایزهای مختلف تولید می کند .
این کارخانه با پیشرفته ترین تکنیکهای تولید ،با بهترین مشخصات کیفی و نظام کنترل کتفی بسیار قوی و دقیق تجهیز شده است و تمام تولیدات آن و دقت چرخشی برینگهای IBO مطابق استانداردهای بسیار بالاست .
بلبرینگهای شیار عمیق یک ردیفه یکی از برینگهائی است که بطور بسیار وسیعی در صنایع اتومبیل ، تجهیزات صنعتی ، ماشینهای ابزار و لوازم خانگی و غیره مورد استفاده قرار می گیرد . به خاطر آنها ، این نوع از برینگها قادر به تحمل بارهای محوری در دوجهت تحت چرخش بسیار زیاد هستند .
قابلیت تحمل بارهای شعاعی و دارا بودن این خصوصیت مطلوب بعنوان یک مشخصه بسیار برجسته برای چنین برینگ هائی تلقی می شود .
عمده ترین فعالیت شرکت بلبرینگ ایران تولید بلبرینگهای شیار عمیق بوده که بطور بسیار وسیعی مورد استفاده قرار می گیرد تایپهای سری 62و63 می باشد .
محصولات تمام شده بصورت موارد زیر تجهیز می شوند :
Z- در پوش فلزی (در پوش غیر پلاستیکی) در یک طرف برینگ .
2Z- در پوش فلزی Zدر دو طرف برینگ .
RS – در پوش پلاستیکی از پلاستیک مصنوعی از پلی ارتین در یک طرف برینگ .
2RS – در پوش پلاستیکی RS در دو طرف برینگ .
N- شیار رینگ فنری در قسمت بیرونی سطح رینگ خارجی .
NR- مانند N اما با رینگ فنری .
ZN- درپوش فلزی در یک برینگ و شیار رینگ فنری در رینگ بیرونی برینگ در طرف دیگر .
ZNR – مانند ZN اما با رینگ فنری .
IBO شرکت بلبرینگ ایران تولید کنندة رولر برینگهای مخروطی در اندازه های اینچی می باشد . برای این منظور بهترین عمل کردچنین رولر برینگها ، آنها بطور ویژه برای چرخهای اتومبیلها ساخته می شوند . برای این منظور بهترین و مناسب ترین کار در طراحی درونی و تولید آنها انجام می یابد . خصوصیات برجسته از طریق کاربرد آنها با ملاحظة مشخصات آنها بطور خلاصه بشرح زیر می باشد :
* افزایش در قابلیت تحمل میزان بارهای محوری و شعاعی با در نظر گرفتن کاربردهای ویژه .
*افزایش در میزان تحمل بارهای دینامیکی و استاتیکی .
* اصطکاک بسیار کم و کاهش در سائیدگی و دمای عملیات .
* این نوع از رولر برینگ ها بر طبق تلرانسهای نرمال استاندارد تولید می شوند .
شرکت بلبرینگ ایران IBC تولید کنندة انواع مختلفی از ساچمه های فولادی از آلیاژ کربن و کروم بسیار بالا SAE 52100 مطابق با سیستم DIN 100 cr6
مواد اولیه بصورت سیمهای کلافی نورد سرد انتخاب می شود پس از عبور از نورد سرد و عملیات ویژه و مختلف ساچمه ها اینجا تولید می شوند بخاطر اینکه عملیات اولیة خود را در پروسه های تولید که بعنوان ساچمه های نیمه تمام تولید شده بودند ، کامل کنند .
علاوه بر این ساچمه های فولادی در کوره های مخصوص بطور مداوم حرارت داده می شوند که تحت پروسة کنترول ویژه ای برای دست یابی به ساختار درونی مناسب و همگن قرار بگیرند .
در این محل از تولید ،میزان مشخصی ساچمه ها به3 HRC 62+ می رسند .
نهایتاً ساچمه ها از مراحل متوالی ، سنگزنی سخت ، پولیشکاری ، پرداخت نهائی عبور داده میشوند تا اندازة نهائی بدست آمده و سطوح مطلوب بطور تمام و کمال بدست آید .
بکار گیری و اعمال روشهای کنترل کیفی دقیق همچون وسیله اندازه گیری میکروسکوپی ، دقت ابعادی ، صافی سطح ، قسمتهای صوتی و لرزشی ، چرخش در RPM 1800 ، متالوگرافی آزمایش تحمل بار در هر سیکل تولید ، انجام می شود ، این عملیات حاکی از اطمینان از بهترین کیفیت ساچمه-- ها با بهترین نتایج ، لازمة اعمال چنین عملیات مختلف و پیچیده ای را می نماید .
IBC شرکت بلبرینگ ایران همچنین تولید کنندة بلبرینگ های شیار عمق مخصوص در تلرانسهای نرمال برای صنعت اتومبیل سازی می باشد .
برای چرخش فعالیتهای تولیدی IBC، ساخت چنین نوع بلبرینگها ،بهترین معرف برای شناسائی هویت اصلی کارخانه می باشد بخاطر دارابودن طراحی مخصوص و کیفیت بسیار بالای آنها .
بکار گیری تجهیزات اندازه گیری بسیار دقیق و پیشرفته ، برای اندازه گیری و آنالیز خصوصیات برجستة بلبرینگها ، از اهداف بسیار عمده و مهم تضمین کیفیت IBC می باشد ، که حاکی ا
سازه های فلزی را اغلب در چندین طبقه احداث می کنند ، طول پروفیلها برای ساخت ستون محدود است . با در نظر گرفتن بار وارده و دهانه بین ستونها و نحوه قرار گرفتن ستونهای کناری ، مقاطع مختلفی برای ساخت ستونها به دست می اید. ممکن است در هر طبقه ، ابعاد مقطع ستون با طبقه دیگر تفاوت داشته باشد ؛ بنابراین، باید اتصال مقاطع با ابعاد مختلف برای طویل کردن با دقت زیادی انجام شود . محل مناسب برای وصله ستونها به هنگام طویل کردن آنها حداقل در ازتفاع 45 تا60 سانتی متر بالاتر از کف هر طبقه یا 6/1 ارتفاع طبقه می باشد. این ارتفاع اندازه حداقلی است که از نظر دسترسی به محل اجرای جوش و نصب اتصالات مورد نیاز برای ادامه ستون یا اتصال بادبند لازم است.
نحوه طویل کردن ستونها :
ابتدا سطح تماس دو ستون را به خوبی گونیا می کنند و با سنگ زدن صاف می نمایند تا کاملا در تماس با یکدیگر یا صفحه وصله قرار گیرد . در صورتی که پروفیل دو ستون یکسان نباسد ، باید اختلاف دو نمره ستون را با گذاردن صفحات لقمه (هم سو کننده) بر ستون فوقانی را پر نمود ؛ سپس صفحه وصله را نصب کرد و جوش لازم را انجام داد . اگر ابعاد مقطع دو نیمرخ که به یکدیگر متصل می شوند ، تفاوت زیاد داشته باشند ، به طوری که قسمت بزرگی از سطح آن دو در تماس با یکدیگر قرار نگیرد ، در این صورت باید یک صفحه تقسیم فشار افقی بین دو نیمرخ به کار برد . این صفحه معمولا باید ضخیم انتخاب شود تا بتواند بدون تغییر شکل زیاد ، عمل تقسیم فشار را انجام دهد. کلیه ابعاد و ضخامت صفحه و مقدار جوش لازم را باید طبق محاسبه و بر اساس نقشه های اجرایی انجام داد.
ستونها با مقاطع دایره ای :
معمولا مقاطع لوله ای (دایره ای ) از قطر 2 تا 12 اینچ برای ستونها بیشتر مورد استفاده قرار می گیرند. مقطع لوله در مواقعی که بوسیله اتصال جوش باشد ، آسانتر به کار می رود . کاربرد لوله بیشتر در پایه های بعضی منابع هوایی ، دکلهای مختلف و خرپاهای سبک است . این مقطعها به طور کلی مقاومترند ، برای اینکه ممان انرسی انها در تمام جهات یکسان است . با تغییر ضخامت مقاطع لوله ای می توان اینرسی های مختلف را به دست آورد.
انحراف مجاز پس از نصب ستون :
همان طور که گفتم ، ستونها باید کاملا شاغول بوده و علاوه بر آن ، از محور کلی که در نقشه آکس بندی مشخص شده است ، نباید انحرافی بیش از آنچه در آیین نامه ها تعیین سده داشته باشد. در این جدول میزان انحراف مجاز ستونها در هنگام نصب ، مشخص گردیده است :
قطعه ساختمانی
حداکثر انحراف
ستون با ارتفاع h انحراف موقعیت مکانی
محور ستون از محور انتخاب شده
آن در سطح اتکای ستونها ..................................................... 5 - +
انحراف محور ستون در انتهای فوقانی آن از خط شاغول................. 25- +H
انحراف از خط شاغول در اثر خم شدن ستون (شکم دادن)............... 15- +H
**** شرح مختصری از شاهتیرها و تیرهای پوششی
شاهتیرها ( پلها) :
شاهتیرها عضوهای فلزی افقی اصلی هستند که با اتصالات لازم به ستونها متصل می شوند و به وسیله آنها بار طبقات به ستونها انتقال می یابد. شاهتیرهای فلزی ممکن است به صورتهای زیر به کار روند :
الف) تیرهای معمولی بصورت تک یا دوبله
ب ) تیرآهن بال پهن
ج ) تیرآهن معمولی با ورق تقویتی روی بالها و یا بال و جان
د ) پلهای لانه زنبوری از تیرآهن معمولی یا تیرهای بال پهن که بصورت مفصل در این مقاله توضیح خواهم داد
ه ) تیر ورق (گیردار) ترکیب تیرآهن معمولی با ورق یا تیرآهن بال پهن با ورق و یا از ترکیب ورقها درست می شود
و ) خرپاها
ساخت پلها و شاهتیرها : هرگاه در شاهتیرهای فلزی به جای تیر تکی از تیرهای دوبله استفاده شود ، باید دو تیر در محل بالها به یکدیگر به گونه ای مطلوب اتصال داشته باشند . چنانچه پلها (شاهتیرها ) برای لنگر خمشی موجود کفاف ندهد، آنها را با اضافه کردن تسمه یا ورق تقویت می نمایند . در مورد ورق تقویتی در تیرهای معمولی باید نکات زیر را رعایت کرد :
1 ) حداکثر ضخامت ورق تقویتی 8/0 ضخامت بال تیر باشد .
2 ) ورقهای تقویتی به طول کامل با بالها تماس و اتصال داشته باشد.
3 ) ضخامت جوش 75/0 ضخامت ورق باشد.
4 ) ورق تقویتی از هر دو طرف و در قسمت عرض نیز جوش گردد.
پلهای مرکب :
در بارهای سنگین و احتمالا دهانه زیاد که پروفیل استاندارد موجود در بازار کافی یا اقتصادی نباشد ، همچنین مقطع نیر لانه زنبوری که با تسمه یا ورق تقویت شده است ، برای بار وارد شده و دهانه خمش کافی نباشد ، از تیرهای مرکب استفاده می شود که تیر مرکب در چندین حالت استفاده می شود :
1 ) تیر مرکبی که از بریدن پروفیلهای معمولی ایرانی از وسط جان تیر و اتصال صفحه و ورق مناسب به دو قسمت بریده شده ساخته می شود . این روش برای پروفیلهای نمره 20 به بالا اقتصادی خواهد بود .
2 ) تیر مرکبی که از سه صفحه ( قطعات تقویتی ) تشکیل می شود. در این حالت ، در پروفیلهای معمولی از فولاد جان تیر نسبت به فولاد بالها برای مقابله با خمش چندان استفاده نمی شود ، بلکه سعی می گردد ، حتی المکان ، جان تیر را نازکتر و ارتفاع آن را زیاد کنند.
اتصالات ساده تیر به ستون و شاه تیر :
این اتصالات بر دو نوع است :
1 ) اتصال با جفت نبشی جان : معمولا دو عدد نبشی را در کارخانه به جان تیر جوش می دهند . جوشهای بین نبشی و ستون یا شاهتیر را در کارگاه در روی کار انجام می دهند . معمولا نبشیهای اتصال را به اندازه 10 تا 12 میلیمتر ازانتهای جان تیر فاصله آزاد می گذارند تا اگر تیر در حدود رواداریهای مجاز بلند باشد ، بدون بریدن سر آن و تنها با جابه جا کردن نبشی آن را نصب کنند.
2 ) اتصال با نبشی نشیمن : این نوع اتصال را در عکس العملهای نسبتا کوچک تا حدود 15 تن به کار می برند . نبشی نشیمن عمل نصب و تنظیم تیر را آسان می کند. این نبشی را معمولا قبلا در کارخانه یا پای کار در ارتفاع لازم به ستون جوش می دهند و بعد تیر روی آن سوار و به آن جوش می شود . در این اتصال ، نبشی کمکی دیگری در بالای تیر نصب و جوش می شود که در محاسبه در مقابل عکس العملهای تکیه گاه به حساب نمی آید و عمل آن تنها ثابت کردن تیر در محل خود و تامین تکیه گاه عرضی و جلوگیری از غلتیدن آن است . سعی می شود که اتصال با نبشی نشیمن تا حد امکان انعطاف پذیر باشد تا از آزادی دوران تیر در تکیه گاه جلوگیری نشود و در حقیقت ، اتصال ساده و مفصلی باشد تا در تکیه گاه ایجاد لنگر نکند . معمولا عرض نشیمن گاه نباید از 5/7 سانتیمتر کمتر باشد . در آیین نامه AISC عرض استاندارد را 10 سانتیمتر برای نشیمن انتخابکرده اند . برای این منظور نبشی فوقانی را با ابعاد ظریف و فقط دو لبه انتهایی بالها آن را (در امتداد عرض بال تیر ) جوش می دهند . لازم به ذکر است که وقتی عکس العمل زیادتر از حد تحمل نبشی گردد ، می توان از نبشی تقویت شده با مقطع T استفاده کرد . ضخامت صفحه نشیمن گاه در حدود ضخامت بال تیر انتخاب می شود . استفاده از صفحات تقویت کننده زیر یک نشیمن به صورت مستطیلی یا مثلثی استفاده می گردد.
اتصال چند پل در یک محل به ستون :
مواقعی که با توجه به پوشش سقف به نصب پل در دو جهت عمود بر هم در محل ستون می شود ، یک پل به بالهای ستون و پل دیگر به جان ستون متصل خواهد شد ؛ در نتیجه ، ستون از دو جهت تحت تاثیر بار قرار خواهد گرفت که باید با توجه به بار وارد شده و دهانه پل ، همچنین تعیین نوع گیرداری پلها در محل ستون اقدامات لازم برای اتصال صحیح و مطلوب به عمل آید .
اگر برخورد پل در خارج از ستون باشد ، باید آن ناحیه را از نظر نیروی خارج از مرکز ، همچنین نحوه اتصال صحیح و اصولی به ستون به دقت بررسی و کنترل کرد.
روش نصب پلها در طبقات : محل نصب پلها در اسکلت فلزی بسیار مهم است ، زیرا پلها تحمل کننده بار سقف از طریق تیرها هستند . با توجه به مقدار بار وارد شده و دهانه ، ارتفاع آنها مشخص می شود و معمولا از ضخامت سقف و ارتفاع تیرها بیشتر است ؛ بنابراین ، با توجه به نقشه های معماری و تقسیم فضاها ، پلها باید در جایی طراحی و نصب شوند که به علت ارتفاع زیاد ایجاد اشکال در کف نکنند و سعی شود به صورت آویز در سقف مشخص نباشد ، به این دلیل ، معمولا پلها در زیر دیوارهای جدا کننده بین فضاها مصب می شوند که علاوه بر بار وارد شده باید وزن دیوارهای جدا کننده بر روی آنها در محاسبه منظور شود.
روش اتصال پل به پل :
اتصال دو پل که دارای ارتفاع هستند ، به روش زبانه کردن آنها انجام می گیرد که این روش از نظر اتصالات بهتر است . در صورت امکان پل با دهانه بزرگتر در داخل پل با دهانه کوچکتر زبانه می شود . نصب ورق اتصال در جان و روی بال پل کوچکتر برای برش ضروری است . در این حالت ، به علت کوتاه بودن دهانه ، لنگر خمشی کمتری ایجاد شده در نتیجه ، نمره با سطح مقطع پلها کاهش می یابد
تیر پوشش :
نوع پوشش سقف در طبقات اسکلت فلزی با توجه به کاربرد ساختمان تعیین می شود که معمولا سقفهای بتن آرمه یا طاق ضربی مورد استفاده قرار می گیرند . معمولا تیرآهن پوشش از پروفیلهای IPE و INP استفاده می شود . فاصله تیرها بین 65/0 تا 10/1 متر و طول را حداکثر تا 5 متر در نظر می گیرند . البته خیز باید مورد توجه باشد.
در صورت تمایل برای کسب اطلاعات بیشتر در باره ساخت اسکلت فلزی کارشناسان ما با شما همراه هستند .
درشروع کاریک ساختمان طراحی شده طرحی درمقابل قراردارد که باهمکاری مهندس ساختمان تهیه می شود. برای اینکه طراحی واستراکچر درارتباط نزدیک بایکدیگر باید باشند. برای طراح سیستم باربر ساختمان نیاز به تجربه است که آن موجب انتخاب روش واقتصادی ماده ساختمانی ویک سیستم مناسب باربری می شود که هدایت درست عملیات ساختمان ساده ترین روش تقریبی محاسبه بسیار مهم است . طرح پس از اینکه به صورت قابل رویت ترسیم می شود محاسبات نهایی استاتیکی انجام می شود . درآخر وارد جزییات کار می شود سپس طرح نهایی اجرایی ترسیم می گردد.
مراحل طراحی و اجرای یک ساختمان بطور کامل
درشروع کاریک ساختمان طراحی شده طرحی درمقابل قراردارد که باهمکاری مهندس ساختمان تهیه می شود. برای اینکه طراحی واستراکچر درارتباط نزدیک بایکدیگر باید باشند. برای طراح سیستم باربر ساختمان نیاز به تجربه است که آن موجب انتخاب روش واقتصادی ماده ساختمانی ویک سیستم مناسب باربری می شود که هدایت درست عملیات ساختمان ساده ترین روش تقریبی محاسبه بسیار مهم است .
طرح پس از اینکه به صورت قابل رویت ترسیم می شود محاسبات نهایی استاتیکی انجام می شود .
درآخر وارد جزییات کار می شود سپس طرح نهایی اجرایی ترسیم می گردد.
طراحی خوب همراه استراکچرمطمئن واقتصادی برای یک ساختمان نیاز به شناخت درمورد مصالح ساختمانی ، سیرنیرو ، اندازه ها ، اجراو نوع آن و همچنین نظارت وسیح ودقیق ، تمرین واستعداد ذاتی می باشد.
بخاطر هماهنگی وتوضیحات واضح بین کارفرما ، مهندس ، شرکت اجراکننده ومسئولین ساختمان مثل شهرداریها می بایست برای ایجاد یک ساختمان مدارک زیر ارائه شوند.
طراحی معماری ، محاسبات استراکچربانقشه های دارای پوزیسیول ، فهرست بهاء باتوضیحات مربوطه خصوصا نوع مصالحی که باید درآن استفاده شوند پلان زمانبندی وبرای مصالح ساخنمانی جدید و تازه عرضه شده ازتولیدهای مخصوص ، باید کنترل مخصوص درمورد مرغوبیت وایمنی ، احنمالا برگه آزمایش موجود باشد.
تمام محاسبات باید به آسانی قابل کنترل باشند درصورت استفاده از فرمول خاص ازمنابع غیر قابل دسترسی آنها به اثبات برسند یعنی نحوه رسیدن به آن فرمول محاسبات باید حتی با گذشتن سالها قابل دسترسی و قضاوت باشد.
داشتن اطلاعات اولیه اززمین ونوع خاک ازقبیل : مقاومت ، نوع خاک به ویژه ازنظر ریزش بودن وضعیت آب زیرزمینی، عمق یخبندان وسایر ویژگی های فیزیکی خاک آزمایش شود.
به طور کلی نباید عمق پی کنی کمتر از50 سانتی متر باشد.
درگود برداری پی هنگام اجرا ممکن است جداره ریزش یااینکه پی ساختمان مجاور زیر آن خالی شود که به وسیله شمع (ازنوع چوت یا آهن ) یا چیدن آجر به صورت پله ای مهارمی شود .
یک راه دیگر که می توان انجام داد اجرا جزء به جزء است . ابتدا محل ستونها اجرا شود ودرمرحله بعد پس از حفاری تدریجی اجزاء دیگر دیوارسازی انجام گیرد.
درزمینهای خاک دستی همان طور که از اسم آنها پیدااست خاکی است که ازمحل دیگر به زمین منتقل شده است ونباید ساختمان راروی آن بنا کرد ازمشخصات این زمینها است ووجود ذرات غیر طبیعی درآنهاست.
درابتدا زمین کانال کشی شده بود که این کانال کشی برای بستن آرمارتو آماده شده دو طرف این کانالها راباآجر چیده شده که این عمل برای جلوگیری ازریزش خاک به داخل کانال درهنگام عملیات بتن ریزی انجام می گیرد . ذرات خاک مانع چسبندگی بتن می شود.
کل کانالها رابایک بتن به نام متر که ازنظر سیمان دارای خلوص پاین است پوشیده می شود چون سیمان برای تحمل فشاریست که برای یک سطح صاف وجلوگیری ازقسمت شیره بتن می باشد.
این بتنم به بتن نظافت معروف است ضخامت 10تا 15سانتی متر وعیار سیمان 100تا 150کیلوگرم سیمان است .
سپس روی آجرهای این کانالها راباپلاستیک می پوشانند چون مانع از نشت شیر آب بتن به اطراف می شود.بتن ریزی سبب ارتباط وپیوستگی به عبارت دیگر یکپارچگی که دراثر بتن درجا بیم همه اعضاء بوجود می آید بافایده است.
بتن غیر مسلح : نام قبلی بتن کوبیده شده برای فوئداسیون ، دیوارها ، دیوارهای مایل وغیره . وقتی که بارگذاری سبک است به بتن 50 ، 100 ، 150 مربوط است.
بتن 150 ، 250 ، 350 برای دیوار زیرزمینی ، دیوارهای باریک باربر درساختمان یاپایه های کلفت در پل سازی است.
بتن مسلح : برای اعضای ساده ساختمانی تحت بارگذاری ضعیف بدون خطر زنگ زدگی همچنین برای فونداسیون ولی نه برای اعضای ظریف.
بتن 250 : برای ساختمان های معمولی
بتن 350-450 : برای اعضای ساختمانی تحت بارگذاری بسیار قوی ، برای پلها وسایر کارهای رده بالای مهندسی اعضای پیش ساخته، اعضای بتن پیش تنیده ازهمه نوع.
بتن 550 : بعنوان بتن درجا برای اعضای نه خیلی باریک پل ها که خصوصا تحت بارگذاری شدید قرار گرفته اند وسایر کارهای مهندسی درقطعات پیش ساخته حتی درساختمانهای بلند اعضای رده بالا وباارزش .
بتن پیش تنیده :
جنس بالاتر بتن تا 80 است که این بتن استاندارد شده نیست نیاز به اجازه مخصوص ازاداره نظارت ساختمان دارد . نیاز به کنترل ونظارت دقیق داشته واغلب باید آزمایش شود برای بتن پیش تنیده تراورسهای راه آهن خواسته می شود.
برای انتخاب میل گردها بتن بستگی به نوع سازه دارد ومقدار فشاری که به بتن وارد می شود دارد . درهنگام آرمارتوربندی درقسمتهایی که فشار بیشتر وارد می شود (درجای شمعهای ساختمان) تراکم میلگردها بیشتر می باشد وازمیلگردهای قوی تر استفاده می کنند درهنگام آرماتوربندی ابتدا درمیلگرد رابه نام خرپا درکانال گذاشته میلگردها راروی آن پهن کرده وبخ وسیله سیمهای فولادی آنها رامی بیند وتا حالت یکپارچه گرفته وازطرفین کانال وازکف چند سانتیمتر 3 تا 5 فاصله دارد تا بتن کاملا اطراف میلگردهای فولادی رابپوشانند تا ازخوردگی آنها جلوگیری کنند که این فاصله معمولا بستگی به آب و هوا ونوع خاک منطقه دارد . مثلا درسازه های دریایی این ضخامت بیشتر است تا درمنطقه خاکی به علت مواد معدنی بیشتر درآب دریا درهنگام بتن ریزی باید کاملا دانه بندی بتن حفظ شود یعنی دریک منطقه دانه های درشت ودریک منطقه دانه های ریز قرار میگیردو نسبت سیمان به آب رعایت شود درهنگام تخلیه بتن از آن میدان فاصله ارتفاع بتن تا زمین نباید از 20/1 سانتی متر بیشتر شود.
ودرهنگام بتن ریزی یا پمپ های هوا به داخل بتن هوا دمی می کنند تا یکنواختی ویکپارچگی کاملی بر بتن ایجاد شود دربعضی مواقع بتن ریزی دریک روز تمام نمی شود برای اینکه درروز بعد بتنی که می ریزند با بتن روزقبل کاملا به هم بچسبند بتن روز قبل رابا یک زاویه 45 درجه نسبت به افقی قطع می کنند وسطح آن رادرهنگام بتن ریزی مجدد آن کاملا شسته وتا کاملا تمیز شود که این سطح به نام سطح واریز معروف است. معمولا بعد از یک هفته قالبهای (آجر یاچوب یا صفحه های آهنی ) رابرداشته وبتن ریزی تمام می شود . باید توجه داشت درهنگام بتن ریزی صفحه های آهنی که برای قرارگرفتن شمع ها برروی آن دربتن ها قرار گرفته می دهند طبق نقشه های مهندسی کاملا درهمان فاصله واز نظر ارتفاع دریک سطح بایکدیگر قرارگیرند. این میله هایی که بوسیله مهره ها به این صفحه ها بسته شده نسبت به مقدار نیرو که به صفحه ها وارد می شود تعداد میله ها کم یا زیاد می شود از 4تا 9 میله بر روی آنها بسته می شود وانتهای این میله ها کاملا به سمت بیرون خم شده است وازتوع آج دار می باشد.
سازه ساختمان ازمجموعه ای ازاعضا مثل تیروستون تشکیل شده تا بتواند نیروهای گوناگون مانند وزن ساختمان ، باربرف ، باد یازلزله را تحمل نماید وبه زمین منتقل کند. درطراحی هر سازه ظوابطی وجود دارد که می تواند باعث حداقل هزینه ، حداقل وزن ، حداقل زمان ساخت وحداکثر بهره می گردد.
درطراحی سازه می توان از روش گام به گام زیر بهره برد:
1- برنامه ریزی 2- شکل اولیه سازه 3- تعیین بارهایی که توسط سازه تحمل خواهد شد
4-انتخاب اولیه قطعات سازه 5- تحلیل 6-ارزیابی 7- طرح مجدد 8-تصمیم نهایی
هماهنگی سیستم سازه با نوع مصالح درطراحی بنا عامل بسیار مهمی است. به طور مثال دربعضی از سازه ها نقش باربری را دیوارهای آجری وسنگی (مصالح بنایی) به عهده دارند که ساختمانهای اسکلت بنایی نامیده می شوند . دربعضی دیگر از ساختمانها با سقف به وسیله بتنها وستونها تحمل می شود این اعضای باربر ازفولاد یا بتون مسلح ساخته می شوند به این نوع ساختمانها به طور کلی اسکلتی گویند. نام خاص این گونه سازه ها بر حسب نوع مصالح اصلی مصرفی تعیین می شوند مانند اسکلت فلزی ، بتونی ، چوبی و غیره .
یکی ازویژگیهای مهم مصالح برای پایداری ساختمان دربرابر زلزله خاصیت جذب انرژی یابه عبارت دیگر خاصیت تغییر شکل زیاد قبل ازشکست می باشد. رفتار کششی مصالح مختلف باهم فرق دارند مصالح شکل پذیر مانند فولاد می تواند قبل ازشکست تغییر زیادی دهد ولی مصالح شکننده مانند آجر، تحت بارگذاری زیاد تقریبا هیچ رفتار ارتجاعی ندارد وبه طور ناگهانی می شکند. سازه های تبدل مسطح اگردارای طراحی واجرای مناسب قابها واتصالات باشد می تواند قبل ازشکست قدرت جذب انرژی زیاد داشته باشد.
چند نوع سازه اسکلت فلزی داریم :
سازه قابی : نیروهای وارده رابه همراه خودش تحمل ومنتقل می نماید.
سازه خرپایی : اعضای آن نیروهای وارده رابه صورت کششی یافشار تحمل می نماید .
سازه کابلی : سازه هایی هستند که نیروهای وارده رابه صورت کششی تحمل ومنتقل می نمایند.
ازفواید سازه های اسکلت فلزی مقاومت بالای فولادی درکشش وفشار همچنین به علت تولید یفولاد و کارخانه وشرایط بهتر کنترل کیفیت آن ، بتون وسایر مصالح بنایی امکان سهل تر توسعه سازه .
اتصال چند قطعه به یکدیگر امکان پیش ساخته کردن قطعات سرعت نصب واشغال فضای کمتر وقابلیت کاربرد درارتفاع زیاد را می توان از مزایای اسکلت فلزی نام برد .
ازمزایای دیگر سازه اسکلت فلزی می توان به سبک تربودن نسبت به سازه بتون مسلح وشکل پذیری بیشتر وامکان ساخت کارگاهی ویاخارج ازکارگاه اشاره کردو ازمعایب این سازه مقاومت ضعیف دربرابر رطوبت وآتش سوزی ومحدودست طرحهای معماری به علت لزوم استفاده از بادبند را می توان نام برد.
کارگذاشتن ستونها :
ستونها یک ساختمان اسکلت فلزی نقش انتقال دهنده بارماوارده شده رابه فونداسیون به صورت نیروهای فشاری ، کششی ، بر ش یا لنگرخمشی به عهده دارند. دراین میان ستون فلزی با فونداسیون بتونی بااستفاده ازصفحه ای فلزی ارتباط برقرار می کند.
علت استفاده از صفحه در زیر ستونها این است که چون ستون فلزی به علت مقاومت بسیار زیاد تنشهای بسیار بزرگی را تحمل میکند وبتون قابلیت تحمل این تنشها را ندارد،بنابراین صفحه ستون واسطه است که ضمن افزایش سطح تماس ستون با پی سبب میگردد توزیع نیروهای ستون در حد قابل تحمل برای بتون باشد که نحوه کار گذاشتن این صفحه را در صفحات قبل توضیح داده شد کار اتصال صفحه زیر ستون با بتون به وسیله میله مهار (بولت)صورت می گیرد بولت نقش عمده ای ندارد وتنها پایه را در محل ثابت نگه میدارد.هنگام نصب ستون عملی دیگری که انجام شد انتهای ستون سنگ خورد، صاف میکنند تا تمام نقاط مقطع ستون روی صفحه یسی ـ پلیت قرارگرفته وعمل انتقال نیرو به خوبی انجام بگیرد. واطراف چون علاوه بر فشار کنکر نیز بر صفحه ستون وارد میشود طول بولت باید به اندازه باشد که کشش وارد شده را تحمل کند.
ستونهای در یک ساختمان بسنگی به فشار نیروی، لنگر که تحمل میکند ساخته میشود که در شرایط معمولی از در آهن 14 را در کنار یکدیگر قرار داده ودر فاصله های معین به هم جوش می دهند و در مواقع دیگر اگر نیروی وارد شده بیشتر شود قدرت آهن مورد استفاده را بالاتر می برند و برای افزایش قدرت ستون در دو طرف ستونها صفحه های فلزی را از انتها تا چند متر ستون جوش میدهند .معمولانبشی که برای قرارگرفتن پلها برروی آنها است قبل از نصب ستونها برای راحتی آن جوش می دهند
(( نصب ستون به صفحه های فلزی))
اتصال ستون فلزی به شالوده ستونی به نیروی موجود درپای ستون بستگی دارد. درستون باانتهای مفصلی فقط نیروی فشار وبرشی ازستون به شن منتقل می شود . دراین حالت اتصال ازطریق نبشی ها صورت می گیرد.
پوسته زمین از تعدادی ورقه متحرک تشکیل شده است که دائما در حال برخورد یا دور شدن از هم هستند. سخت کره از نه ورقه بزرگ و دوازده ورقه کوچکتر تشکیل شده است. قاره ها،ورقه های قاره ای را تشکیل می دهند. ورقه های اقیانوسی قسمت عمده بستر دریا را تشکیل می دهند.
تکتونیک صفحه ای
پوسته زمین از تعدادی ورقه متحرک تشکیل شده است که دائما در حال برخورد یا دور شدن از هم هستند.
مطالعه ورقه های زمین ساختی که زمین ساخت ورقه ای نامیده می شود، به ما کمک می کند تا اشتقاق قاره ها، گسترش بستر اقیانوس، فورانهای آتشفشانی و تشکیل کوهها را توضیح دهیم.نیروهایی که باعث حرکت ورقه های زمین ساختی می شوند در اثر حرکت آهسته گوشته زیرین شکل می گیرند. سنگهای گوشته در اثر حرارت بالایی که در زیر آنهاست، دائما به سمت بالا حرکت می کنند و در اثر سرد شدن فرونشست می کنند. این چرخه میلیونها سال طول می کشد.
اشتقاق ورقه ها در سطح زمین طی میلیونها سال صورت گرفته است و هنوز هم ظاهر بیرونی زمین را تغییر می دهد. وقتی به نقشه دنیا نگاه کنید می بینید که حاشیه شرقی آمریکای شمالی و جنوبی با حاشیه غربی اروپا و آفریقا منطبق می شود. طی میلیونها سال،این قاره ها به آهستگی از هم جدا شده اند (اشتقاق قاره ها).
مطالعات و پژوهش های دانشمندان زمین در قرن بیستم به نظریه ای با نام “زمین ساخت صفحه ای” منجر شد که نشان می دهد سطح خارجی سیاره ما بسیار پویاست و مدام در حال تغییر و تحول است و این تغییرات و تحولات، طی سالیان دراز سیمای زمین را دگرگون می کنند. نخستین کوشش ها برای اثبات این نظریه به سال ۱۹۱۵ برمی گردد. زمانی که “آلفرد وگنر”، هواشناس آلمانی در کتابش با نام “منشا قاره ها و اقیانوس ها ” بر اساس دلایلی محکم، امکان تحرک پوسته زمین و تغییر موقعیت قاره ها و اقیانوس ها را عنوان کرد. وی اعتقاد داشت در آغاز، قاره ای یکپارچه وجود داشته که بعدها شروع به تقسیم شدن کرد و سرانجام قاره های کنونی پدید آمدند. وگنر، عامل اصلی این رویداد را نیروی حاصل از چرخش زمین و نیروی جزر و مد می دانست که در طولانی مدت، موجب پاره پاره شدن قاره ها شده است. پس از او، دانشمندان دیگری نیز در این زمینه تلاش هایی انجام دادند.” آرتور هولمز” در سال ۱۹۲۸ نظریه جدیدی برای ساز و کار حرکت قاره ها ارائه کرد که توجیه منطقی تری به نظر می رسید. وی اظهار داشت که قاره ها بر اثر جریان های همرفتی موجود در زیر پوسته زمین حرکت می کنند. در دهه ۶۰ میلادی، “هری هس” زمین شناس آمریکایی از دانشگاه پرینستون که مطالعات وسیعی در مورد اقیانوس ها داشت، فرضیه گسترش بستر دریاها را مطرح کرد. هس معتقد بود بستر دریاها در امتداد شکاف هایی موسوم به پشته های میان اقیانوسی که با جریان های همرفتی زیر زمین مرتبط هستند پدید می آید. بدین صورت که با خروج مواد مذاب از درون زمین، بستر اقیانوس به طرفین رانده شده و پوسته جدیدی در محل شکاف ایجاد می شود. این فرضیه ، نقطه عطفی در تکامل علم زمین شناسی محسوب می شد.
حرکت صفحه ها نسبت به هم، در سه حالت کلی رخ می دهد.
در حالت اول ، صفحات واگرا هستند، یعنی از هم دور می شوند.
در محل فصل مشترک دو صفحه، پشته های میان اقیانوسی، شکل گرفته و پوسته اقیانوسی بین دو صفحه، گسترش پیدا می کند و رفته رفته بر وسعت دریاها و اقیانوس ها افزوده می شود. هرچه از محل این پشته ها دور شویم سن پوسته اقیانوسی بیشتر می شود. اقیانوس اطلس بهترین مثال در این خصوص است. البته در بستر دریاهای جوانی مثل دریای سرخ هم این اتفاق می افتد.
جایی که دو ورقه از هم دور می شوند،سنگ داغ و مذاب (ماگمای مایع) به صورت گدازه خارج می شود و ماده جدیدی به ورقه ها افزوده می شود. به این ترتیب ورقه اقیانوسی جدیدی تشکیل می شود. جای که این اتفاق رخ می دهد،پشته میان اقیانوسی نامیده می شود.
پشته های میان اقیانوسی به ندرت بیش از 4920 فوت (1500 متر) ارتفاع دارند اما ممکن است هزاران مایل در امتداد بستر اقیانوس کشیده شوند. در زیر هر یک از اقیانوسهای بزرگ جهان،یک پشته میان اقیانوسی وجود دارد. نمونه ای از آنها پشته میانی اطلس در اقیانوس اطلس است که از قطب شمال تا قطب جنوب کشیده شده است. پشته های میان اقیانوسی مناطقی هستند که فعالیت آتشفشانی و زمین لرزه در آنجا زیاد است.
اصل، پیدایش دریای سرخ محصول دور شدن صفحه عربستان از صفحه آفریقا است. گاهی هم ممکن است فرآیند دور شدن صفحات، در وسط یک قاره اتفاق بیفتد. در این صورت پوسته قاره ای شکاف برداشته و مواد مذاب از دل زمین بیرون ریخته و بلندی هایی ساخته می شوند. مانند منطقه شرق آفریقا و کوه معروف کلیمانجارو که نتیجه بروز چنین پدیده ای است.
در حالت دوم، صفحات همگرا هستند یعنی به هم نزدیک می شوند.
که این حالت خود به سه دسته تقسیم می شود؛ اول، برخورد صفحه اقیانوسی با صفحه قاره ای. در این نوع برخورد، صفحه اقیانوسی به دلیل چگالی بیشتر، به زیر صفحه قاره ای رانده می شود و کم کم به داخل سست کره فرو رفته و ناپدید می شود. این پدیده را فرورانش می نامند. در محل این فروراندگی معمولا رشته های کوه های طویل و مرتفعی تشکیل می شوند که با فعالیت های آتشفشانی و زمین لرزه همراه است. رشته کوه های آند در حاشیه غربی آمریکای جنوبی نمونه بارز چنین برخوردی هستند. در جنوب شرقی ایران هم می توان کوه های مکران را نام برد که در اثر فرورانش پوسته اقیانوسی عمان به زیر بلوک لوت ایران به وجود آمده اند. دوم، برخورد دو صفحه اقیانوسی با یکدیگر. در این حالت یکی از صفحات به زیر دیگری فرورانده می شود و در حاشیه دو صفحه، فعالیت های آتشفشانی فراوانی رخ می دهد. این آتشفشان ها در اعماق دریا قرار دارند و در نتیجه فعالیت آن ها، جزایر آتشفشانی خاصی پدید می آیند که به جزایر کمانی معروفند. جزایر کمانی اقیانوس آرام از این جهت مشهورند. این نوع برخورد سبب کوچک شدن حوضه های اقیانوسی می شود. سوم برخورد دو صفحه قاره ای با هم. وقتی دو صفحه قاره ای به یکدیگر نزدیک می شوند منحصرا پدیده کوه زایی و چین خوردگی اتفاق می افتد. کوه های هیمالیا در آسیا و رشته کوه آلپ در اروپا حاصل این نوع فرآیند کوهزایی هستند. کوه های زاگرس هم در ایران، مثال خوبی است که در نتیجه برخورد صفحه عربستان به صفحه آسیا قد برافراشته اند.
در حالت سوم، دو صفحه در کنار هم حرکت می کنند و در اصطلاح می لغرند.
در بسیاری جاها،ورقه های بزرگ سطح زمین به آهستگی به سمت هم حرکت می کنند. گاهی اوقات لبه یک ورقه در اثر نیروی برخورد تخریب می شود و گاهی اوقات در اثر برخورد، لبه ورقه ها چین خورده و رشته کوههای بزرگی به وجود می آید. هنگامی که یک ورقه زمین ساختی به زیر ورقه دیگر خم می شود، فرورانش رخ می دهد. در اثر برخورد ورقه چگال اقیانوسی با ورقه سبکتر قاره ای، این اتفاق رخ می دهد. در امتداد ساحل آمریکای جنوبی این پدیده دیده می شود. ورقه اقیانوسی به زیر سست کره رانده می شود. در اثرگرمای سست کره،ورقه فرورانده شده ذوب می شود. در سطح یک درازگودال اقیانوسی ایجاد می شود و به دنبال آن یک کمان قوسی تشکیل می شود. در این منطقه فعالیتهای آتشفشانی و زمین لرزه هم رخ می دهد.
خلاصه:
حرکت ورقه ها در مجاورهم به سه صورت ممکن است باشد.
1- دو ورقه از هم دور می شوند.
2- دو ورقه به هم برخورد کرده و نزدیک می شوند.
3- دو ورقه در کنار هم می لغزند.
پدیده های حاصل از حرکت ورقه ها:
1- ورقه های دور شونده:
بیش تر محل ورقه های دور شونده در میان اقیانوس ها قرار دارند در این مناطق مواد مذاب از بین دو ورقه خارج شده و بین دو ورقه سخت می شود و پوسته جدید حاصل می گردد.
به همین دلیل هر ساله چندین سانتی متر بر وسعت اقیانوس ها افزوده می شود.
2- ورقه ها های نزدیک شونده:
چون ورقه های نزدیک شونده خصوصیات فیزیکی و شیمیایی مختلفی دارند پدیده های حاصل به یکی از صورت های زیر می باشد.
الف: برخورد ورقه اقیانوسی با قاره ای:
1-4- اصول هضم بی هوازی در تولید بیوگاز.. 8
1-5- مراحل شیمیائی تخمیر مواد آلی (شامل چربیها، هیدراتهای کربن و پرتئین ها).. 12
1-5-2- تخمیر هیدراتهای کربن.. 12
1-6- پارامترهای مؤثر بر فرآیند هضم بیهوازی.. 13
1-6-1- درجه حرارت محیط تخمیر.. 14
1-6-3- میزان حضور مواد مغذی در محیط (C/N).. 16
1-6-5- میزان حضور عوامل سمی.. 17
1-6-6- مدت زمان ماند مخلوط در مخزن هضم.. 18
1-6-7- همزدن محتویات مخزن هضم و هموژنیزه کردن محتویات.. 19
1-6-8- آماده سازی مواد خام قبل از بارگیری.. 20
1-6-9- وجود مواد تسریع کننده واکنش.. 21
1-6-10- اصلاح و تغییر در طراحی دستگاه بیوگاز.. 21
1-6-11- مواد افزودنی شیمیائی.. 21
1-6-12- تغییر دادن نسبت خوراک دستگاه.. 21
1-6-13- محیط بیهوازی (بسته).. 22
1-7- انواع روشهای بارگذاری مخازن هضم:.. 22
1-7-2- سیستم نیمه پیوسته:.. 22
1-8- جمع آوری بیوگاز تولیدی:.. 23
1-9- بیوگاز و کود حاصل از آن:.. 24
1-10- ساختار کلی دستگاه تولید بیوگاز:.. 24
1-11- مهمترین طرحهای بیوگاز ساخته شده در جهان:.. 28
1-11-1- دستگاه بیوگاز عمودی.. 28
1-11-2- دستگاه بیوگاز افقی.. 30
1-11-3- دستگاه بیوگاز مشترک.. 31
1-11-4-دستگاه بیوگاز مدل چینی (قبه ثابت).. 32
1-11-5- دستگاه بیوگاز مدل فرانسوی.. 34
1-11-6- دستگاه بیوگاز با لولههای چرمی.. 35
1-11-7-دستگاه بیوگاز با مخزن پلی اتیلنی.. 37
1-11-8- دستگاه بیوگاز با سرپوش شناور (مدل هندی):.. 37
1-11-9- دستگاه بیوگاز مدل تایوانی (واحدهای بالونی):.. 39
1-11-10- دستگاه بیوگاز مدل نپال:.. 40
1-12 -مروری بر مطالعات انجام شده.. 40
2-1- مراحل ساخت واحد بیوگاز با تمام جزئیات آن:.. 49
2-1-1- انتخاب مکان ساخت واحد بیوگاز.. 49
2-1-3- بررسی شرایط خاک منطقه.. 51
2-1-4- بررسی مواد آلی مورد نیاز.. 52
2-2- طراحی و ساخت اتاقک عایق:.. 53
2-3- مراحل طراحی و ساخت مخزن هضم دستگاه:.. 55
2-3-2-1- انتخاب مخزن هضم:.. 58
2-5-1- تست دستگاه با آب برای اطمینان از آب بندی بودن:.. 67
2-5-2- تست صحت کار المنتها:.. 68
2-6- مشخصات دستگاه تست گاز:.. 70
2-6-1- دستگاه آنالایزر گاز ساخت کمپانی Testo آلمان.. 70
2-8-1- شبکه پس انتشار پیش خور (FFBP) :.. 76
2-8-2- شبکه های پس انتشار پیشرو (CFBP):.. 76
2-8-3- الگوریتم لونبرگ- مارکوارت (LM).. 77
2-8-4- الگوریتم تنظیم بیزی (BR).. 77
2-8-5- مجذور میانگین مربعات خطا.. 78
2-8-7- ضریب تعیین (همبستگی).. 78
3-2- آزمایش کود مرغی در دمای 35 درجه سانتیگراد.. 83
3-2-1- بررسی اثر دما بر حجم بیوگاز تولیدی از کود مرغی.. 84
3-2-2- بررسی اثر دما بر روی فشار بیوگاز کود مرغی.. 85
3-2-3- بررسی اثر PH بر روی تولید بیوگاز کود مرغی.. 86
3-3- آزمایش کود مرغی در دمای 30 درجه سانتیگراد.. 87
3-3-1- بررسی اثر دما بر حجم بیوگاز تولیدی از کود مرغی.. 87
3-3-2- بررسی اثر دما بر روی فشار بیوگاز کود مرغی.. 87
3-3-3- بررسی اثر PH بر روی تولید بیوگاز کود مرغی.. 88
3-4- آزمایش کود بلدرچین در دمای 35 درجه سانتیگراد.. 89
3-4-1- بررسی اثر دما بر روی حجم بیوگاز تولیدی از کود بلدرچین 90
3-4-2- بررسی اثر دما بر روی فشار بیوگاز کود بلدرچین.. 91
3-4-3- بررسی اثر PH بر روی تولید بیوگاز کود بلدرچین.. 92
3-5- آزمایش با کود بلدرچین در دمای 30 درجه سانتیگراد.. 93
3-5-1- بررسی اثر دما بر روی حجم بیوگاز تولیدی از کود بلدرچین 93
3-5-2- بررسی اثر دما بر روی فشار بیوگاز تولیدی از کود بلدرچین 94
3-5-3- بررسی اثر PH بر روی تولید بیوگاز کود بلدرچین.. 95
3-6- بررسی و مقایسه پارامترهای کود مرغی و بلدرچین در دمای مشخص 96
3-6-1- مقایسه حجم گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 96
3-6-2- مقایسه فشار گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 97
3-6-3- مقایسه PH گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 98
3-6-4- مقایسه حجم گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 99
3-6-5- مقایسه فشار گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 100
3-6-6- مقایسه PH گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 101
3-7- بررسی و مقایسه پارامترها در دو دمای 30 و 35 درجه سانتی گراد 102
3-7-1- مقایسه حجم گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد 102
3-7-2- مقایسه فشار گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد.. 103
3-7-3- مقایسه PH گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد.. 104
3-7-4- مقایسه حجم گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 105
3-7-5- مقایسه فشار گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 106
3-7-6- مقایسه PH گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 107
3-8-1- بررسی نتایج شبیه سازی در شبکه عصبی برای کود مرغی.. 109
3-8-1-1- بررسی فشار گاز در آزمایش کود مرغی.. 109
3-8-1-2- بررسی ph گاز در آزمایش کود مرغی.. 111
3-8-1-3- بررسی حجم گاز در آزمایش کود مرغی.. 114
3-8-2- بررسی نتایج شبیه سازی در شبکه عصبی برای کود بلدرچین.. 116
3-8-2-1- بررسی فشار گاز در آزمایش کود بلدرچین.. 116
3-8-2-2- بررسی ph گاز در آزمایش کود بلدرچین.. 118
شکل 1‑1 چرخه بیوگاز در طبیعت.. 7
شکل 1‑3- فرآیند تولید گاز در مخزن هضم.. 9
شکل 1‑4- مراحل مختلف تبدیل مواد آلی به بیوگاز.. 13
شکل 1‑5- رآکتور بیوگاز به همراه همزن.. 20
شکل 1‑7- مخزن ذخیره گاز فایبرگلاس.. 27
شکل 1‑8- بالنهای ذخیره بیوگاز.. 28
شکل 1‑9- دستگاه بیوگاز عمودی.. 29
شکل 1‑11- دستگاه بیوگاز مشترک.. 32
شکل 1‑17- دستگاه بیوگاز مدل تایوانی.. 39
شکل 2‑1- نقشه اتاقک عایق، مخزن هضم و گودال کودابه.. 53
شکل 2‑2- مراحل ساخت اتاقک عایق و گودال ذخیره کودابه خروجی.. 54
شکل 2‑3- طراحی مخزن هضم با استفاده از نرم افزار اتوکد.. 57
شکل 2‑4- مخزن هضم پلی اتیلنی.. 58
شکل 2‑5- لوله ورودی و لوله خروجی.. 59
شکل 2‑6- الف- لوله خروج کودابه ب- مخزن هضم و لولههای ورودی و خروجی 60
شکل 2‑7- لوله دو شاخه برای خروج گاز و نصب فشار سنج.. 61
شکل 2‑8- مدار الکتریکی المنتهای حرارتی.. 63
شکل 2‑9- طراحی قاب المنتهای حرارتی.. 63
شکل 2‑10- المنتهای حرارتی در قاب فلزی قرار گرفتهاند... 64
شکل 2‑11- الف- تابلوی برق، ب- کلیدهای کنترل کننده المنتها.. 65
شکل 2‑13- الف- محلول های بافر ب- PH متر.. 66
شکل 2‑14- عایقکاری رآکتور.. 67
شکل 2‑15- دستگاه تست گاز.. 70
شکل 2‑16- مدل ریاضی ساده شده عصب واقعی.. 72
شکل 2‑17- پرسپترون 3لایه با اتصالات کامل.. 73
شکل 3‑1- نمودار حجم- زمان کود مرغی در دمای 35.. 85
شکل 3‑2- نمودار فشار- زمان کود مرغی در دمای 35.. 86
شکل 3‑3- نمودار PH- زمان کود مرغی در دمای 35.. 86
شکل 3‑4- نمودار حجم- زمان کود مرغی در دمای 30.. 87
شکل 3‑5- نمودار فشار- زمان کود مرغی در دمای 30.. 88
شکل 3‑6- نمودار PH- زمان کود مرغی در دمای 30.. 89
شکل 3‑7- نمودار حجم- زمان کود بلدرچین در دمای 35.. 91
شکل 3‑8- نمودار فشار- زمان کود بلدرچین در دمای 35.. 92
شکل 3‑9- نمودار PH - زمان کود بلدرچین در دمای 35.. 93
شکل 3‑10- نمودار حجم- زمان کود بلدرچین در دمای 30.. 94
شکل 3‑11- نمودار فشار- زمان کود بلدرچین در دمای 30.. 95
شکل 3‑12- نمودار PH - زمان کود بلدرچین در دمای 30.. 96
شکل 3‑13- نمودار حجم - زمان کود مرغی و بلدرچین در دمای 35.. 97
شکل 3‑14- نمودار فشار - زمان کود مرغی و بلدرچین در دمای 35.. 98
شکل 3‑15- نمودار PH - زمان کود مرغی و بلدرچین در دمای 35.. 99
شکل 3‑16- نمودار حجم- زمان کود مرغی و بلدرچین در دمای 30.. 100
شکل 3‑17- نمودار فشار- زمان کود مرغی و بلدرچین در دمای 30.. 101
شکل 3‑18- نمودار PH - زمان کود مرغی و بلدرچین در دمای 30.. 102
شکل 3‑19- نمودار حجم گاز تولیدی کود مرغی در دمای 30 و 35.. 103
شکل 3‑20- نمودار فشار گاز تولیدی کود مرغی در دمای 30 و 35.. 104
شکل 3‑21- نمودار PH کود مرغی در دمای 30 و 35.. 105
شکل 3‑22- نمودار حجم گاز تولیدی کود بلدرچین در دمای 30 و 35.. 106
شکل 3‑23- نمودار فشار گاز تولیدی کود بلدرچین در دمای 30 و 35 107
شکل 3‑24- نمودار PH کود بلدرچین در دمای 30 و 35.. 108
شکل 3‑25- نمودار تعیین عملکرد شبکه برای فشار کود مرغی.. 109
شکل 3‑26- نمودار آموزش و اعتبار سنجی داده های فشار گاز کود مرغی.. 110
شکل 3‑27- نمودار تست داده های فشار کود مرغی.. 111
شکل 3‑28- نمودار تعیین عملکرد شبکه برای ph کود مرغی.. 112
شکل 3‑29 - نمودار آموزش و اعتبار سنجی داده های ph کود مرغی.. 113
شکل 3‑30- نمودار تست داده هایph کود مرغی.. 113
شکل 3‑31- نمودار تعیین عملکرد شبکه برای حجم گاز کود مرغی.. 114
شکل 3‑32- نمودار آموزش و اعتبار سنجی داده های حجم کود مرغی.. 115
شکل 3‑33- نمودار تست داده های حجم گاز کود مرغی.. 116
شکل 3‑34- نمودار تعیین عملکرد شبکه برای فشار گاز کود بلدرچین.. 117
شکل 3‑35- نمودار آموزش و اعتبار سنجی داده های فشار گاز کود بلدرچین 118
شکل 3‑36- نمودار تست داده های فشار گاز کود بلدرچین.. 118
شکل 3‑37- نمودار تعیین عملکرد شبکه برایph کود بلدرچین.. 119
شکل 3‑38- نمودار آموزش و اعتبار سنجی ph کود بلدرچین.. 120
شکل 3‑39- نمودار تست داده های ph کود بلدرچین.. 121
شکل 3‑40- نمودار تعیین عملکرد شبکه برای حجم گاز کود بلدرچین.. 122
شکل 3‑41- نمودار آموزش و اعتبار سنجی حجم گاز کود بلدرچین.. 123
شکل 3‑42- نمودار تست داده های تست برای حجم گاز کود بلدرچین.. 123
جدول 1‑1- ترکیبات موجود در بیوگاز.. 5
جدول 1‑2- جدول فرآیندهای مختلف تبدیل زیست توده به بیوگاز.. 11
جدول 1‑4- محدودههای درجه حرارت در تخمیر بیهوازی.. 15
جدول 1‑4- نمودار مدت زمان ماند مواد در داخل رآکتور.. 19
جدول 3‑1- مقایسه دستگاه بیوگاز نوع مخزن بتونی (مدل چینی) با مخزن پلی اتیلنی 82
جدول 3‑2- تجزیه بیوگاز کود مرغی.. 84
جدول 3‑3- تجزیه بیوگاز کود بلدرچین.. 90
جدول 3‑4- تعیین عملکرد شبکه برای مقادیر فشار.. 110
جدول 3‑5- تعیین عملکرد شبکه برای مقادیر ph.. 112
جدول 3‑6- تعیین عملکرد شبکه برای مقادیر حجم.. 115
جدول 3‑7- تعیین عملکرد شبکه برای مقادیر فشار.. 117
جدول 3‑8- تعیین عملکرد شبکه برای مقادیر ph.. 119
جدول 3‑9- تعیین عملکرد شبکه برای مقادیر حجم.. 122