مشخصات فایل
عنوان: بهینهسازی و معرفی انواع مختلف روشهای آن
قالب بندی: word
تعداد صفحات: 23
محتویات
چکیده
مقدمه
روشهای شمارشی
روشهای محاسباتی (جستجوی ریاضی یا- Based Method Calculus)
روشهای ابتکاری و فرا ابتکاری (جستجوی تصادفی)
مسائل بهینهسازی ترکیبی (Optimization Problems Combinational)
روش حل مسائل بهینهسازی ترکیبی
آزادسازی
تجزیه
روش تولید ستون (Column Generation)
روش جستجوی همسایه ( NS= Neighbourhood Search)
مسأله فروشنده دورهگرد (Travelling Salesman Problem = TSP)
انواع روشهای فرا ابتکاری برگرفته از طبیعت
آنیلینگ شبیهسازی شده
شبکههای عصبی
منابع
عنوان مقاله: بهینهسازی و معرفی انواع مختلف روشهای آن
چکیده
بهینهسازی یک فعالیت مهم و تعیینکننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرحهای بهتری تولید کنند که بتوانند با روشهای بهینهسازی در صرف زمان و هزینه طراحی صرفهجویی نمایند. بسیاری از مسائل بهینهسازی در مهندسی، طبیعتاً پیچیدهتر و مشکلتر از آن هستند که با روشهای مرسوم بهینهسازی نظیر روش برنامهریزی ریاضی و نظایر آن قابل حل باشند. بهینهسازی ترکیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) میباشد. امروزه بسیاری از مسائل بهینهسازی ترکیبی که اغلب از جمله مسائل با درجه غیر چندجملهای (NP-Hard) هستند، به صورت تقریبی با کامپیوترهای موجود قابل حل میباشند. از جمله راهحلهای موجود در برخورد با این گونه مسائل، استفاده از الگوریتمهای تقریبی یا ابتکاری است. این الگوریتمها تضمینی نمیدهند که جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار میتوان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر میکند.
هدف از بهینهسازی یافتن بهترین جواب قابل قبول، با توجه به محدودیتها و نیازهای مسأله است. برای یک مسأله، ممکن است جوابهای مختلفی موجود باشد که برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف میشود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینهسازی شبکههای حمل و نقل میباشد. به هر حال، انتخاب تابع هدف مناسب یکی از مهمترین گامهای بهینهسازی است. گاهی در بهینهسازی چند هدف به طور همزمان مد نظر قرار میگیرد؛ این گونه مسائل بهینهسازی را که دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی مینامند. سادهترین راه در برخورد با این گونه مسائل، تشکیل یک تابع هدف جدید به صورت ترکیب خطی توابع هدف اصلی است که در این ترکیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص میشود. هر مسأله بهینهسازی دارای تعدادی متغیر مستقل است که آنها را متغیرهای طراحی مینامند که با بردار n بعدی x نشان داده میشوند.
هدف از بهینهسازی تعیین متغیرهای طراحی است، به گونهای که تابع هدف کمینه یا بیشینه شود.
مسائل مختلف بهینهسازی به دو دسته زیر تقسیم میشود:
الف) مسائل بهینهسازی بیمحدودیت: در این مسائل هدف، بیشینه یا کمینه کردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی میباشد.
ب) مسائل بهینهسازی با محدودیت: بهینهسازی در اغلب مسائل کاربردی، با توجه به محدودیتهایی صورت میگیرد؛ محدودیتهایی که در زمینه رفتار و عملکرد یک سیستم میباشد و محدودیتهای رفتاری و محدودیتهایی که در فیزیک و هندسه مسأله وجود دارد، محدودیتهای هندسی یا جانبی نامیده میشوند.
معادلات معرف محدودیتها ممکن است به صورت مساوی یا نامساوی باشند که در هر مورد، روش بهینهسازی متفاوت میباشد. به هر حال محدودیتها، ناحیه قابل قبول در طراحی را معین میکنند.
به طور کلی مسائل بهینهسازی با محدودیت را میتوان به صورت زیر نشان داد:
دانلودمقاله وتحقیق معنای هنر با روشهای گوناگون و از نظر نظامهای فکری و جهانبینیهای مختلف
معنای هنر و تعریف آن با روشهای گوناگون و از نظر نظامهای فکری و جهانبینیهای مختلف مورد پژوهش و بررسی واقع شده و مطالب زیادی در این زمینه موجود است. فلاسفه، زیبائی شناسان، مورخین، باستان شناسان، مردم شناسان و بالاخره ناقدین هنر نیز به نوبه خود هر یک از منظر خاص خود موضوع را بررسی کرده و سعی کردهاند راه به جائی ببرند. اما تاکنون یک تعریف واحد و مقبول همگان ارائه نشده است. بلکه برخلاف تصور، مسأله آنقدر گسترده و پیچیده است که پژوهشگر به یاد این دو بیتی خیام میافتد که :
آنانکه محط فضل و آداب شدند در جمع کمال شمع اصحاب شدند