قالبهای صنعتی که از آنها برای تولید استفاده میشود بنا به روش تولید قطعه انواع گوناگونی دارند که با توجه به قطعه نهایی و ویژگیهایی که از آن قطعه مورد انتظار است نوع قالب نیز تفاوت میکند، به طور کلی قالبها را میتوان به چهار دسته تقسیم کرد:
که هر یک از این نوع قالبها به فراخور نوع قطعه به زیر مجموعههایی تقسیم میشوند؛ ولی با توجه به این که موضوع اصلی این مقاله بررسی دو روش ساخت قالبهای ریخته گری و روش ساختار متمرکز وغیر متمرکز میباشد موضوع اصلی را روی ساخت قالبهای ریخته گری متمرکز میکنیم تا بیشتر بتوانیم وارد جزئیات این بحث شویم.
انواع قالبهای ریخته گری
برای تولید تمام قطعاتی که به روش ریخته گری ساخته میشوند نیاز به تهیه قالب میباشد. حال جنس و ویژگیهای قطعه است که روش ریخته گری را تعیین میکند و بر این اساس نوع قالب تعیین میشود. قالبهای ریخته گری به سه دسته قالبهای دایکاست (High pressure) قالبهای ریژه (low pressure) و قالبهای ماسهای (sand) تقسیم میشوند که هر یک کاربرد خاص خود را دارند. در ذیل به جزئیات هر کدام میپردازیم.
قالبهای دایکاست (Die cast)
برای ساخت قطعاتی از جنس آلومینیوم که دارای ضخامت یکنواخت بین ۵ تا ۱۵ میلیمتر هستند از روش ریخته گری تحت فشار استفاده میشود در این روش مذاب آلومینیوم با فشار بالا داخل قالب تزریق میشود. از مزایای این روش میتوان به تولید قطعات با کیفیت سطحی بالا و تیراژ بالا نام برد. کیفیت بالا و عدم پلیسه سبب میشود بسیاری از پروسههای تولید مانند پلیسه گیری و سنگ زنی و سوراخ کاری حذف شود، از این رو تأثیر به سزایی در کاهش هزینه تولید هر واحد قطعه دارد. قالبی که برای ریخته گری به این روش مورد نیاز میباشد قالبی است از جنس فولاد گرمکار با حجم و ضخامتی زیاد که قابلیت تحمل فشار بالای ذوب راداشته باشد از این رو قالبهای دایکاست قالبهایی بزرگ و گرانقیمت هستند.
قالبهای ریژه (Gravity)
برای قطعات آلومینیومی که دارای casضخامت یکنواخت نیستند و کیفیت قطعه از نظر استحکامی مورد توجه باشد و همچنین نیاز به قطعهای بدون ریزمک و تخلخل باشد نیاز است که این روش را برای تولید برگزید، در این روش ذوب به آرامی وارد قالب فولادی میشود. قالبهای ریژه نسبت به قالبهای دایکست از نظر ابعادی کوچکتر هستند (به منظور تولید یک قطعه یکسان) اما آنچه سبب پیچیدگی این قالبها میشود طراحی سیستم راهگاهی در این قالب هاست و آنچه سبب گرانقیمت شدن این قالبها میشود هزینه طراحی، دانش و تکنولوژی ای است که سازنده برای طراحی و ساخت این قالب دریافت میکند.
قالبهای ماسهای (Sand cast)
به طور قطع یکی از متداول ترین روشهای تولید قطعات فلزی، ریخته گری در قالب ماسهای میباشد. در این روش نیاز به ساخت یک مدل فلزی است که از یک قالب ماسهای گرفته شود و ذوب را در این قالب میریزند. مدلهای فلزی برای روشهای مختلف ریخته گری تهیه میشوند، برخی از این روشها اتوماتیک هستند مانند ریخته گری به روش DIZA و هانزبرگ و واگنر و یا به صورت دستی و سنتی میباشد.
پروسه ساخت قالب
امروزه با توجه به پیشرفت تکنولوژی هم در بخش ماشین افزار (به ویژه ورود ماشینهای CNC) و هم در بخش نرمافزار صنعت قالب سازی نیز هم از حیث کاهش زمان ساخت و هم از نظر قابلیت ساخت قالبهایی با فرمهای پیچیده پیشرفت قابل توجهی را به خود دیده است. پروسه تولید قالب به دو بخش طراحی و ساخت تقسیم میشود. در بخش طراحی، مهندس طراح (قالب ساز) با توجه به دانش و تجربه خود، اجراء، شکل و همچنین سیستم راهگاهی قالب را با استفاده از نرمافزارهایی مانند SOLIDWORKS، MECHANICAL DESKTOP، CATIA طراحی کرده و مدل سه بعدی قالب را میسازد که این مدل سه بعدی مبنای ماشینکاری قالب به وسیله ماشین CNC قرار میگیرد، سپس بعد از اتمام عملیات ماشینکاری فرایند مونتاژ قالب انجام میشود.
پروسه ساخت قالب به دو بخش تقسیم میشود: بخش اول مرحله طراحی قالب و بخش دوم شامل عملیات ماشینکاری و مونتاژ اجزای قالب است، برای طراحی قالب نیاز به نقشه فنی قطعه است که این نقشه از سفارش دهنده قالب دریافت میشود، سپس از روی این نقشه مدل سه بعدی قطعه با استفاده از یکی از نرمافزارهای CATIA، MECHANICAL DESKTOP و یا SOLIDWORKS در کامپیوتر ساخته میشود، پس از آن اجزای قالب که از روی آن قطعه تفکیک و طراحی میشود. بعد از مرحله طراحی نوبت به مرحله تولید میرسد، در اینجا ماشینکاری اجزای قالب روی چوب به وسیلهماشین فرز CNC صورت میگیرد. باری ماشینکاری اپراتور با نرمافزار POWERMILLL برنامه ماشینکاری را روی مدل سه بعدی که طراح به او داده است در کامپیوتر اجرا میکند، سپس این برنامه به ماشین CNC داده میشود و به صورت اتوماتیک روی چوب اجرا میشود، سپس این اجزا به ریخته گری فرستاده میشوند تا از روی آن قطعه فلزی ساخته میشود سپس این اجزا تنش گیری میشوند تا از دفرم شدن و تاب برداشتن آنها پس از عملیات ماشینکاری جلوگیری شود. پس از ماشینکاری روی اجزای فلزی قالب این اجزا توسط مونتاژکار قالب، مونتاژ میشوند.
قالب
قالب: ابزار شکل دهنده هر نوع محصول را قالب گویند به صورتی که محصول شکل دل پذیر و قابل قبول ومطلوب را پیدا کند (مصولات مانند: تصویر- صفحهها از انواع مواد وشکل گوناگون - حجمهای پر - حجمهای تو خالی - میلهها). برای تولید یک محصولات به تعدادبالاازقالب درانواع گوناگون به عنوان ابزارسری سازی وتولیدانبوه استفاده میشود. نام و شیوه کار قالبها بسته به نوع مواد مصرفی و نوع شکل دهی انها تغییر میکند. قالبها بر اساس مواد محصول: قالبهای پلاستیک - فلزی - سیمانی - گلی - گچی - ازبست - شیشه - کاغذ - پلیمر - سرامیک - چوب - پارچه - فوم - سنگ - مواد خوراکی ... . قالبها بر اساس شکل دهی وشیوه کار روی محصول: قالبهای پرسی - تزریقی - فشاری - درون گرمایی درون سرمایی - برشی - فرم دهی - خم کاری - اکسترود - لرزشی - فشار هیدرولیک - فشار باد - فشار اب - سایشی و... . قالبها بر اساس جنس قالب: قالبهای فلزی - چوبی - پلیمری - ازبستی -سیمانی - گچی -گلی - پارچه - سنگ و لاستیکی و ... .
قالبهای پلاستیک
پلاستیک ها به دو گروه تقسیم می شوند:
ترموپلاستیک
ترموست (باکالیت)
- قالبهای ترموپلاستیک:
گروه ترموپلاستیک ها یا گرمانرما که بر اثر دیدن حرارت خمیده گشته وبا کم شدن میزان گرما سختی خود را بدست می آورند و تغییرات شیمیایی در آنها صورت نمی گیردو بعد از تزریق، شکل محفظه قالب را به خود می گیرد.
در قالب گیری تزریقی ماده ترموپلاست گرم محفظه قالب را پر می کند در این روش ماده ترموپلاست گرم و محفظه قالب سرد است که پس از تزریق مواده به شکل و فرم قالب در می آید و سخت می شود.
از دیدگاه دیگر مواد ترموپلاست به موادی گفته می شود که پس از یک یا چند بار مصرف در فرآیند تولید دوباره قابل استفاده می باشد. این مواد به شکل دانه یا پودر در ماشین تزریق ریخته می شود.
ساختمان قالبهای تزریقی:
قالب های پلاستیک ازنظر کلی به دونوع تقسیم می شوند:
1- قالبهای باراهگاه سرد
2- قالب های باراهگاه گرم
و نیز از نظر ساختمانی بر دونوع می باشند:
1- قالب های دو صفحه ای
2- قالبهای سه صفحه ای که تعداد صفحات قالب و خط جدایش آن ها بر اساس عواملی ماند تعداده حفره های قالب، شکل قطعه پلاستیکی، نوع ماشین تزریق،نوع مواد مصرفی و سیستم خروجی هوا و ... تعیین می شوند اصولاً در هر قالب تزریقی دو بخش اصلی وجود دارد.
1- بخش ثابت قالب (نیمه ثابت) که در این نیمه مواد گرم تزریقی پلاستیک تزریق می شوند.
2- بخش متحرک (نیمه محرک) که رد قسمت متحرک ماشین تزریق بسته می شوند و سیستم و مکانیزم بیرون اندازی قطعات اکثرادر آن قرار دارد.
... تعیین تعداد حفره ها و محفظه های قالب از نکات مهم طراحی قالب های تزریقی می باشد و قالب های پلاستیک در این زمینه بر 2 نوع هستند:
1- قالب های تک حفره ای
2- قالب های چند حفره ای
- قالب های تک حفره ای:
در مواردی از قالب های تک حفره ای استفاده می شوند که مقدار تولید قطعه پلاستیکی محدود می باشند. بنابراین طراحی و ساخت قالب های تک حفره ای از نظر زمان ساخت و مسائل اقتصادی - ارزان تر تمام خواهد شد.
قالبهای چند حفره ای:
اگر تعداد فرآورده های تولیدی زیاد باشد، بالاخص در مواردی که قطعه هم کوچک باشد از روش طراحی و ساخت قالب های چند حفره ای استفاده می شود.
قالب های ترموست (باکالیت):
گروه ترموست یا باکالیت یا گرما سخت ها که این گروه بر اثر حرارت دیدن سخت می شوند و باعث تغییرات شیمیایی در این مواد می شوندکه برآنها ترموست یا باکالیت می گویند.
در این روش قالب در حالت سرد می باشند و ممواد نیز سرد است و بعد از تغذیه، قالب را تحت حرارت قرار می دهند و مواد شکل وفرم محفظه قالب را به خود می گیرد و سخت می شود.
مواد ترموست یا دورپلاست ها تحت تاثیر فشار و حرارت c 170 تولید می شوند. ابتدا نرم شده و به حالت پلاستیک درمی آیند ولی بعد از مدتی سخت می شوند و خصوصیت اصلی این مواد آن است که پس از سخت شدن مجداً قابل نرم شدن و استفاده مجدد نیستند و در هیچ نوع ماده ضلالی قابل حل نمی باشند و پس از سخت شدن، تغییرات شیمیایی فهمی درآنها روی می دهد.
انواع قالبهای مواد ترموست (باکالیت)
در روش قالبگیری مواد ترموست، مواد درمحفظه قالب به مرور گرم و حرارت می بینند و بعد به داخل قالب گرم تغذیه می شوند و این مواد نرم شده شکل و فرم حفره و محفظه های قالب را ه بر اثر فشار قالب می گیرد و بر اثر تغییرات شیمیایی خنک و به بیرون قالب انداخته می شوند.
قالب گیری مواد ترموست با سه روش مشخص صورت می گیرد، البته از روش های دیگری مانند حدیده ای و ... استفاده می شود.
1- قالب گیری انتقالی
2- قالب گیری تحت فشار
3- قالب گیری تحت فشار پیستون
1- قالب گیری انتقالی:
در این روش مواد از درون یک یا چند کانال، تحت فشار از میان محفظه بازدهی به داخل حفره قالب تزریق می شوند وقالب قبل از شروع کار جفت و بسته می شود.
2- روش قالب گیری تحت فشار :
در روش قالب گیری تحت فشار پودر یا ساچمه ها یا قرص ها مواد در محفظه قالب ریخته می شود وبا بسته شدن قالب، تحت فشار و حرارت فرم قطعه دلخواه را می گیرد.
3- روش قالب گیری تحت فشار پیستون:
در روش قالب گیری تحت فشار پیستون مواد ترموست تحت فشار پیستون که شکل رویه ی قطعه کار را می سازد به درون محفظه و حفره قالب وارد می شود و تحت فشار وحرارت فرم لازم را می گیرد.
- فرآیند دایکاست:
در فرآیند دایکاست، مواد مذاب (که می توانند موادی مانند آلومینم و مس و غیره باشند) تحت فشار معینی به محفظه ی قالب هدایت می شود و با استفاده از این روش، قطعاتی با دقت بالا و فرم های پیچیده و تمیز را می توان تولید نمود معمولاً بعد از تولید احتیاج به عملیات دیگری مانند ماشین کاری و پرداخت کاری نمی باشد و فقط باید پلیسه و قطعات زاید را دور نمود.
از فرایای روش ریخته گری تحت فشار و دایکاست می توان به موارد ذیل اشاره کرد:
1- تولید قطعات دقیق با فرم های پیچیده
2- ساخت قطعات با دیواره های نازک و باریک
3- پرداخت کاری سطح خوب قطعات و صافی آنها
4- عدم نیاز به ماشین کاری بعد از تولید
5- استحکام قطعات در اثر سرعت سرد شدن
6- دقت ماهیچه گذاری در قالب های دایکاست
7- تولید انبوه در مرحله تولید بدلیل عمر و استحکام زیاد این قالب ها
- فرآیند اکستروژن نه
مکانیزم کلی اکستروژن عبارت از یک مارپیچ که حرکت خود را از یک موتور و گیربکس می گیرد و در سیلندری که به وسیله گرمکن های خارجی گرم می شود حرکت می کند و مواد پلاستیکی بصورت دانه از قیف داخل دستگاه ریخته می شود. بعد از ذوب شدن مواد و با فشار از دورن فرم قالب عبور کرده و به مرور که سرد شد شکل فرم قالب را به خود می گیرد اشکال مختلف قطعات پلاستیکی در حالتهای توخالی و توپر را با این روش تولید می نمایند.
مواد
سازه های فضایی بعلت پخش نیرو در جهات مختلف از استحکام توام با سبکی استثنایی برخوردار می یاشد.به نحوی که وزن آنها 35% از سازه های متداول کمتر است و بعلت استفاده حداکثر از سیستم پیش ساختگی از سرعت ساخت و نصب بیشتری برخوردار می باشد و بعلت یکپارچگی میتوان کلیه سازه و تاسیسات مربوطه را در تراز زمین سوار کرده و سپس سقف را بالا برده و نصب کرد.
سازه فضایی با گسترش فضای باز بدون ستونها مترادف است که این امر راندمان فضا را بسیار بالا می برد(تا 25%) و این گسترش در هر دو بعد براحتی میسر است .
شکل منتظم سازه های فضایی نمای خوش آیندی را عرضه می دارد که به لحاظ معماری با ارزش می باشد و از این روست که بسیاری از معماران در سالنها و مراکز اجتماعات و غیره از سقف کاذب استفاده نکرده و خود سازه را به نمایش می گذارند.
مصا لح شبکه های فضایی
جنس المانهای طولی متنوع بوده و بسته به نوع مصرف آنها متغیر خواهد بود ولی معمولاً از انواع پلاستیک و پروفیل ، فولاد و آلومینیوم استفاده می شود بیشترسیستم های شبکه های فضایی به عنوان سا زه ساختمان ها ، ا ز فولاد ساخته می شوند،اگر چه آلومینیوم نیز به صورت گسترده ای به کار می رود واز چوب ، بتن و پلاستیکمسلح هم استفاده می شود . به صورت خیلی نا متعارف ، در سازه های آ زمایشی تیر هاییاز جنس با مبو مشاهده شده وحتی شیشه هم درخرپاهای فضایی وجود داشته است، ولی اینموارد فقط د رمورد مجسمه ها به کارگرفته شده است. برای لوله ها و مقاطع ا ز فولادنرم و فولاد با درجه جاری شدن بالا ، برای اعضا ی شکل داده شده از نوار های فولادیبه صورت سرد و برای قسمت های ریخته گری شده از آهن گرافیت کروی استفاده می شود .ایناعضا اغلب به صورت گالوانیزه یا رنگ شده هستند . سیستم های شبکه های فضایی :بهاغراق ، امروزه صدها سیستم شبکه فضایی مختلف از زمانی که اولین نمونه آن ها در 50سا ل قبل به صورت تجاری مطرح شد ، توسعه یافته است. در سرتا سرجهان ، همه ساله سیستم های جدیدی به بازارمی آید.
نمونه هایی از این نوع سازه ها
به عنوان نمونه هایی از این نوع سازه ها در ایران ، پوشش مرقد مطهر امام و سقف چند غرفه نمایشگاه بین اللملی تهران را می توان نام برد . البته این نوع سازه پدیده خیلی جدیدی نیست ، زیرا گراهام بل طرحهایی از شبکه های منظم هندسی که کاربرد ساختمانی داشته باشد تهیه کرده بود . همچنین آلاچیقهای عشایر محلی ایران ، سبکی مانند این نوع سازه ها دارند ولی در دهه 60 میلادی بود که این نوع سازه ها به صورت موضوعی بین اللملی و قابل بحث مطرح شد به طوری که اولین کنفرانس بین اللملی سازه های فضایی ( فضاکار ) در سال 1966 در دانشگاه ساری انگستان برگزار شد .
یک نمونه جالب از سازه های دو لایه ، ساختمان نمایشگاه واقع در سائوپولو ، برزیل است که محوطه ای به مساحت 260 در 260 متر مربع را با تکیه بر 25 ستون و با استفاده از 48000 عضو لوله ای آلومینیومی پوشش می دهد . نمونه جالب دیگری از کاربرد سازه های فضاکار قابل جداشدن ، پارکینگ هیترو لندن است . این پارکینگ قابلیت تحمل 325 اتومبیل را داشته و استفاده از آن بسیار اقتصادی است . این را باطل می سازد . نمونه دیگر ، آشیانه هواپیما در لندن است که دهانه ای به طول 138 متر دارد . این سقف باید لوازمی به وزن حدود 700 تن را تحمل کند که 300 تن آن متحرک و شامل چندین دستگاه جرثقیل است که امکان تعمیرات و نگهداری هواپیما را به سهولت فراهم می آورد .
شهر هرمی 12 برابر هرم بزرگ جیزه خواهد بود و توانایی گنجایش 750000 نفر را خواهد داشت. در صورت ساخته شدن این سازه بزرگترین سازه ی ساخته شده به دست بشر بر روی زمین خواهد بود. هرم 2004 متر یا 6575 پا ارتفاع دارد و می تواند راه حلی برای کمبود مکان در توکیو باشد. سازه ی پیشنهاد شده به قدری بزرگ است که با مصالح موجود امروزی (به خاطر وزنشان) نمی توان آن را ساخت. این طرح نیازمند مصالح بسیار مقاوم و سبک وزنی چون نانوتیوب های کربن است. مساحت فونداسیون 8 کیلو متر مربع و زیربنا مساحتی حدود 25 کیلومتر مربع می باشد. هرم دارای 8 طبقه یا لایه است که طبقات اول تا چهارم مسکونی، اداری و طبقات پنجم تا هشتم تحقیقاتی، رفاهی و غیره می باشد. ارتفاع 250.5 متر است که در مجموع ارتفاع 2004 متری هرم را تشکیل می دهند. هرم خود از 55 هرم کوچکتر تشکیل شده که هر یک تقریبا برابر با هتل لوکسر لاس وگاس می باشد.
هرم به ناحیه های مسکونی، تجاری و رفاهی تقسیم بندی می شود که 50کیلومتر مربع آن 240000 واحد مسکونی برای 750000 نفر را در بر میگیرد و هر ساختمان انرژی مورد نیاز خود را خود به وسیله ی انرژی بادی و خورشیدی تامین می کند. 24کیلومتر مربع به ادارجات و ساختمان های تجاری که قابلیت استخدام 800000 نفر را دارا می باشد تخصیص داده می شود و 14 کیلو متر مربع باقی مانده امکانات رفاهی را تشکیل می دهد.
فونداسیون ترکیبی از 36 شمع با بتن مخصوص می باشد. به خاطر قرار گرفتن ژاپن بر روی کمربند آتش اقیانوس آرام قسمت خارجی هرم به صورت شبکه ی بازی از خرپاهای عظیم طراحی شده است. این خرپاها توسط میله هایی از جنس نانوتیوب های کربن ساخته می شوند که سازه را در مقابل بادهای شدید، زلزله ها و سونامی ها پایدار می سازد. خرپا ها توسط لایه ای از سلول های خورشیدی برای تامین انرژی لازم شهر پوشیده خواهند شد. روبوت های بزرگ وظیفه ی مونتاژ و سوار کردن خرپاها را بر عهده دارند و کیسه های هوا برای برافراشتن خرپاها استفاده می شوند که این طرح توسط آقای دانت بینی، آرشیتکت ایتالیایی، پیشنهاد شده است.
نقل و انتقال در داخل شهر توسط پیاده روهای متحرک، آسانسورهای مورب و یک سیستم ترانزیت سریع شخصی فراهم خواهد شد که همه ی این ها در داخل میله های خرپا ها جریان دارند. خانه ها و فضاهای اداری با آسمان خراشهای بلند 80 طبقه که از بالا و پایین معلق می باشند تامین می شوند. این برج ها توسط کابل های نانوتیوبی به گره های خرپاها وصل خواهند بود.
رفتار سازه ای
دو عامل ازمهمترین ملاحظات سازه ای درطراحی اعضای خرپای فضایی ، کمانش اعضای فشاری و اعضایمها ری جان ونیزطراحی گره ها برای تا ثیر وکارایی در انتقا ل نیروهای محوری بیناعضا و گره ها برای به حداقل رساندن تاثیر خمش ثا نویه است. نسبت دهانه به ا رتفاعبرای شرایط تکیه گاهی متفا وت :تعیین نسبت اقتصادی دهانه به ارتفاع برای سا زه ها یمشبک فضایی مشکل است ، چرا که آنها از شرایط تکیه گاهی ، نوع با رگذاری وتا حدزیادی ازسیستم مورد نظر تا ثیرمی پذیرند . زد ، اس ، ماکوسکی ا ظها ر د اشته کهنسبت دها نه به ا رتفاع ممکن ا ست ا ز 20 تا 40 ، بسته به صلبیت سیستم مورد استفادهتغییر کند . نسبت دهانه به ارتفاع بزرگ تر را در صورتی می توان به دست آورد که تمام( یا بیشتر ) گره های پیرامونی بر روی تکیه گاه قرار داشته باشند. این نسبت زمانیکه گره ها فقط درنزدیکی گوشه ها بر روی تکیه گاه ها نگه د اشته شده با شند ، بهحدود 15الی 20 کاهش می یابد .
انواع سازه های فضاکار
الف) شبکه های تخت : به ترکیب یک سیستم یک یا چند وجهی با لایه های واحد شبکه گفته می شود . شبکه مسطحترکیبی از یک دو وجهی که با تیرهای واحد متصل شده است می باشد . شبکه های تخت می توانند دارای یک ، دو یا سه و حتی چند لایه باشند ، ولی بیشتر به صورت دو لایه مورد استفاده قرار می گیرند. شبکه های دولایه از دو صفحه موازی که بوسیله عناصری به هم متصل گردیده اند تشکیل می شوند . یک نمونه استفاده از این شبکه ها در آشیانه هواپیما است . زمانی که اعضا در شبکه دولایه طویل شوند برای جلوگیری از خطرکمانش کردن از شبکه های سه لایه استفاده می شود و با توجه به اینکه نیمی از هزینه های سازه های فضاکار را پیوندها تشکیل می دهند این نوع سازه ها اغلب غیر اقتصادی است .نکته دیگری که در طراحی شبکه های دولایه و اکثر سازه های فضاکار باید در نظرگرفت این است که برای توزیع بهتر نیرو و کششی شدن آن ستون ها در داخل شبکه قرار می گیرند و ستون به چند گره متصل شود و بهتر است برای توزیع منظم نیرو در سازه ها در اطراف کنسول داشته باشیم .
ب) شبکه های چیلک : به شبکه ای که در یک جهت دارای انحنا باشد ، چلیک می گویند . این سازه بیشتر برای پوشش سطوح مستطیلی دالان مانند استفاده شده و بعضا فاقد ستون می باشند و روی لبه های چلیک که به تکیه گاه متصل است ، قرار می گیرند . چلیک ها دارای محور می باشند . اگر چلیک یک لایه باشد اتصالات به شکل صلب است . چلیک ها اغلب به شکل ترکیبی استفاده می شوند و تیرکمری نقش ترکیب کردن چلیک ها به یکدیگر را بازی می کنند . نکته ای که در طراحی این نوع سازه ها باید در نظرگرفت این است که انتهای چلیک باید قوی باشد و این تقویت را می شود بوسیله تیر ، و تیروستون و شکل خورشیدمانند انجام داد . انواع چلیک ها عبارتند از : چلیک اریبی ، چلیک لملا با مقاطع بیضی گونه ، سهمی گون ، هذلولی گون و...
انواع فرم های سازه های فضاکار
شناخت انواع فرم های متداول سازه های فضاکار جهت انتخاب زیباترین و به صرفه ترین فرم مطابق با نیازهای معماری بسیار حایز اهمیت است در زیر با چند نمونه از انواع فرمهای سازه های فضایی آشنا میشویم:
شبکه های تخت- چیلیک(قوسی) - گنبدی شکل – دیسکی – هرمی – سینوسی و تخت دو طرف شیب دار و شبکه های ترکیبی تخت وقوسی - تخت شیبدار وقوسی – نیم قوس - تخت و گنبد - و.....